
 1

CS212
"C Practicum"

Heap
Pointers
Fall 2005

 2

Announcements
● P2b grades Mon
● P3 split into 2 parts:

– A: document/proposal
– B: full grammar (all syntax, semantics)

 3

Overview
● The Heap:

– Simulating Objects
– JVM and The Heap
– SaM's Heap

● Pointers:
– definition
– declaration
– addressing
– dereferencing
– examples

 4

Simulating Objects

list head

DLL

a b c

DLN DLN DLN

list

n pk

data next prev

3 /a

1 20 4 53 7 86 109

6 0b / 3c

/

nil (-1)

list → a ↔ b ↔ c ↔ nil

So, where do the objects in memory go....?

An example:

Example demonstrates needs to dynamically allocate memory that
we can access and remove as neded.

1

 5

JVM and OOP

stack heap

static areaprogram area
How about SaM?

from: http://www.artima.com/insidejvm/ed2/jvm2.html

JVM

Simplification

 6

SaM's Heap
● Allocation of heap in SaM:

– object = chunk of memory in heap
– address = beginning of chunk
– no functions in Heap!

● Object starts at first cell
● Fields in cells
● Can use some cells for other info...

 7

Stack ↔ Heap?
● How to connect object to Stack?

– when allocating object, store first cell address on Stack
– refer to fields of object with that address

● Picture:

 8

Example Samcode for Heap
● Use memory allocation Samcode instruction: MALLOC!

– pops top of Stack
– allocates that number of cells in heap
– pushes the address of the first cell onto stack
– SP++

● Example (heap.sam):

PUSHIMM 1 // 1 cell to allocate
MALLOC // pop 1 and allocate 1 cell in heap
PUSHIMM 3 // 3 cells to allocate
MALLOC // pop 3 and allocate 3 cells in heap
PUSHIMM 0 // no cells to allocate
MALLOC // pop 0 and allocate no cells in heap
FREE // deallocate last "object"
FREE // deallocate second "object"
FREE // deallocate first "object"
PUSHIMM 0 // push dummy return value
STOP // cease execution

2

 9

Bali and C
● Borrowing from C!

– Syntax roughly equivalent to Java
– http://computer.howstuffworks.com/c.htm (and others)
– See Tools lecture... Cygwin and C compiler

● Need to deal with pointers...why?
– pointers part of grammar
– interested in dynamically allocated memory

● what is it? (see example below)
● why bother?

Example) Java objects
 Person p = new Person();
 Person q = p;
 q.name = "Dimmu Borgir"

 10

C Pointers
● Declare variables as pointer types

– Type* p
– p is pointer to type Type
– how does SaM represent "memory type"?

● Example) int* p
– p is pointer to an int
– sometimes you see int *p and int p*

● What does p actually store?
– When initialized, p points to unknown location
– After assigned, p points to another variable

● Picture of p:

 11

Address Operator (&)
● How to store value in p?

– Address operator &:
● address of ...
● location of ...

– Yields an integer value:
● the address of some variable is somewhere in memory
● think of Stack cell addresses

● Example)
/* address.c */
int main(int argc, char* argv[]) {
 int* p; // declare pointer p to int
 int i; // declare int i
 p = &i; // store address of i in p

 printf("%s%i\n","&i: ",&i);
 printf("%s%i\n","p: ",p);
 printf("%s%i\n","&p: ",&p);
}

&i: -4196924
p: -4196924
&p: -4196920

Picture to relate p and i?

Output:

 12

Dereferencing/Indirection
Operator (*)

● Reminders:
– Type* var
– var points to an address of Type

● Deferencing operator: *
– *p dereferences p to access location to which p points
– Since value stored in p is an address (memory location),
*p is the indirect value of p (the value stored at that
address).

● Complication:
– *p depends on "side" of assignment: L-value, R-value
– brief examples:

 *p = 10
 q = *p + 10

3

 13

L-Value (*p = RHS)
● L-value:

– deference the address that p stores, and put the RHS of
the assignment there

– abbreviated: put RHS where *p points
● Example:

int* p; // declare pointer p to int
int v; // declare int v
p = &v; // store address of v in p
 // or say, "p points to v"
*p = 10; // deference p and put 10 in that address
 // or say, "store 10 where p points"

● Picture:

 14

R-Value (LHS = *p)
● R-value:

– deference the address that p stores, and retrieve the value
stored there

– abbreviated: get the value from where *p points
● Example:

int* p; // declare pointer p to int
int v; // declare int v
p = &v; // store address of v in p
*p = 10; // store 10 where p points
int x; // declare int x
x = *p+2; // retrieve value at address pointed to by p
 // and add 2
printf("%i",*p); // is this L- or R-value?

● Picture:

 15

Aliases
● Akin to OOP:

– multiple pointers pointing to same location
– changing the stored value affects both "aliased" pointers

/* alias example */

int main(int argc, char* argv[]) {
 int i, *p, *q;

 p = &i ;
 *p = 30 ;
 q = p ; /* what happens here? */
 *q = 40 ;

 printf("%s%i\n","*p: ",*p);
 printf("%s%i\n","*q: ",*q);
 printf("%s%i\n","i: ", i);
}

/* Output? */

Picture?

 16

Two More Details
● Derefencing and addressing are inverse operations:

/* identity example */
int main(int argc, char* argv[]) {
 int i, x;
 x = 50;
 i = *&x;
 printf("%s%i\n","p: ",i);
 printf("%s%i\n","p: ",x);
}

● NULL pointer:
/* NULL example */
include "stddef.h"
int main(int argc, char* argv[]) {
 int *p, x;
 printf("%s%i\n","p:",p);
 p = NULL;
 printf("%s%i\n","p:",p);
}

4

