SaM

1. Introduction

Have you ever heard the Java mantra, “write once, run everywhere?’ So, how does that work?
When you compile a Java program, you generate a binary file that contains byte-code. Byte-code
is a collection of instructions that resemble machine code. However, you cannot simply run the
byte-code on your computer because the byte-code is written for a“virtual computer,” which we
call the Java Virtual Machine (JVM). To run your actual Java program from the VM, most
computers have a byte-code interpreter that converts each byte-code instruction for the particular
architecture that you use. By learning about the JVM, you can learn about how programs are
compiled and executed on a computer.

2. Stack Machine

2.1 SaM

Although we do not have the time to study the complete JVM”, one important facet is the VM'’s
use of stacksto store instruction information. A stack is data structure that storesitemsin “last-in,
first-out” order. So, to help you learn about how a computer executes your program, we are
providing you with SaM, which approximately stands for a stack machine. (It took me awhile to
realize the rearrangement of the a, plus it sounds better than ASML.) You will be able to write code
in pseudo-assembly code (sam-code) that mimics actual assembly code.

Sam-code mimics assembly code, which has the form op- code oper and. For instance, the
sam-code PUSHI MM 3 has the op-code PUSHI MViand operand 3. When SaM encounters this
instruction, SaM putsthe value of 3 on top of its stack of data. Asyou work your way through this
document you will learn more about SaM’s organi zation and further sam-code instructions.

2.2 SaM Values

SaM has only one data type, which is integer, though we might add others later. The limits of
SaM’s integer type are identical to those of Java. To ssmulate Boolean values, you can use O for
falseand 1 for true.

2.3 SaM Memory
SaM has two areas of memory, which are called program and stack:

* Program: where SaM loads the user’s program prior to execution. The user’s program will
be a collection of sam-code instructions, which you will seein Section 3.
* Stack: where SaM stores data during the execution of the program.

SaM aso contains four registers, which are called PC, SP, FBR, and HALT. These registers all
store non-negative integers:

* PC (Program Counter): contains the address of the sam-code instruction that SaM is
currently executing.

*. Interested in seeing actual VM byte-codes? See http://java.sun.com/docs/books/'vmspec/ for a free on-line book.

1/10

http://java.sun.com/docs/books/vmspec/

SaM 2/10

» SP (Stack Pointer): contains the address of the first free location on the stack. The first
address in the stack is 0. The subsequent addresses increment by one. For now, assume that
the stack has unlimited address space.

» FBR (Frame Based Register): contains information to help keep track of function calls. We
will assume an FBR of numerical zero for this assignment.

* HALT: contains a signal for whether or not SaM should keep executing the program. SaM
executes the program while HALT contains 0. To stop execution, an instruction must insert
1 into the HALT register.

3. SaM Instructions

This section provides an overview of the complete SaM instruction set. You will not need many of
these instructions for this assignment, though you will use more later.

3.1 Classifications
SaM has four classifications of instructions;

* ALU instruction: These instructions perform arithmetic and logical operations, which
include addition, subtraction, logical and, logical or, etc. on integers. The operands are
popped from the stack and the result is pushed back to the stack.

» Stack manipulation instruction: These instructions copy a value from one location in the
stack to another.

* Register save/restore instruction: These instructions permit the values of the registers to be
pushed and popped from the stack.

» Control instruction: These instructions implement conditional and unconditional transfer of
control in the program.

The instructions are stored in the program memory. After the execution of an ALU, stack
manipulation, or register instruction, control transfers to the next instruction in program memory.
A control instruction “moves’ to another instruction in program memory.

We provide lists of instructions in the following four sections, below. Many instructions operate
on operands, which are stored in the stack and are, thus, sometimes called stack elements. We
denote a stack element at location i as V;. Assume that V,,, and V., refer to the top-most
element and the element below it, respectively, before an instruction |s executed. For a command
that needsthe V,,, and V4 ,,, OPerands, SaM will pop them before pushing any results onto the
stack. Note that a? Pop cod&e are strictly uppercase!

3.2 ALU Instructions

Instruction Pseudocode

ADD Push Vbel owt Vtop'
SuB Push Vbel ow_Vtop'
TI'MES Push Vbel ow * Vto
DV Push Vbel ow/Vtop'

SaM

3/10

3.2 ALU Instructions

Instruction Pseudocode
thop>vbeIOWD 010
Cwp Push ékltop = Vbelovda - EOE
thop < Vbel owl] D_ID
| SPCS If Vtop >0, push 1. Otherwise, push O.
| SNI L If Vtop = 0, push 1. Otherwise, push O.
| SNEG If Viop <0, push 1. Otherwise, push 0.
NAND Push = (Vpgiow thop) . What isa“NAND?" you may ask? See

http://foldoc.doc.ic.ac.uk/foldoc/fol doc.cgi?querv:nand.

