CS212

Compilers & Parsing

Languages

High-level programs are written in
languages

- C++

- Java

- Bali
Compiler:

- Program that translates high-level to

low-level

- assembly code, byte code, Samcode...

Compiler needs to understand:
- Syntax (structure)
- Semantics (meaning)
Useful parallel: human languages

Bali

!

Bali Compiler

Samcode

!

SaM

Announcements

¢ Part 1 grades done
* Part 2:

- 2a due date moved up (need TA meetings)

- 2b unchanged
¢ Things for posting:
- 2a,2b
- templates
- grammar
- Jar help

Human Language

sentence
/

/ verb-phrase

noun-phrase noun-phrase

N aN

article adjective noun verb article noun

The hungry mouse ate the cheese

Syntax of statement vs semantics of a sentence?

: English

Language checker:
* Lexical analysis
- tokenizing

- spelling
* Parsing

— grammar

- syntax checking
¢ Semantic action

- understanding
How easy are these?

Simple English Grammar Natural vs Computer Languages

Grammar:
- http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?grammar Natural Language Computer Language
- set of strings over an alphabetic
- syntax specification with production rules + Lexical Analysis + Lexical Analysis
Example: — Break sentence into — Break program into
sentence - noupphrase yerbphrase words tokens
nounphrase - article [adjective] noun . .
verbphrase — verb nounphrase * Parsing * Parsing
noun — lots of words... — Analyze word — Analyze token
and more... arrangement arrangement
Elements: — Discover structure — Discover structure
- terminals (or tokens) + Semantic action + Semantic action
— non-terminas
Context-free grammar — Understand sentence — Generate target code
- RHS can replace LHS regardless of location
5
Lexical Analysis Parsing
Goal: Divide program into tokens * Goals
Token: - Check if input string conforms to grammar (syntax)
- Smallest element in a language that conveys meaning - Build a parse tree or abstract syntax tree for input string
- examples: operators, names, strings, keywords, numbers that can be used by semantic action (Semantics)
Tokens are typically specified using regular expressions ~ use grammar
a* = repeat a zero or more times ¢ Example:
a+ = repeat a one or more times expr — (expr (+|-) expr)
[abc] = choose one of &, b, or ¢ exXpr — num
? = matches any one character ¢ Some notation:
ab = a followed by b - terminals, nonterminals
Tokenizer: - regexes
- we provide it - grouping

- other examples: - start symbol

® Unix: Iex (short for lexical analyzer)
e Java: java.io.StreamTokenizer and
Java.util_scanner

Semantics

* Reminder: meaning
¢ For CS212:
- explanations of grammar and additional rules
- why? some specifications make grammar too difficult to
understand
- you must use both syntactic and semantic descriptions,
though we tend to focus on syntax first
- more to come later....

Not Your Part 2 Grammar: Bali--

This grammar is NOT what you should use for your project!
Bali-- is simply a simplified example to help you get started!

program — mainfunction

mainfunction - main { declblock statblock }
declblock — { decl* }

decl — int name ;

statblock - { statement* }

statement —» IF (expr) statblock ;
statement — while (expr) statblock ;
statement - name = expr ;

expr —» (expr + expr)

expr —» (expr < expr)

expr — Iint | name

Some semantics: require Bali-- programs to have variable rv that
stores the return value of main.

11

Trees for Parsing

Example: (1 + (2 + 3))

Parse Tree Abstract Syntax Tree
+
£
2 3

expr

(e:pr + expr)

1 (expr + expr)

2 3

10

Recursive Descent Parsing

* Main idea:
- Use grammar to recursively build AST
- Depth-first approach
* Huh? A bit more detail:
- Start at starting symbol
- Parse each nonterminals (left-to-right)
¢ Parse left-to-right
¢ Stop when reaching a terminal
* Yes, all of this involves recursion!

