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Agenda Reminders

■ Loop Invariants

■ Bucket Sort

■ Binary Search

■ Exponentiation

• TA Evaluations

• A4 is a thing
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LOOP INVARIANTS

 

A brief review of loop invariants, 
which you saw in lecture 
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Why Loop Invariants?

 

The first question we inevitably get 
when talking about loop invariants is, 
“why do we study loop invariants” 
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Why Loop Invariants?

 

Prof. David Gries, former CS 2110 
professor, had a particularly famous 
response to this question 
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In fairness, when the Wikipedia page 
for a topic cites you as the source, 
perhaps you’ve earned the right to a 
bit of sass 
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Why?

for ( int i = 0; i < 10; i++ ) {

System.out.println(i);

}

 

But this is a fair question. When the 
loops we write are simple, it’s obvious 
what they do just by looking at them. 
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However, as loops get more 
complicated, this is no longer true. 
(Pictured here is a random loop I 
found in the Linux source code. I have 
no idea what it does. It just looks long 
and scary) 
The point of a loop invariant is to 
provide a formal framework for us to 
convince ourselves (and others) that 
the loop we wrote actually does what 
we claim it does. 
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Simplify
for ( <initialize>, <guard>, <increment> ) {

// Do Something

}

<initialize>

while ( <guard> ) {

// Do Something

<increment>

}  

Since all for loops can be written as a 
while loop, for simplicity, we will only 
be looking at while loops today. 
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Action Plan
<initialize>

while ( <guard> ) {

// Do Something

<increment>

}

Goal

Generalized Statement
True after any number of iterations

 

The biggest reason loops are so hard 
to reason about is that they can run 
any number of times. So, in the proud 
tradition of students everywhere, 
when a problem is too hard, we’ll give 
up and tackle an easier problem. 
The key idea is to come up with some 
generalized statement that is true 
after any number of iterations of the 
loop. By doing so, we can then reason 
without needing to worry about how 
many times the loop runs, 
sidestepping the hard part. 
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Action Plan
<initialize>

while ( <guard> ) {

// Do Something

<increment>

}

Goal

Invariant
True after any number of iterations

 

You have probably guessed by now 
that the general statement is what we 
call the “Loop Invariant” 
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while ( b ) {

// Something

}

 

When we exit a loop, the thing we 
know for a fact is that the loop guard 
(“b” in this case) must be false, or else 
the loop would still be running. 
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Action Plan
<initialize>

while ( <guard> ) {

// Do Something

<increment>

}

Goal

Invariant
True after any 

number of iterations

Invariant + !<guard>  

 

Therefore, our goal is to show that the 
loop invariant together with the 
negation of the loop guard proves the 
goal we want our loop to fulfill. 
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while ( true ) {

// Do Nothing

}

solveWorldHunger();

 

The other caveat is that a loop which 
doesn’t end will never exit, and thus 
our loop guard will never be false. 
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Action Plan
<initialize>

while ( <guard> ) {

// Do Something

<increment>

}

Goal

Invariant
True after any 

number of iterations

Invariant + !<guard>  

(as long as the loop 

actually ends)

 

Therefore, a complete proof also 
needs to show that the loop actually 
ends. 
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Invariant

True after zero iterations 

(after initialization)

True after any particular 

iteration if true at beginning

Invariant
True after any number of iterations

 

To show that the invariant is true after 
any number of iterations, we first 
must show it is true for the smallest 
number of iterations a loop can make, 
which is zero (NOT one!). Then, we 
can show that it’s true for any n+1 
iterations if it was true for n iterations. 
This is called induction. 
(in fact, a loop invariant proof is 
exactly a proof by induction, where 
the loop invariant is our inductive 
hypothesis) 
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Action Plan
<initialize>

while ( <guard> ) {

// Do Something

<increment>

}

Goal
Invariant + !<guard>  

(as long as the loop 

actually ends)
True after zero 

iterations (after 

initialization)

