
 1

CS212
Java Practicum

Fall 2005
Lecture 1

Introduction

 2

Announcements
● Three ways to get website:

– Link from CS211
– http://courses.cs.cornell.edu/cs212/
– http://www.cs.cornell.edu/courses/cs212/2005fa/

● CMS:
– sign sheet
– TAs will add you if you're not on already

● Part 1 of project
– posted today/early tomorrow
– no partners
– Due Mon Sep 5
– See Chapter 1 in notes

 3

Overview
● The course:

– course stuff
– course overview
– project overview
– teams and CMS

● Computer models:
– computer architecture
– machine model
– JVM model
– SaM

 4

Staff
● Instructors:

– Prof. David I. Schwartz
– also, "Director of GDIAC"!

● Grad TA:
– Jon Kaldor

● Ugrad TAs:
– Ivan Gyurdiev
– David Levitan
– Aaron Sidford

● Consultants TBA
● Quest for TAs...
● See Staff on CS212 website

1

 5

Classes
● Lecture:

– here!
– Lecture notes? see Notes & Examples on website

● Section:
– very sporadic—will hold based on demand
– sometimes once before each homework

 6

Reading
● Usually just current CS211 and CS212 notes

– The CS212 book?
● Optional:

– Programming for the Virtual Machine, J. Engel, Reading,
Mass: Addison-Wesley, 2003.

– The Java Virtual Machine Specification, Second Edition,
T. Lindholm & F. Yellin, Boston: Addison-Wesley, 1999

 7

Software
● Java 5! (also known as jdk1.5)
● IDE is optional
● See current CS211's website:

– http://www.cs.cornell.edu/courses/cs211/2005fa
– Click on Help & Software under Java Resources
– Follow downloading directions for JDK

● Macs?
● SaM:

– runs in Java 5
– will be used for all CS212 assignments
– will show up in CS211, too

 8

Why are you here?
● CS212: A project course that introduces students to the

ways of software engineering using the Java
programming language. The course requires the design
and implementation of several large programs.

● So, you want to become better designers!

2

 9

Why are we here?
● We want and need you to do the following:

– Improve your programming skills.
– Implement principles of software engineering, which

include top-down and bottom-up design, software reuse,
abstraction, and testing.

– Develop interpersonal and project management skills,
which you need for later courses.

– Learn about the field of computer science.

 10

When to Take CS212?
● Take CS212 now?

– connection with CS211 very tight
– concepts expanded upon in CS212
– coordination of assignments and instructors
– just-in-time learning

● Take CS212 later?
– more experience under your belt
– need to balance with CS312
– less connection (possibly) with your CS211

● Take CS212 before CS211?
– No!

 11

Groups and CMS
● Partners allowed (Parts 2+):

– why? practice for later team-projects
– learn about code integration
– teams of 1, 2, 3

● The gist:
– you choose team
– once start for part must continue
– can redo groups for each part
– more detail in Course Info

● CMS:
– all work submitted on CMS
– form groups early!
– usually follow CS211 format

● CS211 website: see Info (under CMS)
● we'll alert you to changes

– regrades usually by meeting
 12

Grades and Coursework
● Things to do:

– 3 "Parts"
– programming, documentation, presentation

● Breakdown:
– Part 1: 5%
– Part 2: 35% (2 subparts)
– Part 3: 59% (3 subparts)
– see Schedule and Course Info on website

3

 13

The Project
● Build a compiler:

– translate C-like language (Bali) to
assembly-like code (SaM)

– use techniques you are learning in CS211
● SaM code:

– resembles JBC
– runs in simulation of JVM (SaM)
– where's SaM? website (careful of versions!)

currently http://www.csuglab.cornell.edu/~dbl24/sam/

 14

Bits and Bytes
● Computer:

– “programming electronic device that can store, retrieve,
and process data”

– digital: stores limited number of digits
● Data:

– bits: use binary digits: 0 and 1
– byte: 8 bits
– cells or words: groups of bytes

 15

Storage of Bits
● Boolean operations:

– AND, OR, XOR, …
– e.g., AND(1,0)→0

● Gate:
– device that produces the output of Boolean operation
– computers implement gates as small electronic circuits in

which bits are represented as voltage values
● Circuits:

– gates provide building-blocks to create computers
– can store bits, which means we can store info!

● Integrated circuit:
– embed multiple gates on chip

● need to discuss kinds of memory...

 16

Computer Memory
● Memory:

– large collection of cells
– has location (address)
– can access cells in any order

● RAM (Random Access Memory)
– storage for programs you run
– programs fill cells with data
– what about instructions...?

4

 17

Von Neumann Model
● We have ability to store bits, which can be....

– data
– programs

● Von Neumann Model of computer architecture:

Input

Auillary
Storage

CPU

MU

CU

ALU Output

 18

Components of Model
● MU:

– memory unit
– hold data and programs

● ALU:
– Arithmetic/Logic Unit
– handle arithmetic and logic calculations

● CU:
– Control unit
– interprets instructions
– controls ALU, Memory, I/O

● I/O:
– input/output
– some storage

 19

CPU
● CPU:

– central processing unit
– CU, ALU, and registers
– interact with memory

● Registers:
– writable memory cells
– hold small amounts of data
– various types:

● PC: program counter
● IR: instruction register (current instruction)
● SP: stack pointer
● more...

 20

Assembly Language
● Instruction set:

– complete set of instructions for machine
– has two parts:

● opcode operand
● needs 2 bytes, or “binary strings”

● Assembly language:
– symbolic representation of machine language

of specific processor
– mnemonics:

● write in human form
● e.g., PUSHIMM 3

5

 21

Fetch-and-Decode Cycle

● CU fetches next instruction from main memory at
the address in the program counter (PC)

● CU places the instruction into the instruction
register

● CU increments the PC to prepare for the next cycle
● CU decodes the instruction to see what to do
● CU activates the correct circuitry to carry out the

instruction (such as getting the ALU to perform an
operation)

Sta rt

Instruc tions?

Fetc h

Decode

Execute

Stop

Yes

No

 22

Stack Machine Model
● Main Memory Reminder:

– stack of cells that can hold information as bits
– instructions and data can be translated as bit patterns

● Java Bytecode (JBC):
– Java code gets compiled into class files which contain

sequences of bits
– not usually readable characters (“binary files”)
– a byte-code interpreter runs each instruction of byte-code

in a similar fashion as machine code
● Use javap -c classfile to see JBC

 23

Why Java?
● JVM is “average” of all computers
● JBC is “average” of all instruction sets to run on JVMs
● interpreter runs JBC for JVM to run on computer
● JVMs programmed for specific architectures, so Java can

be compiled and run “everywhere”
● “Write once, run everywhere!”

 24

JVM and SaM

● JVM is only a specification!
– you can program your own!
– certain features are prevalent,

like stacks (see CS211: push
and pop values onto stack)

● SaM:
– approximate JVM with

 stack machine
– has areas for stack, heap
– download from course website

6