3.3 Stack Manipulation Instructions

Instruction Pseudocode

PUSH MM c Push the value ¢, which is an integer.

DUP Duplicatetop element: Vg « Vgp_4; SP « SP+1.
SWAP Exchange the top two elements on the stack.

PUSHI ND Push VWigp'

STOREI ND Viaow ~ Vtop:

PUSHOFF k PushV, rpr.

STORECFF k Viirgr < Viop-

3.4 Register Save/Restore Instructions

Instruction Pseudocode

PUSHSP Vep — P, P - SP+1.

POPSP SP . SP-1; P Vgp.

ADDSP ¢ cisaninteger; SP — SP+c.

PUSHFBR Push FBR Vg « FBR; SP « SP+1.
POPFBR Pop FBR: SP -« SP-1; FBR VSP'
LI NK VSP‘_FBR; FBR -~ SP; SP - SP+1

http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?query=nand

SaM 4/10

3.5 Control Instructions

Instruction Pseudocode

JUMP t PC ~t.

JUMPC t If Vtop istrue, PC < t; else PC -« PC+1.
JUVPI ND PC « Vygp.

JSR t Push PC+1; PC t.

JSRI ND Push PC+1; PC « Vo,

STOP HALT ~ 1.

3.6 SaM Programs

A SaM program is a text file that contains a collection of sam-code instructions along with
optional comments and labels:

» Comments begin with / / . Any text that followsthe/ / belongs to the comment.
» SaM ignores comments.

» Each instruction must be written in entirety on the same line.

 Each new line forms a new instruction.

» We will discuss labels in the next assignment.

For example, the following sam-code program pushes a value on the stack, checksif it is positive,
and then halts:

/1 Sanpl e sam code
/1 sanpl e.sam

PUSHI MM 10 /1 push the value 10
I SNI L /1 check if the top of stack is zero
STOP /1 halt execution

We recommend that you use the commenting style as shown in the above example.

4. The Simulator

To run a sam-code program, you need to use SaM. This section explains how to start the SaM
simulator and run your sam-code programs inside of it.

4.1 GUI Interface

We have programmed SaM for you to use. To run it, follow these steps:

» Download the zip file that contains the Java source code.

e Compile all of the code. The Main Class is GUI Si nmul at or. In CodeWarrior, ensure that
you set your target correctly!

* Run the program, using Java 2, SDK 1.2.2 or higher. In CodeWarrior, you should be using
Java 1.3 stationery, or higher.

On the next page, Figure 1 showstheinitial start-up window:

SaM 5/10

: 2| 8aM Console Jeu]

ffivelcome to Sam
Memory
ADDRESS WALLIE READ |

WRITE

Figure 1: SaM Simulator

The interface provides a rough approximation of a virtual machine's architecture. The Stack and
Program areas correspond to the stack and program memories that Section 2.3 introduces. You
will also see four register values in Registers. Do not worry about the FBR and HP values for
now — they relate to implementation of methods and objects. Also, ignore the Memory box.
Instead, you will use the box that says Welcome to SaM, Stack, Program, the Power Off
and Reboot buttons, and the PC and SP registers.

4.2 Running Sam-Code
To run a sam-code program, do the following:

* Create a sam-code program with atext editor.

* Pressthe Load button.

 Select your file by using the browser that pops up.

* Press OK in the browser.

* Pressthe Run button to execute the program. If your program returns a value, the welcome
window will report an answer.

» Use the Step button to execute each instruction manually, one at atime.

* Click the Reboot button to reset the simulator.

* Click the Power Off button to shut down the simulator.

Practice these steps with the examplesin Section 5. When running different programs, values that
remain in the stack are overwritten for other runs. Why? The SP starts “below” the old values.

SaM 6/10

4.3 SaM’s Output
There are afew general messages that SaM reports in its console:

» welcome: Welcome to SaM indicates that you just started SaM.

* ready: | am SaM indicates that you are loading afile.

* loading: Loading SaM Commands from file name indicates the file that SaM is
attempting to access.

* error: Funny opcode string and Undefined name string alert you that SaM does not
recognize a particular opcode or operand, respectively.

