Bali++ Specifications

CS212

Fall 2005

1 Introduction

1.1 Bali Specifications

As discussed in lecture, we can specify a language in terms of its syntax (spelling and structural rules) and semantics
(meaning). Although formal description methods exist for both kinds of specifications, we will only formalize the Bali

syntax, as developed in Section 2. Bali’s semantics are informally defined in Section 3.

1.2 Notation

We use the following notation throughout this document:

e Specific language elements, like keywords, operators, and punctuation, are shown as bold.
o Other terminals are shown as bolditalic, such as names and integers, because they can have different values.
e Non-terminals in production rules are shown as plain red.

e Square brackets are used to denote optional items. [int] indicates that the keyword int can be present but is

not required.

e A single | denotes that either the item on the left or the right can be present. So a | b indicates that either a or b

must be present, but not both.

e Parentheses are used to group options. Thus, (a | b) c indicates that ¢ must be prefixed by either a or b. Square

brackets can also be used for grouping with the difference that the group would be optional.

e An asterik (*) is used to indicate zero or more occurrences of this item and a plus (+) is used to indicate one or

more occurrences of this item.

e An arrow (—) indicates a production rule, which means can be expressed as.

2 Bali Syntax

2.1 Functions

program
globalVars
prototype

function

— [globalVars] (function | prototype)*
— global varBlock
— functionHeader ;

— functionHeader varBlock statementBlock

functionHeader — type name ([params])

type
type
params

varBlock

— (int | boolean | char)[* |*
— void (*)+
— type name (, type name)*

— { varDecl* }

statementBlock — { statement* }

varDecl

— type name (, name)* ;

2.2 Statements

statement
statement
statement
statement
statement
statement
statement

statement

— statementBlock
— if (expression) statement [else statement]

— do statement until (expression) ;

program has globals and functions/prototypes
global variables

function prototype

function has header, variables and statements
header

primitive/pointer types

void pointer type

one or more parameters

block of variable declarations

block of statements

can declare more than one variable

block statement
conditional statement

do..until loop

— for ([expression] ; [expression]| ; [expression]) statement for loop

— expression ;
— print expression ;
— return expression ;

—

expression statement
output
return statement

empty statement

2.3 Expressions

expression
expression
expression
expPart
expPart
expPart
expPart
expPart
expPart
expPart
expPart
expPart
expPart
binop
arithmeticOp
comparisonOp
booleanOp
unaryOp
pointerOp
args

name

— expPart [binop expPart]

— expPart = expression

— expPart [expression]

— unaryop expPart

— int|boolean!|’char’ |null
— readInt ()

— readChar ()

— malloc (expression)

— free (expression)

— < type > expPart

— name

— name args

— (expression)

— arithmeticOp | comparisonOp | booleanOp
—+l=l*x1/1%
—==|1=|>]|<I|>=]<=

—&&l || I~

— =1 ! | pointerOp

— & | *

— ([expression (, expression)*])
— (a-zla-2) (a-zlA-Z|_|0-9)*

basic expression
assignment

array element
unary operation
constant

integer input
character input
memory allocation
memory deallocation
type cast

variable

function call

nested expression
operators

arithmetic operators

comparison operators

boolean operators (&& and | | are short-circuiting)

unary operators
pointer operators
function call arguments

names must begin with a letter

3 Bali Semantics

3.1 Reserved Keywords

The following keywords may not be used as variable or function names: global, int, boolean, char, void,

true, false,if, else,do,until, for, print, null, return, free,malloc, readInt, and readChar.

3.2 Variable Scope

The scope of a variable depends on where it is defined. Variables defined in the global block are visible throughout
the program. Function arguments and function variables are visible in the function in which they are defined. No two
variables in the same scope can have the same name (i.e. no two global variables can have the same name and for a
given function no argument or function variable can have the same name as another argument or function variable in
that same function). Global variables can be redefined inside a function (variable shadowing). Variables can have the

same name as functions.