True after any 

particular iteration 

if true at beginning  

Thus here are the four steps we need 
to prove to complete our proof of the 
loop’s correctness 
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Action Plan
<initialize>

while ( <guard> ) {

// Do Something

<increment>

}

Goal
Invariant + !<guard>  

(as long as the loop 

actually ends)
True after zero 

iterations (after 

initialization)

True after any 

particular iteration 

if true at beginning

Postcondition

Preservation

Termination

Establishment

 

We can assign fancy names to these 
steps 
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Loop 
Invariant 

Proof

Establishment

Postcondition

Preservation

Termination

 

And hopefully you recognize these 
names as the four parts you were 
taught in lecture. 
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SIMPLE EXAMPLE
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Task
Given an array with two types of elements,

sort the array.

 

Here’s an actual interview question I 
got from Microsoft when applying for 
my internship there. 
I’m going to show you a foolproof 
four-step plan to write any loop 
correctly. 
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Step 1

Draw the state 

at the start of 

the loop

?b

 

I’m using pictures here instead of 
words for intuition. CS 2110 used to 
teach loop invariants exclusively with 
pictures, and while we do expect 2112 
students to be able to formalize their 
invariants in writing, I do still find the 
pictures useful for organizing my 
thoughts. 
In this picture, at the start of the loop, 
nothing is sorted yet, so everything is 
marked with a “?”, indicating that the 
invariant makes no promises about its 
contents (other than the obvious stuff, 
like that there’s two types of things in 
here) 
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Step 2

Draw the state 

at the end of 

the loop

?b

A Bb

 

At the end of the loop, the two types 
of things should be properly sorted 
(marked by “A” and “B”). 
 
 



Slide 25 

Step 3

Draw the state 

during the loop

?b

A Bb

 

Now we need to visualize how the 
loop should transition from the start 
to the end. 
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A ?

B

?b A B

b A

b B?

?

?

 

There’s usually multiple ways to make 
that transition. In these three 
examples, you can see the sorted 
section growing in from either end of 
the array. The point is, pick one. 
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Step 3

Draw the state 

during the loop

?b

A Bb

Ab B?Invariant

 

Unsurprisingly, this intermediate state 
you picked is going to form your loop 
invariant. 
 
 



Slide 28 

Step 4

Write the loop

?b

A Bb

Ab B?

 

Final step is to write the loop 
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***

 

Admittedly, this final step does not 
sound useful. But I promise that we’re 
onto something here… 
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Loop 
Invariant 

Proof

Establishment

Postcondition

Preservation

Termination

 

Because the four steps of the loop 
invariant proof can now guide our 
loop writing process. 
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Establishment

Postcondition

Preservation

Termination

Ab B?

  

      b[x] == A
      b[x] == B

int i = 0;

int j = b.length;

while ( i != j ) {

if (b[i] == A) {

i++;

} else {

j--;

swap(b[i], b[j]);

}

}
 

Establishment forces `i` and `j` to be 
certain values at the start. The post 
condition lets us reason about what 
must be true at the end of the loop (`i 
== j`), so we negate that to form the 
loop guard. Then, termination tells us 
how to make progress (`i++` or `j--`) 
and then preservation forces the rest 
of the loop to be correct. 
This was the exact loop I wrote for my 
interviewer. I got the job. 
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Task
Given an array with two types of elements,

sort the array.

 

Now you try. This was the followup 
question my interviewer asked me. 
Same setup, but there’s three types of 
elements now. 
 
 

Slide 33 

BINARY SEARCH
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Intuition

?b

 

You saw this in a previous discussion; 
binary search finds things in a sorted 
array quickly by jumping to the middle 
of the remaining half at each step. 
 
