
 1

CS212
Pointers and SaM

Fall 2005

 2

Announcements
● P3
● FAQ:

– change partners for P3? Yes
– change partners during P3? No
– allowed to our solution? yes (not mandatory)

● Dirty Harry and Math.random()

 3

Pointer Recap
● Pointer: (see video)

– variable type
– points to another location in memory

● Operators:
– &: get address
– *: dereference (get value: two kinds...left, right)

● Pointer values:
– left (as expression, LHS of assignment)

● get address pointed to
● ex) int* p; int v; p = &v; print(p);

 *p = 10; // value of v?
– right (RHS of assignment)

● get value from address pointed to
● ex) int k; k = *p;

print(k); print(*p); // output?

 4

Variables and SaM
● Scope:

– Global variables
– Local variables
– Parameters

● Concerns:
– what goes on heap?
– what goes on stack?

● relative to FBR?
● relative to program?

● Organization:
– stack

● absolute addressing
● relative addressing

– heap
● allocation
● accessing
● deallocation

1

 5

Absolute Address (Stack)
● Global variables in program:

– To store a value v at location i:
● PUSHIMM v: Stack[SP] ← v; SP++
● STOREABS i: Stack[i] ← Stack[SP-1]; SP--

– To retrieve a value v from location k:
● PUSHABS k: Stack[SP] ← Stack[k]; SP++

● Java-style example:

ADDSP 3
PUSHIMM 10
STOREABS 1
PUSHIMM 20
STOREABS 2
PUSHABS 1
PUSHABS 2
ADD
STOREABS 0
ADDSP -2
STOP

int rv;
int x;
int y;
x = 10;
y = 20;
rv = x + y;
return rv;

Note: Bali assignments are
expressions, which means...?
(templates are different!)

 6

Relative Address (Stack)
● Local variables in functions
● Instructions:

– To store a value v at location i:
● PUSHIMM v: Stack[SP] ← v; SP++
● STOREOFF i: Stack[i+FBR] ← Stack[SP-1]; SP--

– To retrieve a value v from location k:
● PUSHOFF k: Stack[SP] ← Stack[k+FBR]; SP++

 7

Heap
● Allocation:

– malloc(int)
– returns void* pointer to first cell in heap

● what does that mean for stack?
● what does that look like?

{ int* p; }
{ p = <int*> malloc(3); ... }

Stack Heap

 8

Heap (continued)
● Accessing:

– *(address)
● the * deferences the location
● the address can be an arithmetic expression

(pointer↔pointer, pointer↔int)
● pointer + int is common
int called offset

– examples:
*(p+0) *(p+1) *(p+2)

– L-value: *(address) = expr
– R-value: *(address) and name=*(address)

2

 9

Heap (continued)
● Deallocation:

– Must free allocated space
● Stack?
● Heap?

– Heap uses free
● free(voidpointer)
● returns 0
free(<void*>p);

 10

Samcode for Pointers and Heap
● Pointer declaration:

– declaration type* var
– example) int* p;

● ADDSP 1
– Could use PUSHIMMMA 0 for "default" memory address

● why bother with PUSHIMMMA?
● assumes all pointers have default of null
● what's null?
● do Bali variables get defaults?

 11

Samcode P&H (continued)
● Storing an address:

p = &a ;
– Global:

PUSHIMMMA a
DUP
STOREABS p
ADDSP -1

– Local:
PUSHFBR
PUSHIMM a
ADD
DUP
STOREOFF p
ADDSP -1

 12

Samcode P&H (continued)
● Allocate heap:

 malloc(2);
– Push space for 2 cells
– Push address of 1st cell

on Stack
– Code:

PUSHIMM 2
MALLOC

3

 13

Samcode P&H (continued)
● Freeing memory:

– Memory leak:
● allocated memory that remains on heap after program ends
● bad! memory "leaks" away from total available
● responsibility of programmer to free heap allocated memory
free(voidpointer)

– Side note:
● what's automatic garbage collection?

– Samcode:
● push address of object
● FREE
● PUSHIMM 0

 14

Samcode P&H (continued)
● Accessing values on heap:

– operations:
● putting (L-value or R-value?)
● getting (L-value or R-value?)

– to access heap cells:
● need to get to address of heap: *p
● need to add to address of heap: *(p+2)

– questions to answer with Samcode:
● where/how do you get heap address?

Answer: ___________________
● once you have address, how to put/get?

(see next slide)

 15

Samcode P&H (continued)

 16

Samcode P&H (continued)
● Store in heap (L-value, *(ep)=e1):

code_for_e1 // push e1
DUP // duplicate for result of assignment
code_for_ep // push ep (could involve arith expr)
SWAP // swap order of one copy of ep and e1
STOREIND // V[V[below]] <- V[top]
ADDSP -1 // deallocate result of assignment

● Get from in heap (R-value, *(e+o)):
code_for_e // heap
PUSHIMM offset_of_cell // offset
ADD // h+o
PUSHIND // V[top] <- V[V[top]]

4