3.3 Expressions
Operators

Variable types can only be mixed in expressions under certain circumstances. Logical operators accept and produce
booleans. The equality and inequality operators accept all types and produce a boolean result. However, the types of
the two operands must be the same. All other comparison operators accept only integers and produce a boolean result.
Division is integral for integers. Arithmetic operators accept either two integers or one pointer and one integer. If an
arithmetic operator acts on an integer and a pointer, then it produces a pointer of the same type as the input pointer.
Only the addition and subtraction operations can be used for this type of mixed expression. The & reference operator
works on any value with type T and produces a pointer to that value with type T-pointer. This operator only accepts
variables. The * dereference operator works on a value with type T-pointer and returns the value pointed at as type 7.
Void-pointer cannot be dereferenced.

The assignment operator must have a valid variable on the left that is the same type as the output of the expression
on the right. It assigns the value of the expression on the right to the variable on the left and produces a result of the
same type and value as the value assigned. The assignment operator can also accept as a left value a dereferenced
pointer (a pointer being operated on by *). In this case, the right side of the expression is assigned to the address
the pointer is pointing to. A pointer of type T-pointer on the left side of the expression must be accompanied by an
expression of type T on the right side.

The [] array access operator requires a dereferencable (non-void) pointer variable on the left side, and an integer
expression inside it. It adds the integer on the inside to the pointer on the left side, and produces a pointer of the same
type. Then it dereferences that pointer, and returns the result. Arr[k] is semantically equivalent to * (Arr + k),
and the same restrictions apply.

Execution Order

Binary operations should be evaluated starting with the expression on the left and then the expression on the right. So
fora + b, a should be evaluated first, then b, and then their results should be added. Likewise, function arguments

should be evaluated from left to right. Assignment expressions should be evaluated from right to left.

Casts

The type of expressions that can be cast is restricted to pointers. The cast expression part changes the type of the
input to the one specified in the cast. Any pointer type can be cast to any other pointer type. However, casts between
non-pointers and pointers (as well as two non-pointer types) are not allowed.

Constants

Any Java integer is a constant of type int. The keywords true and false are constants of type boolean. Any
Java character delimited by single quotes (’) is a constant of type char. The null keyword is a constant of type

voidx, which represents the memory address 0.

3.4 Statements

Each statement type that requires expressions requries a particular type of expression. 1 £ and do. .until statements
require an expression returning a boolean value. The for statement’s second expression must return a boolean value.
A print statement requires an expression returning an integer, character, or character pointer. It uses the appropriate
instructions to generate integer, character, or string output, respectively. A return statement requires an expression
returning a type identical to that of the function return type. Finally an expression statement can have an expression
with any return type, since the return value is eliminated.

Bali supports two kinds of loop statements. The do. .until loop executes the statement, and loops if its condi-
tion evaluates to false. The for loop executes the first expression (if present) before entering the loop cycle. Then it
checks the second expression, and if true, executes the statement. If there is no second expression, true is assumed.

Then the third expression is executed (if present), and the code loops.

3.5 Functions

e All functions contain an implicit return statement at the end of the function that returns 0 for integers, ' \0’
for characters, null for pointers, and £alse for booleans. Thus a function will return something even if no

specific return statement is encountered.

e There must be one function called main with a return type of int and no parameters. This function will be

called on startup.

e There are four built-in functions. The readInt and readChar functions request an integer or a character
from the user, respectively. The malloc function allocates a block of memory of the provided size (which
must be an integer) and returns a pointer of type voidx. The £ree function deallocates a block of memory,
determined by the argument passed. The argument passed to £ree should be a voidx pointer to the start of a
memory block that has been previously allocated by malloc. The return value of £ree is always the integer
0.

e A function is considered declared after the prototype grammar structure occurs and that same function is con-

sidered defined after the function grammar structure with an identical name occurs.

e With the exception of main and built-in functions, functions must be declared before they are called or defined.
Furthermore, these functions should be defined exactly once and declared exactly once. A function declaration
and definition must match in name, return type, and parameter number and types (i.e. only the names of the

parameters can differ). Note: these rules therefore forbid function overloading.

e Built-in functions are implicitly declared and defined and may be called anywhere. Therefore they should not
be explicitly declared or defined anywhere. Main on the otherhand is only implicitly declared and thus may be

called anywhere but needs to be defined exactly once.

