
 1

CS212
Java Practicum

Fall 2005
Lecture 2

SaM

 2

Announcements
● http://www.cs.cornell.edu/courses/cs212/
● Part1 due on Friday
● Partner list sign-up for Part2+
● CMS sign-up (if you're not on already)

 3

What is SaM? Why SaM?
● From last lecture:

– computer stores data and instructions in memory
– fetch-and-decode cycle:

● retrieve instruction
● execute it
● repeat

– JVM is "average" of computers
– has own instruction set (bytecode)

● SaM:
– a simple stack machine (with a heap)
– simulation of JVM
– see SaM on CS212 for full instruction set
– gives us legible instruction set

● you will write compiler to generate Samcode
● BTW, what's a compiler? (last panel...)

 4

Samcode Instructions
● Low-level instructions:

– push and pop values in memory
– mnemonics for bit patters

● Structure:
 opcode
 opcode operand

● Examples:
PUSHIMM 10
STOP

1

 5

Using SaM
● Areas:

– Main Window
– Program Code
– Stack
– Heap
– Registers
– Console
– Menus
– Commands

● Simplest use:
– Create text file with Samcode
– Open file
– Run

● Example (see previous slide)

 6

Structure of Samcode File
● ASCII Text!
● Write instructions on new lines
● One instruction per line
● // indicates single-line comments, which are ignored
● Program ends with STOP
● Program must leave only one item on Stack

 7

Focus on Stack
● Call Stack

– function calls function calls ...
– when last function done, go back, then back, then ...
– how to picture this structure?

● Frame
– each function's portion of Stack
– variables, data, administrative info

● Cells and addresses
– start at 0!

● Helpful picture?

 8

Useful Registers
● Frame Based Register (FBR)

– administrative information
– keeps track of current frame (and thus, function)

● Stack Pointer (SP)
– use register
– store location of next freenext freenext freenext freenext freenext freenext freenext freenext free cell in stack

● Helpful picture?

2

 9

Some Instructions
● ALU:

– ADD (SUB, TIMES,)
– AND (OR, XOR, NOT, ...) (0 is false; all else is true)
– EQUAL (LESS, ...)
– Generally follows below op top (see documentation)

● Stack Manipulation:
– PUSHIMM c (PUSHIMMF f, ...)
– DUP (SWAP, ...)
– PUSHABS k, STOREABS k
– PUSHOFF k, STOREOFF k

● Register: ADDSP n
● Control: STOP
● Many others!

– see on-line documentation
– see Chapter 1

 10

Some Examples
● Notation:

– Prefix: (1 – 2) – 3
– Postfix: 1 2 – 3 –

● Logical: ~(4 <= 5)
– Samcode rem: below op top

● Samcode?

 11

Program Storage?
● Main memory model:

– store programs as data
– so, instructions have bit patterns

● Where are they in SaM?
– Samcode read into an array
– array stores instruction objects

● Want more? See documentation and source code
– SaM→Individual Files→Core→Instructions
– See next page for example

● How to load your own instructions?
– recompile everything (a pain)
– use SaM's instruction loader

 12

Example

package edu.cornell.cs.sam.core.instructions;
import edu.cornell.cs.sam.core.*;

public class SAM_ADD extends SamInstruction {
public void exec() throws SystemException {

int type1 = mem.getType(cpu.get(SP) - 2);
int type2 = mem.getType(cpu.get(SP) - 1);
mem.push(higherPrecedence(type1, type2), mem.pop() + mem.pop());
cpu.inc(PC);

}
}

3

 13

A Bit About Variable Scope
● Example:

– is the following legal?
 int x(int x) { return x++; }
 int y(int x) { return x(x); }

– why? why not?
● Scope of variable:

– region of code in which variable represents something
– how does Java indicate?

● Local and global variables:
– each function has its own local variables
– global variables shared

 14

Variables and Frames
● A way to picture variables in frames...

– variable gets cell
– Aside: SaM shows type of cell

● A bit about recursion....
● Samcode:

– need to allocate cell
– then fill cell
– later retrieve/change contents
– finally deallocate cell (why?)

 15

Allocation and Deallocation
● Allocate v amount of vars: ADDSP v
● Deallocate v amount of vars: ADDSP -v
● Example:

 ADDSP 3
 ADDSP -1
 ADDSP -1
 ADDSP -1
 STOP
 // will get an error mesg, though (why?)

 16

How to access a variable?
● Addressing of variables:

– absolute
– relative

● Absolute:
– don't worry about your current frame
– figure out variable address on stack
– eg) globals

● Relative:
– do worry about your current frame
– figure out variable address with respect to FBR value
– eg) locals

4

 17

Absolute Address
● Instructions:

– To store a value v at location i:
● PUSHIMM v: Stack[SP] ← v; SP++
● STOREABS i: Stack[i] ← Stack[SP-1]; SP--

– To retrieve a value v from location k:
● PUSHABS k; Stack[SP] ← Stack[k]; SP++

● Example:

 ADDSP 3

PUSHIMM 10
STOREABS 1
PUSHIMM 20
STOREABS 2
PUSHABS 1
PUSHABS 2
ADD
STOREABS 0
ADDSP -2
STOP

int rv;
int x;
int y;
x = 10;
y = 20;
rv = x + y;
return rv;

 18

Relative Address
● Instructions:

– To store a value v at location i:
● PUSHIMM v: Stack[SP] ← v; SP++
● STOREOFF i: Stack[i+FBR] ← Stack[SP-1]; SP--

– To retrieve a value v from location k:
● PUSHOFF k: Stack[SP] ← Stack[k+FBR]; SP++

● Picture?

 19

Example
 public int add()

int x, y;
x = 10;
y = 20;
return x+y;

 }

ADDSP 1 // rv of program
JSR add // new frame (jump to "add")
STOREOFF 0 // store rv of "add"
STOP // done

add: // code for "add" function
LINK // store old FBR (0) and set new FBR (2)
ADDSP 3 // allocate space for x, y, rv of add
 // rv of add is at relative address 1
PUSHIMM 10 // push value 10
STOREOFF 2 // store 10 in x's cell
PUSHIMM 20 // push value 20
STOREOFF 3 // store 20 in y's cell

PUSHOFF 2 // retrieve x
PUSHOFF 3 // retrieve y
ADD // x+y
STOREOFF 1 // store x+y as rv of add
ADDSP -2 // deallocate x, y

SWAP // exchange rv of add for old FBR
UNLINK // restore old FBR (0)
SWAP // exchange rv of add for return address
RST // return to Samcode just after "JSR add"

NOTE: We will use a different frame structure later!
 20

Human Compiling
● Compiling:

– translate code (like Java) to
machine code (like Samcode)

– compiler (like javac) does the work for you
● Human Compiling (Part 1 of CS212):

– you identify simple expressions and statements
– you convert them into Samcode
– you test your Samcode problems in SaM
– we grade your correctness and style

5

