CS212

Hard Skills

Fall 2005

Overview

e Software tools
* Programming
e Software engineering

Announcements

e Talk today: "The Future of Computer Entertainment
2005—2050" (Ernest Adams)
- Upson B17
- 5:30-6:30
* P2b due Oct 24
- do not wait until last minute!
- develop test cases early (why?)
- revise stubs (why?)

Software Tool: Unix

¢ Unix:

- what is it?

- why did it start?

- connection to programming?
¢ Philosophy:

- everythingisa_____?

- little or big tools?

- connecting tools?

- shells and customization?

Obtain Unix Programming Languages

e Cygwin: www.cygwin.com ¢ Fortran
¢ Linux: www.linux.org o C/C++/CH...
* FreeBSD: www.freebsd.org ¢ Philosophy:
¢ Cornell: - choose language based on...?
- CSUG: www.csuglab.cornell.edu - can all languages do everything?
- ACCEL: www.accel.cornell.edu ¢ Unix for programming:
- cc, CC, £95, ...

- compilers: yacc, lex

5
Scripting Languages Example

* Script: sequence of common commands made into a class Stack (object):

inal def _ init_ (self):

SIngle program self.stack = []

- Unix uses shell scripts def put (self, item):

- The shell is the interactive interface to Unix self.stack.append (item)

- You can combine commands from the Unix shell to create def get (self):

programs return self.stack.pop()

def isEmpty (self):

* A scr1pt1ng language 18 return len(self.stack) ==

- Usually easy to learn

- Interpreted instead of compiled
¢ Examples:

- Perl, Python, sh, csh, bash, ...

Makefiles

Used when compiling/recompiling a large system
(several interdependent files)
— Checks which files have changed and only recompiles
those that are necessary
- Because of dependencies, more than just the changed files
can need to be recompiled
- Of course, can always recompile everything, but this can
be too expensive
Once you have a makefile
- You recompile whatever is necessary with make
- see man make on Unix
How to write?
- Find something to copy

Version Control

Allows you to keep track of changes for a large project
— Can back up to old version if changes create problems
— Multiple contributors can work on the system

CVS (Concurrent Version System)

- Open source

- Widely used tool for version control

— Maintains a history of all changes made

- Supports branching, allowing several lines of
development

- Provides mechanisms for merging branches back together
when desired

11

Makefile Example

/* Inside file called main.c: */
int printl (void);

#include <stdio.h>

int main() {

if (!printl())

printf ("Error");

return 0;

}

/* Inside file called subl.c: */
#include <stdio.h>

int printl(void) {

printf ("Hello, world!\n");
return 1;

}

Inside file called
Makefile:

main: main.o subl.o

cc main.o subl.o -o main

main.o: main.c
subl.o: subl.c

At UNIX prompt:

% make

Output from UNIX:
cc -c main.c
cc -c subl.c

cc main.o subl.o -o main

% main
Hello, world!

¢ Unified Modeling Language
- Design tool for object oriented programming
- System for showing the interaction of objects

Customer

name 1 0.7

address &

abstract class ™ |

association
 Payment | 1 +) f

amount

seneralization

role name-

Credit Cash Check

number cashTendered | | name
bankiD

type
exDate

authorized

authorized

Order
date
status
calcTax
calcTotal
1
ting item | 1.7 multiplicity
OraerDetail o <—]— class name
auantiy shippingWeight }
taxstatus 0.5 1| Geserption < attributes
calcSubTotal getPriceForQuantity
calcveight getveight | operations.
navigability

Some Software Engineering

* Engineering

ABET: “the profession in which a knowledge of the mathematical and natural
sciences gained by study, experience, and practice is applied with judgment to
develop ways to utilize, economically, the materials and forces of nature for the

benefit of mankind.”

* Software Engineering
IEEE: “The application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software; that is, the
application of engineering to software.”

* [s Software Engineering a type of Engineering?

Validation

* Validation
- how do you know your program actually works?
¢ Formal techniques (in Engineering, the theory!)
- program correctness and proofs
- need more CS
¢ Testing (in Engineering, the experiments!)
- glassbox:
examine implementation and attempt to test all possible
“paths” through the program
- blackbox:

test cases are generated based on the specification without

regard to implementation

15

General Development Principles

Decomposition
- "divide and conquer"
- stepwise refinement
Abstraction
- work on details and then hide them
- kinds: procedural, data, type, others...
("Generic Programming" in CS211)
Specification
- think interfaces
Documentation

14

Programming ''in the large"

Models for software development
- waterfall and others
Requirements analysis
- functional, performance requirements
- delivery schedule
Data models
- kinds and relations of data
- UML very useful
Program Design
- top-down
- bottom-up
- stepwise refinement
= coupling/cohesion
Design patterns

16

Coding Quality

e Pareto's Law:
- 80720 rule
- variant: 80% of everything is...
e Software?
— ___ % of defects caused by ___% of code
e NSA study [Drake, IEEE Computer, 1996] on 25 million
lines of code
- 70-80% of problems were due to 10-15% of modules
— 90% of all defects were in modules containing 13% of the
code
- 95% of serious defects were from just 2.5% of the code

Political/Legal Issues

¢ Intectual Property (IP) and your job
¢ Copyright and plagiarism
* Open source and "free" software (and peer review)

19

Profiling

¢ The goal is to make a program run faster
- Pareto: 80% of the time is spent in 20% of the code
- No use improving the code that isn’t executed often
- How do you determine where your program is spending
its time?
* People are notoriously bad at predicting the most
computationally expensive parts of a program
¢ Example: part of data produced by a profiler (Python)

2649853 function calls (2319029 primitive calls) in 53.502 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno (function)
2521 0.227 000 734 001 Drawing.py:102 (update)
7333 355 000 983 000 Drawing.py:244 (transform
4347 001 Drawing.py:64 (draw
3649 000 Geometry.py:106(angles)

56 000 Geometry.py:16(__init_
343160 000 Geometry.py:162(_determinant)
002 Geometry.py:171 (cross)

000 Geometry.py:184 (transpose

324
212
001
818
816
132

1

0.

000 4.176
000 1.570
000 0.001
000 12.759
13.928
0.447

8579
4279

000
000

coococoooo

cowoooo
cooooooo

18

Some Programming Quotes

* Weeks of programming can save you hours of planning.

¢ Bad code isn’t bad, its just misunderstood.

¢ Debugging is anticipated with distaste, performed with
reluctance, and bragged about forever.

¢ If I had eight hours to chop down a tree, I would spend 6
hours sharpening an axe.

¢ Real programmers don’t comment their code. If it was
hard to write, it should be hard to understand.

¢ ...and then it occurred to me that a computer is a stupid
machine with the ability to do incredibly smart things,
while computer programmers are smart people with the
ability to do incredibly stupid things. They are, in short,
a perfect match.

¢ Computer Science is no more about computers than
astronomy is about telescopes.

20