* success. Program terminated normally indicates that the program ran without a return
value. Otherwise, SaM will report Answer is value.

To have SaM return a value as a result of executing your sam-code, you must ensure that the
instructions leave only one value remaining in the stack. The simulator will detect that you have
an answer when the first cell (address 0) has avalue, the stack pointer (SP) contains the address of
the next cell (address 1), and SaM encounters a STOP command. So, you must carefully choose
your sam-code such that the last value is the value you intended for the program to compute.

5. Sam-Code Examples

As you would write any program, you will write programs in sam-code as a sequence of
instructions. For the required portion of this assignment, you will not use PUSHSP, POPSP,
PUSHFBR, POPFBR, JUMP, JUVPC, JUVPI ND, JSR, JSRI ND, and a maybe few others,
because you will not be modeling function execution. You will write programs that would likely
occur inside a single function, such as arithmetic expressions and variable assignments, to
perform basic computations.

5.1 Postfix Notation

To calculate 10+20 using SaM, you need to think of the expression in postfix notation as 10 20 +.
Postfix notation means that operators are placed at the end of an expression. Knowing that +
operates on two values means that you should store the first two values somewhere, namely, your
brain, and then add them after encountering the + operator. In sam-code, you would this
arithmetic operation as.

PUSHI MM 10
PUSHI MM 20
ADD

STOP

To help you visualize the results of pushing 10 and 20 onto the stack, refer to Figure 2. If you
step through this example in the simulator, you will see that the stack pointer (SP register)
contains the value 2, which is one address higher than the address of the last instruction. When the
code issues ADD, both 10 and 20 pop from the stack and SaM pushes the result of 30 into
address 0. Since the 30 is only remaining value in the stack, the simulator will report 30 as the
answer. Note that SP will contain 1, because that address is one higher than the last instruction
(STOP). Isn't that neat?

SaM 7/10

Cedll Address

20 |1

10| 0

Figure 2: Stack Memory

Now, try a program that performs 1 + (2 x 3) :

PUSHI WM 1
PUSHI MM 2
PUSHI MM 3
TI MES
ADD

STOP

In this case, sam-code advantageously helps to avoid worrying about operator precedence because
the operators appear after the operands.
5.2 Assignments and Sam-Code

Ultimately, you will be writing a program called a compiler that will translate one language into
sam-code. For example, suppose you were trying to write acompiler to convert the following Java
snippet into sam-code:

int x , vy ;
x = 10 ;
y = 20 ;

return (x +y) ; // returns 30

Writing the sam-code requires a bit of work because of the variables. You must reserve space for
each variable in the stack memory. To help keep track of the variables and their locations,
manualy draw a symbol table, as shown in Figure 3. A symbol table is a collection of the
program’s variables plus an additional variable, r v (return variable), that stores the program’s
result. In this case, r v would represent the result of x+y.

Variable | Address

rv 0
X 1
Yy 2

Figure 3: Symbol Table

In stack memory, you should draw another figure to represent the stack, as shown in Figure 4.
Since we will assume that we are converting code from anai n function, the FBR is zero. When

SaM 8/10

we add more functions, we will adjust this register. By leaving the first cell open for ther v, the
results of the program will have a place for SaM to store and return the answer. The mai n
variables are stacked on top of thefirst cell in the order in which they are declared. The address of
avariable corresponds to a cell address on the stack.

Variable i Cedll Address
y [2/\/
x | |1
rv| |0 «-—————— 1 FBR

Figure 4: Stack Memory with Variables

How do you write sam-code for this program? You have two options: absolute addressing and
relative addressing. In absolute addressing, you do not need to worry about the mysterious FBR,
because you forget al about functions. Otherwise, when we introduce functions, you run into
trouble unless you use relative addressing to shift the FBR every time a new function is called.

5.2.1 Absolute Addressing

You need to make space for the variables. So, to replace the declaration statements, move the
stack pointer up two cells with ADDSP 3, which leaves space for the two variables and the
“return variable,” rv. You may ensure that any old values remaining from previous runs are
removed by pushing a value of zero into the first cell for r v, which will then start as zero. To do
S0, use STOREI ND, which takes a value from V and pushes it into the location specified by
Vpelow- Thus, you would do the following steps

» Enter PUSHI MM O to give the address in which to write
» Enter PUSHI MM O for the value that you wish to store
» Enter STOREI ND to move the value zero into the zeroth address.

