
Slide 1

Credit: Prof. David Gries, former professor of CS 2110, on Piazza (predecessor of Ed)

Slide 2

CS 2112
Recitation 8

Loop Invariants

October 22 / 23, 2024

Slide 3

Agenda Reminders

■ Loop Invariants

■ Bucket Sort

■ Binary Search

■ Exponentiation

• TA Evaluations

• A4 is a thing

Slide 4

LOOP INVARIANTS

A brief review of loop invariants,
which you saw in lecture

Slide 5

Why Loop Invariants?

The first question we inevitably get
when talking about loop invariants is,
“why do we study loop invariants”

Slide 6

Why Loop Invariants?

Prof. David Gries, former CS 2110
professor, had a particularly famous
response to this question

Slide 7

In fairness, when the Wikipedia page
for a topic cites you as the source,
perhaps you’ve earned the right to a
bit of sass

Slide 8

Why?

for (int i = 0; i < 10; i++) {

System.out.println(i);

}

But this is a fair question. When the
loops we write are simple, it’s obvious
what they do just by looking at them.

Slide 9

However, as loops get more
complicated, this is no longer true.
(Pictured here is a random loop I
found in the Linux source code. I have
no idea what it does. It just looks long
and scary)
The point of a loop invariant is to
provide a formal framework for us to
convince ourselves (and others) that
the loop we wrote actually does what
we claim it does.

Slide 10

Simplify
for (<initialize>, <guard>, <increment>) {

// Do Something

}

<initialize>

while (<guard>) {

// Do Something

<increment>

}

Since all for loops can be written as a
while loop, for simplicity, we will only
be looking at while loops today.

Slide 11

Action Plan
<initialize>

while (<guard>) {

// Do Something

<increment>

}

Goal

Generalized Statement
True after any number of iterations

The biggest reason loops are so hard
to reason about is that they can run
any number of times. So, in the proud
tradition of students everywhere,
when a problem is too hard, we’ll give
up and tackle an easier problem.
The key idea is to come up with some
generalized statement that is true
after any number of iterations of the
loop. By doing so, we can then reason
without needing to worry about how
many times the loop runs,
sidestepping the hard part.

Slide 12

Action Plan
<initialize>

while (<guard>) {

// Do Something

<increment>

}

Goal

Invariant
True after any number of iterations

You have probably guessed by now
that the general statement is what we
call the “Loop Invariant”

Slide 13

while (b) {

// Something

}

When we exit a loop, the thing we
know for a fact is that the loop guard
(“b” in this case) must be false, or else
the loop would still be running.

Slide 14

Action Plan
<initialize>

while (<guard>) {

// Do Something

<increment>

}

Goal

Invariant
True after any

number of iterations

Invariant + !<guard>

Therefore, our goal is to show that the
loop invariant together with the
negation of the loop guard proves the
goal we want our loop to fulfill.

Slide 15

while (true) {

// Do Nothing

}

solveWorldHunger();

The other caveat is that a loop which
doesn’t end will never exit, and thus
our loop guard will never be false.

Slide 16

Action Plan
<initialize>

while (<guard>) {

// Do Something

<increment>

}

Goal

Invariant
True after any

number of iterations

Invariant + !<guard>

(as long as the loop

actually ends)

Therefore, a complete proof also
needs to show that the loop actually
ends.

Slide 17

Invariant

True after zero iterations

(after initialization)

True after any particular

iteration if true at beginning

Invariant
True after any number of iterations

To show that the invariant is true after
any number of iterations, we first
must show it is true for the smallest
number of iterations a loop can make,
which is zero (NOT one!). Then, we
can show that it’s true for any n+1
iterations if it was true for n iterations.
This is called induction.
(in fact, a loop invariant proof is
exactly a proof by induction, where
the loop invariant is our inductive
hypothesis)

Slide 18

Action Plan
<initialize>

while (<guard>) {

// Do Something

<increment>

}

Goal
Invariant + !<guard>

(as long as the loop

actually ends)
True after zero

iterations (after

initialization)

True after any

particular iteration

if true at beginning

Thus here are the four steps we need
to prove to complete our proof of the
loop’s correctness

Slide 19

Action Plan
<initialize>

while (<guard>) {

// Do Something

<increment>

}

Goal
Invariant + !<guard>

(as long as the loop

actually ends)
True after zero

iterations (after

initialization)

True after any

particular iteration

if true at beginning

Postcondition

Preservation

Termination

Establishment

We can assign fancy names to these
steps

Slide 20

Loop
Invariant

Proof

Establishment

Postcondition

Preservation

Termination

And hopefully you recognize these
names as the four parts you were
taught in lecture.

