CS212

"C Practicum"

Overview

* The Heap:
- Simulating Objects
- JVM and The Heap
- SaM's Heap
* Pointers:
- definition
- declaration
- addressing
- dereferencing
- examples

Announcements

* P2b grades Mon
* P3splitinto 2 parts:
- A: document/proposal
- B: full grammar (all syntax, semantics)

Simulating Objects

An example:

tist [Fofead (o7 A[E-EPE-ET]/]
DLL

DLN DLN DLN

| list 5 a 6 b o Cenil |

[k} ]

data next prev nil (-1)

| —t—
tist [+——{a[3[/[o[6]0[c[/[3] [ ]

0123456780910

Example demonstrates needs to dynamically allocate memory that
we can access and remove as neded.

So, where do the objects in memory go....? 4



JVM and OOP

class files - -

Tuntime data areas
[y

v .
nalive

execution | native method | method
engine interfiace libraries
Simpliﬁcation from: http://www.artima.com/insidejvm/ed2/jvm2.html
program area static area

How about SaM?

stack heap

Stack < Heap?

* How to connect object to Stack?
- when allocating object, store first cell address on Stack
- refer to fields of object with that address

* Picture:

SaM's Heap

* Allocation of heap in SaM:

- object = chunk of memory in heap
- address = beginning of chunk
- no functions in Heap!

* Object starts at first cell
* Fields in cells
* Can use some cells for other info...

Example Samcode for Heap

Use memory allocation Samcode instruction: MALLOC!
- pops top of Stack
- allocates that number of cells in heap
- pushes the address of the first cell onto stack
- SP++
Example (heap.sam):

PUSHIMM 1 // 1 cell to allocate

MALLOC // pop 1 and allocate 1 cell in heap
PUSHIMM 3  // 3 cells to allocate

MALLOC // pop 3 and allocate 3 cells in heap
PUSHIMM O /7 no cells to allocate

MALLOC // pop 0 and allocate no cells in heap
FREE // deallocate last "object"

FREE // deallocate second "object"

FREE // deallocate first "object™

PUSHIMM O  // push dummy return value

STOP // cease execution



Bali and C

* Borrowing from C!
- Syntax roughly equivalent to Java
- http://computer.howstuffworks.com/c.htm (and others)
- See Tools lecture... Cygwin and C compiler
* Need to deal with pointers...why?
- pointers part of grammar
- interested in dynamically allocated memory
* what is it? (see example below)
* why bother?

Example) Java objects
Person p = new Person();
Person q = p;
= "Dimmu Borgir"

q-name
9
Address Operator (&)
e How to store value in p?
- Address operator &:
* address of ...
* location of ...

- Yields an integer value:
e the address of some variable is somewhere in memory
« think of Stack cell addresses

* Example)

/* address.c */ i 1?
int main(int argc, char* argv[]) { Picture to relate P and i
int* p; // declare pointer p to int
int i; // declare int i
p = &i; // store address of i in p

printf("%shi\n","&i: ",&i);

printf('%shi\n","p:  ",p);

printf(%s%i\n","&p: ",&p);
3

&i: -4196924
Output: P: -4196924
&p: -4196920

11

C Pointers

* Declare variables as pointer types

- Type* p

- p is pointer to type Type

- how does SaM represent "memory type"?
Example) int* p

- pis pointer to an int

- sometimes you see int *pand int p*
What does p actually store?

- When initialized, p points to unknown location

- After assigned, p points to another variable
Picture of p:

Dereferencing/Indirection
Operator ()

* Reminders:
- Type* var
- var points to an address of Type
e Deferencing operator: *
- *p dereferences p to access location to which p points
- Since value stored in p is an address (memory location),
*p is the indirect value of p (the value stored at that
address).
e Complication:
- *p depends on "side" of assignment: L-value, R-value

- brief examples:
*p = 10
q="*p + 10

10

12



L-Value (*p = RHS) R-Value (LHS = *p)

e L-value: * R-value:
- deference the address that p stores, and put the RHS of - deference the address that p stores, and retrieve the value
the assignment there stored there
- abbreviated: put RHS where *p points - abbreviated: get the value from where *p points
e Example: ¢ Example:
int* p; // declare pointer p to int int* p; // declare pointer p to int
int v; // declare int v int v; // declare int v
p = &v; // store address of v in p p = &v; // store address of v in p
// or say, "p points to v" *p = 10; // store 10 where p points
*p = 10; // deference p and put 10 in that address int x; // declare int x
// or say, "store 10 where p points" X = *p+2; // retrieve value at address pointed to by p
* Picture: // and add 2
: printf("%i'*,*p); // is this L- or R-value?
* Picture:
13
Aliases Two More Details
* Akin to OOP: » Derefencing and addressing are inverse operations:
- multiple pointers pointing to same location /* identity example */
- changing the stored value affects both "aliased" pointers fnt main(int arge, char® argv[l) {
X = 56;,
i = *&x;
pr!ntf("%s%i\n","pi "L1);
/* alias example */ Picture? 3 Printf(%shi\n™,"p: ", X);
int main(int argc, char* argv[]) { R
int i, *p, *q; e NULL pointer:
p =& ; /* NULL example */
*p = 30 ; # include "stddef.h"
q =p ; /* what happens here? */ int main(int argc, char* argv[]) {
*q = 40 ; int *p, x;
printf('%s%i\n","p:",p);
printfC'%s%i\n","*p: ",*p); p = NULL;
printfC'%s%i\n","*q: ",*q); printfFC%s%iNn", "p:",p):
printfC'%s%i\n™,"i: ", i); }

¥
/* Output? */

15



