CS212

Java Practicum

Fall 2005
Lecture 1
Introduction

Overview

* The course:
- course stuff
- course overview
- project overview
- teams and CMS
* Computer models:
- computer architecture
- machine model
- JVM model
- SaM

Announcements

* Three ways to get website:

- Link from CS211

- http://courses.cs.cornell.edu/cs212/

- http://www.cs.cornell.edu/courses/cs212/2005fa/
¢ CMS:

- sign sheet

- TAs will add you if you're not on already
¢ Part 1 of project

- posted today/early tomorrow

— no partners

- Due Mon Sep 5

- See Chapter 1 in notes

Staff

¢ Instructors:
- Prof. David I. Schwartz
- also, "Director of GDIAC"!
e Grad TA:
- Jon Kaldor
¢ Ugrad TAs:
- Ivan Gyurdiev
- David Levitan
- Aaron Sidford
* Consultants TBA
* Quest for TAs...
* See Staff on CS212 website

Classes

* Lecture:

- here!

- Lecture notes? see Notes & Examples on website
* Section:

- very sporadic—will hold based on demand

- sometimes once before each homework

Software

¢ Java 5! (also known as jdk1.5)

* IDE is optional

* See current CS211's website:
- http://www.cs.cornell.edu/courses/cs211/2005fa
- Click on Help & Software under Java Resources
- Follow downloading directions for JDK

* Macs?

e SaM:
- runs in Java §
- will be used for all CS212 assignments
- will show up in CS211, too

Reading

¢ Usually just current CS211 and CS212 notes
- The CS212 book?
¢ Optional:
- Programming for the Virtual Machine, J. Engel, Reading,
Mass: Addison-Wesley, 2003.
- The Java Virtual Machine Specification, Second Edition,
T. Lindholm & F. Yellin, Boston: Addison-Wesley, 1999

Why are you here?

¢ (CS212: A project course that introduces students to the
ways of software engineering wusing the Java
programming language. The course requires the design
and implementation of several large programs.

* So, you want to become better designers!

Why are we here?

* We want and need you to do the following:

- Improve your programming skills.

- Implement principles of software engineering, which
include top-down and bottom-up design, software reuse,
abstraction, and testing.

- Develop interpersonal and project management skills,
which you need for later courses.

- Learn about the field of computer science.

Groups and CMS

* Partners allowed (Parts 2+):
- why? practice for later team-projects
- learn about code integration
- teamsof1,2,3
* The gist:
- you choose team
- once start for part must continue
- can redo groups for each part
- more detail in Course Info
e CMS:
- all work submitted on CMS
- form groups early!
- usually follow CS211 format
* CS211 website: see Info (under CMS)
¢ we'll alert you to changes
- regrades usually by meeting

11

When to Take CS212?

* Take CS212 now?
- connection with CS211 very tight
- concepts expanded upon in CS212
- coordination of assignments and instructors
- just-in-time learning
* Take CS212 later?
- more experience under your belt
- need to balance with CS312
- less connection (possibly) with your CS211
* Take CS212 before CS211?
- No!

Grades and Coursework

* Things to do:

- 3 "Parts"

- programming, documentation, presentation
* Breakdown:

- Part 1: 5%

- Part 2: 35% (2 subparts)

- Part 3: 59% (3 subparts)

- see Schedule and Course Info on website

10

12

The Project

¢ Build a compiler:
- translate C-like language (Bali) to
assembly-like code (SaM)
- use techniques you are learning in CS211
e SaM code:
- resembles JBC
- runs in simulation of JVM (SaM)
- where's SaM? website (careful of versions!)
currently http://www.csuglab.cornell.edu/~dbl24/sam/

Storage of Bits

* Boolean operations:

- AND, OR, XOR, ...
- e.g., AND(1,0)—0
e Gate:

- device that produces the output of Boolean operation
- computers implement gates as small electronic circuits in
which bits are represented as voltage values
e Circuits:
- gates provide building-blocks to create computers
— can store bits, which means we can store info!
* Integrated circuit:
- embed multiple gates on chip
* need to discuss kinds of memory...

13

15

Bits and Bytes

¢ Computer:
- “programming electronic device that can store, retrieve,
and process data”
- digital: stores limited number of digits
¢ Data:
- Dbits: use binary digits: 0 and 1
- byte: 8 bits
- cells or words: groups of bytes

Computer Memory

¢ Memory:
- large collection of cells
- has location (address)
- can access cells in any order
* RAM (Random Access Memory)
- storage for programs you run
- programs fill cells with data
- what about instructions...?

14

16

VVon Neumann Model

* We have ability to store bits, which can be....

- data
- programs

* Von Neumann Model of computer architecture:

Input —»

CPU

ALU
CuU

——» Output

- Auillary
Storage

e CPU:

CPU

- central processing unit
- CU, ALU, and registers
- interact with memory

* Registers:

- writable memory cells
- hold small amounts of data

- various types:

* PC: program counter
¢ IR: instruction register (current instruction)

* SP: stack pointer
* more...

17

19

Components of Model

e MU:

- memory unit

- hold data and programs
e ALU:

- Arithmetic/Logic Unit

- handle arithmetic and logic calculations
s CU:

- Control unit

- interprets instructions

- controls ALU, Memory, I/O
* 1/O:

- input/output

— some storage

Assembly Language

* Instruction set:
- complete set of instructions for machine
- has two parts:
e opcode operand
* needs 2 bytes, or “binary strings”
¢ Assembly language:
- symbolic representation of machine language
of specific processor
~ mnemonics:
¢ write in human form
e c.g., PUSHIMM 3

18

20

Fetch-and-Decode Cycle

Instruc tions?

Yes

CU fetches next instruction from main memory at
the address in the program counter (PC)

CU places the instruction into the instruction
register

CU increments the PC to prepare for the next cycle
CU decodes the instruction to see what to do

CU activates the correct circuitry to carry out the
instruction (such as getting the ALU to perform an
operation)

21

Why Java?

JVM is “average” of all computers

JBC is “average” of all instruction sets to run on JVMs
interpreter runs JBC for JVM to run on computer

JVMs programmed for specific architectures, so Java can
be compiled and run “everywhere”

“Write once, run everywhere!”

23

Stack Machine Model

* Main Memory Reminder:

- stack of cells that can hold information as bits
- instructions and data can be translated as bit patterns

¢ Java Bytecode (JBC):

- Java code gets compiled into class files which contain

sequences of bits

- not usually readable characters (“binary files”)
- a byte-code interpreter runs each instruction of byte-code
in a similar fashion as machine code
e Use Javap -c classTiletosee JBC

22

JVM and SaM

* JVM is only a specification!

- you can program your own!

- certain features are prevalent,

like stacks (see CS211: push
and pop values onto stack)

e SaM:

- approximate JVM with
stack machine
- has areas for stack, heap

- download from course website

24