Slide 21

SIMPLE EXAMPLE

Slide 22

Task
Given an array with two types of elements,

sort the array.

Here’s an actual interview question I
got from Microsoft when applying for
my internship there.
I’m going to show you a foolproof
four-step plan to write any loop
correctly.

Slide 23

Step 1

Draw the state

at the start of

the loop

?b

I’m using pictures here instead of
words for intuition. CS 2110 used to
teach loop invariants exclusively with
pictures, and while we do expect 2112
students to be able to formalize their
invariants in writing, I do still find the
pictures useful for organizing my
thoughts.
In this picture, at the start of the loop,
nothing is sorted yet, so everything is
marked with a “?”, indicating that the
invariant makes no promises about its
contents (other than the obvious stuff,
like that there’s two types of things in
here)

Slide 24

Step 2

Draw the state

at the end of

the loop

?b

A Bb

At the end of the loop, the two types
of things should be properly sorted
(marked by “A” and “B”).

Slide 25

Step 3

Draw the state

during the loop

?b

A Bb

Now we need to visualize how the
loop should transition from the start
to the end.

Slide 26

A ?

B

?b A B

b A

b B?

?

?

There’s usually multiple ways to make
that transition. In these three
examples, you can see the sorted
section growing in from either end of
the array. The point is, pick one.

Slide 27

Step 3

Draw the state

during the loop

?b

A Bb

Ab B?Invariant

Unsurprisingly, this intermediate state
you picked is going to form your loop
invariant.

Slide 28

Step 4

Write the loop

?b

A Bb

Ab B?

Final step is to write the loop

Slide 29

Admittedly, this final step does not
sound useful. But I promise that we’re
onto something here…

Slide 30

Loop
Invariant

Proof

Establishment

Postcondition

Preservation

Termination

Because the four steps of the loop
invariant proof can now guide our
loop writing process.

Slide 31
Establishment

Postcondition

Preservation

Termination

Ab B?

 b[x] == A
 b[x] == B

int i = 0;

int j = b.length;

while (i != j) {

if (b[i] == A) {

i++;

} else {

j--;

swap(b[i], b[j]);

}

}

Establishment forces `i` and `j` to be
certain values at the start. The post
condition lets us reason about what
must be true at the end of the loop (`i
== j`), so we negate that to form the
loop guard. Then, termination tells us
how to make progress (`i++` or `j--`)
and then preservation forces the rest
of the loop to be correct.
This was the exact loop I wrote for my
interviewer. I got the job.

Slide 32

Task
Given an array with two types of elements,

sort the array.

Now you try. This was the followup
question my interviewer asked me.
Same setup, but there’s three types of
elements now.

Slide 33

BINARY SEARCH

Slide 34

Intuition

?b

You saw this in a previous discussion;
binary search finds things in a sorted
array quickly by jumping to the middle
of the remaining half at each step.

Slide 35

Development
int i = -1, t = b.length;

while(i + 1 < t) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

 b

0 b.lengthi

 b

0 b.lengthi t

t

e

Invariant: is sorted

We can use the same loop invariant
formalism to write the loop.
Next, we’ll practice proving the loop’s
correctness.

Slide 36 int i = -1, t = b.length;

while(i + 1 < t) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

 b

0 b.lengthi

 b

0 b.lengthi t

t

e

Invariant: is sorted

Establishment

Precondition requires be sorted

The invariant requires b be sorted, but
that’s also the precondition of the
binary search, so trivially this is
satisfied.

Slide 37 int i = -1, t = b.length;

while(i + 1 < t) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

 b

0 b.lengthi

 b

0 b.lengthi t

t

e

Invariant: is sorted

Establishment

 b.length

i = -1

t = b.length

i < t

Next, we have bounds on and , but
these are also trivially true at the start
of the loop.