You will repeat similar instructions to push and place the values of x and y. For assigning each
variable, follow the same process: push the address, push the value, and store the value at the
address.

To use avariable value, you must first retrieve it! Make sure that you remember the address where
you put it. You will push that address with PUSHI MM again. Using that address, you enter
PUSHI ND, which forces SaM to retrieve the value from the address that you had previously
pushed. Sam places the retrieve value on top of the stack. Having retrieved the needed variable
values, you may then perform operations on them.

The following sam-code performs the operations of the Java code-snippet in this section. As you
read though the example, note how | methodically stored and retrieved each variable value.

SaM 9/10

/1 Absol ut e addressing
/1 absol ute.sam

ADDSP 3 /'l leave space for three variabl es
PUSHI MM 0 /1l location in which to store rv
PUSHI MM 0 /1l value to store in rv’'s location
STOREI ND /1l store value 0 in address O
PUSH MM 1 /1l location to store Xx

PUSH MM 10 // value to give x

STOREI ND /1l store value of x

PUSHI MM 2 /1l location to store y

PUSHI MM 20 // value to give y

STOREI ND /'l store value of y

PUSHI MM 0 /1l location to store result of x+y
PUSH MM 1 /'l push address of x

PUSHI ND /1 retrieve value of x

PUSHI MM 2 /'l push address of y

PUSHI ND /'l retrieve value of y

ADD /1 add values of x and y

STOREI ND /'l store value of x+y in address rv
ADDSP -2 /'l remove x and y from nenory

STOP /1 halt --> should return 30

To fully understand this approach, step through the code very carefully in the simulator. In
particular, keep track of the SP register. You may also wish to draw your own stack to keep track
of cell entries. Note that this technique limits the generality when accounting for functions, since
each function will have its own variables. The next section demonstrates the technique that we
prefer that you use.

5.2.2 Relative Addressing

By using the FBR to keep track of your current method call, you can keep your sam-code very
genera. Since we are assuming no other method than our “main,” FBR stays at zero. Judicious
use of the STORECFF x command provides the best way to help with variables. First, you need
to advance the SP by the number of variablesthat you have, including ther v. To storeavariable's
value, you push the value and then move it to the correct position in the stack. For instance, since
x isthefirst variable, you would enter PUSHI MM 10 and then STOREOFF 1. Thisinstruction
moves Vtop (which is 10) into the cel with address of 1 (which refers to
Viser = VY140 = V1)- Youwould enter asimilar instruction for y. After storing the variable
values, you need to extract and add them. To extract avalue, enter PUSHOFF k, which pushes the
value stored in address FBR+k to the top of the stack. Once you have both values pushed, you can
then add them and move the result to the r v address. Since SaM will only return the value in the
first cell (address 0), you need to alert SaM that you have finished by moving the SP to the second
cell (address 1) and stopping the program (STOP). We have provided the code for you to test:

SaM

10/10

/] CS212 Fal

/] Part 1

2002

/1 relative addressing
/1 relative.sam

ADDSP 3
PUSHI WM 10
STORECOFF 1
PUSHI WM 20
STOREOFF 2
PUSHOFF 1
PUSHOFF 2
ADD
STOREOFF O
ADDSP -2
STOP

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

make space for 3 variables (x, vy, rv)
push the value to store for x

store the value 10 in x

push the value to store for y

store the value 20 in vy

retrieve the value of x

retrieve the value of y

X+y

store the value of x+y in rv

renove x and y fromthe stack

halt -- the return value should return 30ADDSP 3

The commands for relative addressing are very similar to those of absolute addressing. The main
difference iswhether or not you account for functions, which in this portion of the project, isn’'t an

issue.

	SaM
	1. Introduction
	2. Stack Machine
	2.1 SaM
	2.2 SaM Values
	2.3 SaM Memory

	3. SaM Instructions
	3.1 Classifications
	3.2 ALU Instructions
	3.3 Stack Manipulation Instructions
	3.4 Register Save/Restore Instructions
	3.5 Control Instructions
	3.6 SaM Programs

	4. The Simulator
	4.1 GUI Interface
	Figure 1: SaM Simulator
	4.2 Running Sam-Code
	4.3 SaM’s Output

	5. Sam-Code Examples
	5.1 Postfix Notation
	Figure 2: Stack Memory
	5.2 Assignments and Sam-Code
	Figure 3: Symbol Table
	Figure 4: Stack Memory with Variables
	5.2.1 Absolute Addressing
	5.2.2 Relative Addressing

