
 1

CS212
Packages

http://java.sun.com/docs/books/tutorial/java/interpack/packages.html 

 2

Motivation
● Programming as language

– alphabet, words, sentences, paragraphs, ...
– what's next?

● Some software principles:
– abstraction
– modularization

● Examples:
– functions, classes
– MATLAB tool box
– "include" files

 3

The Gist
● Java?

– packages: http://java.sun.com/docs/books/tutorial/java/interpack/packages.html 

– "A package is a collection of related classes and 
interfaces providing access protection and namespace 
management."

– What's namespace? (coming up)
● Examples:

– Java API: 
– So, what does it mean to import java.util.*?

 4

Names
● Namespace:

– set of names in which each name has a unique meaning
– related to context...context determines meaning
– example:

● in the context of the Internet, a link is a connection to 
another URL

● in the context of a chain, a link is one ring that connects to 
at least one other link

● Some related concepts:
– Visibility: can a name be accessed?
– Scope: location in code where name is visible
– more on scope next lecture

1



 5

Package Naming
● another view of a package: directory that contains 

bytecode of classes and interfaces
● naming:

– dir1.dir2...
● example) java.lang.Math
● Package java contains package lang contains class 
Math

● each dir must be an actual dir:
– example) see package edu.cornell.cs.sam.io:

 6

Putting Things in Packages
● All classes and interfaces go in a package

– what about all work you've done so far?
– if you have classpath set to ., the current directory is 

your default package
● Use package statement(s) at top of Java class/interface:

– package packagename;
– packagename includes the directory path

 7

Accessing Package Members
● Fullname for accessing a particular class:

– before class definitions: import package;
example) import java.lang.Math;

– can actually use fullname through code to avoid import 
statement

● Can import all package members:
example) import java.util.*;

 8

Visibility Modifiers
● protected:

– member is visible by all classes in same package and all 
subclasses of member's class

– subclass can be in different packages
● default visibility ("blank" modifier):

– we "fake" public access with it
– actually more restrictive than protected!
– cannot access member from outside package

2


