
 1

CS212
Compilers & Parsing

 2

Announcements
● Part 1 grades done
● Part 2:

– 2a due date moved up (need TA meetings)
– 2b unchanged

● Things for posting:
– 2a, 2b
– templates
– grammar
– Jar help

 3

Languages

● High-level programs are written in
languages

– C++
– Java
– Bali

● Compiler:
– Program that translates high-level to

low-level
– assembly code, byte code, Samcode...

● Compiler needs to understand:
– Syntax (structure)
– Semantics (meaning)

● Useful parallel: human languages

Bali

Bali Compiler

Samcode

SaM

 4

Human Language: English

Language checker:
● Lexical analysis

– tokenizing
– spelling

● Parsing
– grammar
– syntax checking

● Semantic action
– understanding

How easy are these?The hungry mouse ate the cheese

article adjective noun verb article nounarticle adjective noun verb article noun

noun-phrasenoun-phrase noun-phrasenoun-phrase

verb-phraseverb-phrase

sentencesentence

Syntax of statement vs semantics of a sentence?

1

 5

Simple English Grammar
● Grammar:

– http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?grammar
– set of strings over an alphabetic
– syntax specification with production rules

● Example:
sentence → nounphrase verbphrase
nounphrase → article [adjective] noun
verbphrase → verb nounphrase
noun → lots of words...
and more...

● Elements:
– terminals (or tokens)
– non-terminas

● Context-free grammar
– RHS can replace LHS regardless of location

 6

Natural vs Computer Languages

• Lexical Analysis
– Break sentence into

words
• Parsing

– Analyze word
arrangement

– Discover structure
• Semantic action

– Understand sentence

• Lexical Analysis
– Break program into

tokens
• Parsing

– Analyze token
arrangement

– Discover structure
• Semantic action

– Generate target code

Natural Language Computer Language

 7

Lexical Analysis
● Goal: Divide program into tokens
● Token:

– Smallest element in a language that conveys meaning
– examples: operators, names, strings, keywords, numbers

● Tokens are typically specified using regular expressions
a* = repeat a zero or more times
a+ = repeat a one or more times
[abc] = choose one of a, b, or c
? = matches any one character
ab = a followed by b

● Tokenizer:
– we provide it
– other examples:

● Unix: lex (short for lexical analyzer)
● Java: java.io.StreamTokenizer and
java.util.scanner

 8

Parsing
● Goals

– Check if input string conforms to grammar (syntax)
– Build a parse tree or abstract syntax tree for input string

that can be used by semantic action (semantics)
– use grammar

● Example:
expr → (expr (+ | -) expr)
expr → num

● Some notation:
– terminals, nonterminals
– regexes
– grouping
– start symbol

2

 9

Semantics
● Reminder: meaning
● For CS212:

– explanations of grammar and additional rules
– why? some specifications make grammar too difficult to

understand
– you must use both syntactic and semantic descriptions,

though we tend to focus on syntax first
– more to come later....

 10

Trees for Parsing

expr

expr(+ expr)

1

2 3

expr(+ expr)

Parse Tree

+1

2 3

Abstract Syntax Tree

+

++

Example: (1 + (2 + 3))

 11

Not Your Part 2 Grammar: Bali--

program → mainfunction
mainfunction → main { declblock statblock }
declblock → { decl* }
decl → int name ;
statblock → { statement* }
statement → if (expr) statblock ;
statement → while (expr) statblock ;
statement → name = expr ;
expr → (expr + expr)
expr → (expr < expr)
expr → int | name

This grammar is NOT what you should use for your project!
Bali-- is simply a simplified example to help you get started!

Some semantics: require Bali-- programs to have variable rv that
stores the return value of main.

 12

Recursive Descent Parsing
● Main idea:

– Use grammar to recursively build AST
– Depth-first approach

● Huh? A bit more detail:
– Start at starting symbol
– Parse each nonterminals (left-to-right)

● Parse left-to-right
● Stop when reaching a terminal

● Yes, all of this involves recursion!

