Bali++ Specifications

Part 2

CS212 Fall 2005

1 Introduction

1.1 Bali Specifications

As discussed in lecture, we can specify a language in terms of its syntax (spelling and structural rules) and semantics
(meaning). Although formal description methods exist for both kinds of specifications, we will only formalize the Bali

syntax, as developed in Section 2. Bali’s semantics are informally defined in Section 3.

1.2 Notation

We use the following notation throughout this document:

e Specific language elements, like keywords, operators, and punctuation, are shown as bold.
o Other terminals are shown as bolditalic, such as names and integers, because they can have different values.
e Non-terminals in production rules are shown as plain red.

e Square brackets are used to denote optional items. [ int ] indicates that the keyword int can be present but is

not required.

e A single | denotes that either the item on the left or the right can be present. So a | b indicates that either a or b

must be present, but not both.

e Parentheses are used to group options. Thus, (a | b ) c indicates that ¢ must be prefixed by either a or b. Square

brackets can also be used for grouping with the difference that the group would be optional.

e An asterik (*) is used to indicate zero or more occurrences of this item and a plus (+) is used to indicate one or

more occurrences of this item.

e An arrow (—) indicates a production rule, which means can be expressed as.



2 Bali Syntax

2.1 Functions

program — [ globalVars ] function*

globalVars — global varBlock

function — functionHeader varBlock statementBlock
functionHeader — type name ()

type — int |boolean | char

varBlock — { varDecl* }

statementBlock — { statement* }

varDecl — type name ( , name )* ;

2.2 Statements

statement
statement
statement
statement
statement
statement
statement

statement

— statementBlock
— if ( expression ) statement [ else statement ]

— do statement until ( expression ) ;

— for ([ expression ] ; [ expression ] ; [ expression ] ) statement

— expression ;
— print expression ;
— return expression ;

4

2.3 Expressions

expression — expPart [ binop expPart ]
expression — expPart = expression

expPart — unaryop expPart

expPart — int | boolean!| ’char’
expPart — readInt ()

expPart — readChar ()

expPart — name

expPart — ( expression )

binop — arithmeticOp | comparisonOp | booleanOp
arithmeticOp —+I=l*x1/1%

comparisonOp —==|!=[>[<[>=]|<=
booleanOp — &&l ||~

unaryOp — =11

name — (a-zl|A-Z) (a-zla-Z|_|0-9)*

program has globals and functions

global variables

function has header, variables and statements
header

primitive/pointer types

block of variable declarations

block of statements

can declare more than one variable

block statement
conditional statement
do...until loop

for loop

expression statement
output

return statement

empty statement

basic expression
assignment

unary operation
constant

integer input
character input
variable

nested expression
operators

arithmetic operators
comparison operators
boolean operators (&& and | | are short-circuiting)
unary operators

names must begin with a letter



3 Bali Semantics

3.1 Reserved Keywords

The following keywords may not be used as variable or function names: global, int, boolean, char, void,

true, false,if, else,do,until, for, print, null, return, free,malloc, readInt, and readChar.

3.2 Variable Scope

The scope of a variable depends on where it is defined. Variables defined in the global block are visible throughout
the program. Function arguments and function variables are visible in the function in which they are defined. No two
variables in the same scope can have the same name (i.e. no two global variables can have the same name and for a
given function no argument or function variable can have the same name as another argument or function variable in
that same function). Global variables can be redefined inside a function (variable shadowing). Variables can have the

same name as functions.

3.3 Expressions
Operators

Variable types can only be mixed in expressions under certain circumstances. Logical operators accept and produce
booleans. The equality and inequality operators accept all types and produce a boolean result. However, the types
of the two operands must be the same. All other relational comparison operators accept only integers and produce a
boolean result. Division is integral for integers. Arithmetic operators accept two integers, and produce and integer.
The assignment operator must have a valid variable on the left that is the same type as the output of the expression
on the right. It assigns the value of the expression on the right to the variable on the left and produces a result of the

same type and value as the value assigned.

Execution Order

Binary operations should be evaluated starting with the expression on the left and then the expression on the right. So
fora + b, a should be evaluated first, then b, and then their results should be added. Assignment expressions should

be evaluated from right to left.

Constants

Any Java integer is a constant of type int. The keywords true and false are constants of type boolean. Any

Java character delimited by single quotes () is a constant of type char.

3.4 Statements

Each statement type that requires expressions requries a particular type of expression. 1f and do. . until statements
require an expression returning a boolean value. The for statement’s second expression must return a boolean value.
A print statement requires an expression returning an integer, character, or character pointer. It uses the appropriate
instructions to generate integer, character, or string output, respectively. A return statement requires an expression
returning a type identical to that of the function return type. Finally an expression statement can have an expression

with any return type, since the return value is eliminated.



Bali supports two kinds of loop statements. The do. .until loop executes the statement, and loops if its condi-
tion evaluates to false. The £or loop executes the first expression (if present) before entering the loop cycle. Then it
checks the second expression, and if true, executes the statement. If there is no second expression, true is assumed.

Then the third expression is executed (if present), and the code loops.

3.5 Functions

e All functions contain an implicit return statement at the end of the function that returns 0 for integers, ’ \0’ for
characters, and £alse for booleans. Thus a function will return something even if no specific return statement
is encountered.

e There must be one function called main with a return type of int and no parameters. This function will be

called on startup.

e There are two built-in functions. The readInt and readChar functions request an integer or a chracter,

respectively, from the user.