12

Bali-- example:

Program AST

AST for this example?

main {
program
{ 7/ begin varblock:
int rv; nt x; inty ;
} // end varblock varblock statblock

}

{ 77/ begin statblock:
X 1 ;

“o
(x+y)
d

y
rv ;
/. statblock

} 7/ en

Assignment Statements

Reminder from Chapter 1:
- As you parse, you must keep track of variables
* Each variable has space allocated on stack
® Variable addresses must be remembered
- Use symbol table (see HashMap in Java API)
Pattern:
- Grammar: var = expr ;
- Samcode:
code for expr
STOREOFF varaddress
Example: X = (5 + y) 5 (assume x at address 1, y @ address 2)
PUSHIMM 5
PUSHOFF 2
ADD
STOREOFF 1

13

15

Generating Samcode

¢ Each node in AST usually represents some Samcode:

- integers: PUSHIMM iInt
- variables: PUSHOFF address
- see templates document for suggestions/requirements

* Example:

x+(C2+3))

PUSHOFF 291 // wherever X happens to be
PUSHIMM 2

PUSHIMM 3

ADD

ADD

14

Control Structures

Samcode labels:

label:

instruction

or

label: instruction

Provides mechanism for jumping to other instructions:
- internally, each instruction has an integer address
- SaM shows addresses for Samcode
- if you provide a label, the label becomes an alias for it's

instruction's address

To jump to another instruction:

JUMP Tlabel

SaM goes to the instruction with address Iabel

How to model selection and repetition?

16

Selection Selection Example: Bali--

* Pattern for if-statement: main {
code for expr I
JUMPC Iabel - int rv ; int x ; int flag ;
: i }
code for when expr is false c
label: ;I= 3_;0)
code for when expr is true FC(25x)){
e What does JUMPC label do? y et
rv = flag ; // return rv

- sets program counter register to label
- s0, SaM effectively jumps to the instruction with address X
label

What does this Bali-- program do? return?

17

Selection Example: Samcode Repetition

// Step 1: Start program and set variables H .
ADDSP 3 // adjust SP to account for rv, x, and flag * Idea OfWhl Ie (expr) statblock:
PUSHIMM 3 // push value of 3 -3 1 1
STOREOFF 1 // store the value 3 in address 1 for x 1fexpresswn l'S true, qO statement block
PUSHIMM O /7 push the value of O (false) - check expression again,
STOREOFF 2 // store the value O in address 2 for flag o if true repeat
bl

// Step 2: Check if 2 < x * otherwise, stop and resume rest of program
PUSHIMM 2 // push the value 2 to compare with x (Vbot) . I 1 .
PUSHOFF 1 // push the value of x (Vtop) Bali-- Examp e:
LESS // Push result of (Vbot < Vtop) to top of stack main {
// Step 3: Process if statement {intx s intrv ; }
JUMPC correct // check if result of GREATER is true (1) or false (0) { Xx=1:

// false: - p

// if you had an else in Bali, you would handle it here Wh"f ((f; 5304
JUMP continue // continue with remaining program x=(x)
correct: // true: 1}:v —x -
PUSHIMM 1 // push the value 1 (true) 4
STOREOFF 2 // store the value true for flag b
JUMP continue // continue with remaining program b
continue: // continue with program:
PUSHOFF 2 // push the value of flag
STOREOFF 0 // store the value of flag in rv
ADDSP -2 // reset the SP
STOP // done with the program

19

Repetition Samcode

ADDSP 2
PUSHIMM 1
STOREOFF 1
looplabel:
PUSHOFF 1
PUSHIMM 5

LESS

JUMPC continue
done:

PUSHOFF 1
STOREOFF 0O
ADDSP -1

STOP

continue:
PUSHOFF 1
PUSHIMM 1

ADD

STOREOFF 1
JUMP looplabel

//
//

leave space for x and rv

push 1 on the stack

store the value 1 for x

label the loop starting at the condition
retrieve the value of x

push the value to compare x with

is x <5 ? push 1 if so; otherwise, 0

if x < 5, do statements under continue
move to statement after the while-block
retrieve the value of x

store the value of x as the rv
deallocate x

stop processing and return the rv value
the block of statements that follow the loop
retrieve the value of x

push 1 onto the stack

add 1 to the current value of x

store the new value of x

repeat the loop (goto loop condition)

21