3

 13

Program AST

main {

{ // begin varblock:
int rv; nt x; int y ;

} // end varblock

{ // begin statblock:
x = 1 ;
y = 2 ;
rv = (x + y) ;

} // end statblock

}

Bali-- example: AST for this example?

program

varblock statblock

 14

Generating Samcode
● Each node in AST usually represents some Samcode:

– integers: PUSHIMM int
– variables: PUSHOFF address
– see templates document for suggestions/requirements

● Example:
 (x + (2 + 3))

PUSHOFF 291 // wherever x happens to be
PUSHIMM 2
PUSHIMM 3
ADD
ADD

 15

Assignment Statements
● Reminder from Chapter 1:

– As you parse, you must keep track of variables
● Each variable has space allocated on stack
● Variable addresses must be remembered

– Use symbol table (see HashMap in Java API)
● Pattern:

– Grammar: var = expr ;
– Samcode:
code for expr
STOREOFF varaddress

● Example: x = (5 + y); (assume x at address 1, y @ address 2)

PUSHIMM 5
PUSHOFF 2
ADD
STOREOFF 1

 16

Control Structures
● Samcode labels:
label:
instruction
or
label: instruction

● Provides mechanism for jumping to other instructions:
– internally, each instruction has an integer address
– SaM shows addresses for Samcode
– if you provide a label, the label becomes an alias for it's

instruction's address
● To jump to another instruction:
JUMP label
SaM goes to the instruction with address label

● How to model selection and repetition?

4

 17

Selection
● Pattern for if-statement:
code for expr
JUMPC label:
code for when expr is false
label:
code for when expr is true

● What does JUMPC label do?
– sets program counter register to label
– so, SaM effectively jumps to the instruction with address

label

 18

Selection Example: Bali--
main {

{
int rv ; int x ; int flag ;

}

{
x = 3 ;
flag = 0 ;
if ((2 < x)) {
flag = 1 ;

}
rv = flag ; // return rv

}

}

What does this Bali-- program do? return?

 19

Selection Example: Samcode
// Step 1: Start program and set variables
ADDSP 3 // adjust SP to account for rv, x, and flag
PUSHIMM 3 // push value of 3
STOREOFF 1 // store the value 3 in address 1 for x
PUSHIMM 0 // push the value of 0 (false)
STOREOFF 2 // store the value 0 in address 2 for flag

// Step 2: Check if 2 < x
PUSHIMM 2 // push the value 2 to compare with x (Vbot)
PUSHOFF 1 // push the value of x (Vtop)
LESS // Push result of (Vbot < Vtop) to top of stack

// Step 3: Process if statement
JUMPC correct // check if result of GREATER is true (1) or false (0)
 // false:
 // if you had an else in Bali, you would handle it here
JUMP continue // continue with remaining program
correct: // true:
PUSHIMM 1 // push the value 1 (true)
STOREOFF 2 // store the value true for flag
JUMP continue // continue with remaining program
continue: // continue with program:
PUSHOFF 2 // push the value of flag
STOREOFF 0 // store the value of flag in rv
ADDSP -2 // reset the SP
STOP // done with the program

 20

Repetition
● Idea of while (expr) statblock:

– if expression is true, do statement block
– check expression again,

● if true, repeat
● otherwise, stop and resume rest of program

● Bali-- Example:
main {
{ int x ; int rv ; }
{
x = 1 ;
while ((x < 5)) {
x = (x + 1) ;

}
rv = x ;

}
}

5

 21

Repetition Samcode

ADDSP 2 // leave space for x and rv
PUSHIMM 1 // push 1 on the stack
STOREOFF 1 // store the value 1 for x
looplabel: // label the loop starting at the condition
PUSHOFF 1 // retrieve the value of x
PUSHIMM 5 // push the value to compare x with
LESS // is x < 5 ? push 1 if so; otherwise, 0
JUMPC continue // if x < 5, do statements under continue
done: // move to statement after the while-block
PUSHOFF 1 // retrieve the value of x
STOREOFF 0 // store the value of x as the rv
ADDSP -1 // deallocate x
STOP // stop processing and return the rv value
continue: // the block of statements that follow the loop
PUSHOFF 1 // retrieve the value of x
PUSHIMM 1 // push 1 onto the stack
ADD // add 1 to the current value of x
STOREOFF 1 // store the new value of x
JUMP looplabel // repeat the loop (goto loop condition)

6

