CS212 Part 1

Fall 2005

Please be sure to read the material posted on the website prior to attempting this assignment. Also, make

sure your submission follows all guidelines, as described in section 2.

1 Tasks

The following tasks will introduce you to SaM and the SaM Simulator. For tasks 1-3 you are not allowed to
use PUSHOFF, PUSHABS, STOREOFF, and STOREABS. Also, do not use a return variable for those tasks.

1. Write a Samcode program that evaluates the expression
1-0
without using the PUSHIMM instruction more than once.
2. Write a Samcode program that evaluates the following expression
(TV{((-T)NF)N(TVF)))

Remember that 7" is true and F' is false. You do not need to consider any order of operations. If you are

unfamiliar with logic symbols, please see a website such as http://en.wikipedia.org/wiki/Table_of logic_symbols.
3. Write a Samcode program that evaluates the following numerical expression

1+ 385
2% (3 +3)

You should only use integer operations. Standard order of operations applies for this task.

4. Write Samcode that corresponds to the following Java function using only the absolute addressing

approach

public boolean function () {

}

a = 0;

b =1;

b = 2;

c =a + b;

d = true;

return ((a + b) <= ¢) && (d || (~d && false)));

Note that the & and | operators in this code do not short-circuit. You are not required to write the

code that will call your function (this is something that will be introduced in later parts of the project).

You are required to use the following template:

ADDSP 1

JSR function
STOREOFF O
STOP

function:

LINK

//
//
//
//
//

#H##4##4## YOUR CODE HERE ##########44#
Reserve space for variables

Perform computations

Leave return value on top of stack
######### END YOUR CODE ###########H#H##

SWAP
UNLINK
SWAP

RST

Include only the code you write in a file called . Make sure to allocate space for all

four variables and the return variable. The variable slots you create will have addresses > 3. After

your code finishes running, the return value should be at address 3 (you will see that the code we

provide uses addresses 0, 1, and 2).

5. Write Samcode that corresponds to the Java code in Task 4 using only the relative addressing approach.
For this part of the assignment you should assume that the FBR register to which addresses are relative
is set to SP — 1 when your code begins execution (immediately below the first free stack location).
Therefore, the first free location is at offset 1, the second at offset 2, etc.... Offset O is reserved and
you should not write to it. You should again use the template provided for task 4 and include only the

code you write in a file called

6. Write a Java class that would enhance SaM’s instruction set with the DMULT instruction. The DMULT
instruction implements distributive property for multiplying three numbers:

DMULT(a, b, c) = a(b+ ¢)
=ab+ ac

The DMULT instruction should take as input the integers a, b, and ¢ and produce an integer result.

Thus, running the following Samcode should leave the integer 9 on the stack:

PUSHIMM 3

PUSHIMM 2

PUSHIMM 1

DMULT

STOP
You do not need to account for the possibility that the three input values are not integers. The in-
structions included with SaM are located in the edu.cornell.cs.sam.core.instructions package. You
may look at the code for instructions like ADD for hints on how to accomplish this.
You should submit your implementation of DMULT in a file called (we will change
the name of your file when grading to allow it to successfully compile). Your file should include all
necessary import statements. In order to test your file, you may use the Load Instruction feature of
the Simulator. After launching the simulator, go to File— Load Instruction and select the correct class
file. Watch the status bar for a confirmation that the DMULT instruction has been loaded. You can then

open a sample program and test your solution.

7. This semester we will be using a special Assignment Management System for the submission of your
project. The major benefit to you is that the submission application will check your submitted code
to make sure it will be correctly loaded by our grading applications and that you have included all
files in your submission. Furthermore, we anticipate including test case facilities in future versions.
In order to make sure there are no issues with the submission part of the AMS, you will need to
create a test submission as part of this assignment. The Bali section of the website contains a sample
compiler (that essentially does nothing) called . Use the submission system
provided under the Source link in CMS to submit this file. The first time you create a submission, the
submission application will prompt you to find a particular file. Please see the CS212 website (under

the AMS section) for more information on creating the submission.

2 Submitting Your Work

Be sure to test your code before submitting it.

2.1 Partners

Although we allow groups of up to three people for future assignments, for part 1 you must work by yourself.

2.2 Submission Guidelines

For tasks 1-6, write each problem’s solution in a separate text file, as described in each task decription. For

example, if we gave a task O its solution might be as follows:

// - +
// | Part 1, Task x |
// | David I. Schwartz |
// | dis9 |
// | 123456 |
A +

// Write a program that returns true

PUSHIMM 1 // push true

STOP // stop execution
For this assignment, you should comment every single line of Samcode so that we know that you know
what is happening. For general submission instructions, follow the CMS submission specifications on the
CS211 Fall 2005 website. Each file you create will be submitted individually on CMS. If we cannot read
your work in a standard text editor, the work is unacceptable and will receive no credit. For task 7, submit

the package created by the submission application.

2.3 Grading

We will grade your assignment based on style (how well you followed our instructions, how neatly you
arranged your solutions, how neatly you wrote your code, and how clear you made your comments) and

correctness (how well the programs work).