Slide 38 int i = -1, t = b.length;

while(i + 1 < t) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

 b

0 b.lengthi

 b

0 b.lengthi t

t

e

Invariant: is sorted

Establishment

 b[x] v
 b.length b[x] v

Most importantly, our invariant
guarantees certain chunks of the array
are smaller or larger than v, the target
value. Luckily, at the start, we’ve
chosen values such that these chunks
of the array are empty, meaning it’s
trivially true.
Establishment tends to be the easy
part to prove, in general.

Slide 39 int i = -1, t = b.length;

while(i + 1 < t) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

 b

0 b.lengthi

 b

0 b.lengthi t

t

e

Invariant: is sorted

Postcondition

 i + 1 < t i + 1 t

Next, the postcondition tells us the
loop guard must be false, which
means we negate the part inside the
loop guard.

Slide 40 int i = -1, t = b.length;

while(i + 1 < t) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

 b

0 b.lengthi

 b

0 b.lengthi t

t

e

Invariant: is sorted

Postcondition
i + 1 t

 b.length

 b[x] v
 b.length b[x] v

 if v in b

Using this fact, we can see that given
our bounds requires , yet
 , we must conclude that . In
other words, is the index of an
element immediately before .
But then, our invariant tells us b is
sorted, and the element at index is
 , while the element at index is .
If comes immediately before , then
the element at t must be , since if
can’t be earlier in the array since
must be less than , and it can’t be
later since the array is sorted.
This means we’ve found the position
of .

Slide 41 int i = -1, t = b.length;

while(i + 1 < t) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

 b

0 b.lengthi t

e

 b

0 b.lengthi t

Invariant: is sorted

Preservation
 b.length

 b[x] v
 b.length b[x] v

There’s two cases inside the loop we
need to examine for preservation. If
b[e] , we see that we lift up to 𝑒.
Since e < t, the bounds are still
correct. Since b[e] and b is sorted,
all the things up to and including
position e must be , which means
we can safely lift up to it. Finally, we
don’t modify t at all (nor do we modify
the array), so the invariant about t and
b being sorted are all maintained.

Slide 42 int i = -1, t = b.length;

while(i + 1 < t) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

 b

0 b.lengthi t

e

 b

0 b.lengthi t

Invariant: is sorted

Preservation
 b.length

 b[x] v
 b.length b[x] v

By the same logic, moving t down to e
if b[e] is also safe (convince
yourself this is true).
Thus, we have proven preservation.

Slide 43 int i = -1, t = b.length;

while(i + 1 < t) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

 b

0 b.lengthi t

Invariant: is sorted

e

 b

0 b.lengthi t

Termination

i < e < t
i = e

t = e
t – i gets smaller every loop

t – i = 1 terminates loop

Finally for termination, note that the
quantity 𝑡 − 𝑖 must strictly decrease
every loop since we either set 𝑖 up to
𝑒 or 𝑡 down to 𝑒, and 𝑖 𝑒 𝑡.
Therefore, 𝑡 − 𝑖, an integer, decreases
strictly every iteration, and when it
equals 1, the loop ends. Since it starts
at a value 1 and will never go below
1 (by the invariant), termination is
guaranteed.

Slide 44 int i = -1, t = b.length;

while(i + 1 < t) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

 b

0 b.lengthi t

Invariant: is sorted

e

 b

0 b.lengthi t

Termination

Preservation

Postcondition

Establishment

This completes the loop invariant
proof.

Slide 45

EXPONENTIATION

Slide 46 /** Returns: x^e

* Requires: e ≥ 0

* Performance: O(log e) */

static int pow(int x, int e) {

int r = 1, b = x, y = e;

// loop invariant: r·b^y = x^e and y ≥ 0

while (y > 0) {

if (y % 2 == 1) { r = r * b; }

y = y / 2;

b = b * b;

}

return r;

}

Now you try. Here’s a loop that
exponentiates. The invariant is given
to you. Prove its correctness.

Slide 47

CS 2112

	t1
	t2