 

Slide 35 

Development
int i = -1, t = b.length;

while( i + 1 < t ) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

                     b

0 b.lengthi

                              b

0 b.lengthi t

t

e

Invariant:  is sorted  

We can use the same loop invariant 
formalism to write the loop. 
Next, we’ll practice proving the loop’s 
correctness. 
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while( i + 1 < t ) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

                     b

0 b.lengthi

                              b

0 b.lengthi t

t

e

Invariant:  is sorted

Establishment

Precondition requires  be sorted 

 

The invariant requires b be sorted, but 
that’s also the precondition of the 
binary search, so trivially this is 
satisfied. 
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while( i + 1 < t ) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

                     b

0 b.lengthi

                              b

0 b.lengthi t

t

e

Invariant:  is sorted

Establishment

       b.length

i = -1 

t = b.length

i < t 

 

Next, we have bounds on   and  , but 
these are also trivially true at the start 
of the loop. 
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while( i + 1 < t ) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

                     b

0 b.lengthi

                              b

0 b.lengthi t

t

e

Invariant:  is sorted

Establishment

        b[x]  v
        b.length b[x]  v

           

                       

 

Most importantly, our invariant 
guarantees certain chunks of the array 
are smaller or larger than v, the target 
value. Luckily, at the start, we’ve 
chosen values such that these chunks 
of the array are empty, meaning it’s 
trivially true. 
Establishment tends to be the easy 
part to prove, in general. 
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while( i + 1 < t ) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

                     b

0 b.lengthi

                              b

0 b.lengthi t

t

e

Invariant:  is sorted

Postcondition

                 i + 1 < t  i + 1  t 

 

Next, the postcondition tells us the 
loop guard must be false, which 
means we negate the part inside the 
loop guard. 
 
 



Slide 40 int i = -1, t = b.length;

while( i + 1 < t ) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

                     b

0 b.lengthi

                              b

0 b.lengthi t

t

e

Invariant:  is sorted

Postcondition
i + 1  t  

       b.length

     
        b[x]  v
        b.length b[x]  v

    if v in b  

Using this fact, we can see that given 
our bounds requires    , yet     
 , we must conclude that      . In 
other words,   is the index of an 
element immediately before  . 
But then, our invariant tells us b is 
sorted, and the element at index   is  
 , while the element at index   is   . 
If   comes immediately before  , then 
the element at t must be  , since if   
can’t be earlier in the array since   
must be less than  , and it can’t be 
later since the array is sorted. 
This means we’ve found the position 
of  . 
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while( i + 1 < t ) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

                     b

0 b.lengthi t

e

                              b

0 b.lengthi t

Invariant:  is sorted

Preservation
       b.length

        b[x]  v
        b.length b[x]  v

 

There’s two cases inside the loop we 
need to examine for preservation. If 
b[e]   , we see that we lift   up to 𝑒. 
Since e < t, the bounds are still 
correct. Since b[e]    and b is sorted, 
all the things up to and including 
position e must be   , which means 
we can safely lift   up to it. Finally, we 
don’t modify t at all (nor do we modify 
the array), so the invariant about t and 
b being sorted are all maintained. 
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while( i + 1 < t ) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

                     b

0 b.lengthi t

e

                              b

0 b.lengthi t

Invariant:  is sorted

Preservation
       b.length

        b[x]  v
        b.length b[x]  v

 

By the same logic, moving t down to e 
if b[e]    is also safe (convince 
yourself this is true). 
Thus, we have proven preservation. 
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while( i + 1 < t ) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

                     b

0 b.lengthi t

Invariant:  is sorted

e

                              b

0 b.lengthi t

Termination

i < e < t
i = e

t = e
t – i gets smaller every loop

t – i = 1 terminates loop

 

Finally for termination, note that the 
quantity 𝑡 − 𝑖 must strictly decrease 
every loop since we either set 𝑖 up to 
𝑒 or 𝑡 down to 𝑒, and 𝑖  𝑒  𝑡. 
Therefore, 𝑡 − 𝑖, an integer, decreases 
strictly every iteration, and when it 
equals 1, the loop ends. Since it starts 
at a value  1 and will never go below 
1 (by the invariant), termination is 
guaranteed. 
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while( i + 1 < t ) {

int e = (i + t) / 2;

// -1 <= i < e < t < b.length

if (b[e] < v) { i = e; }

else { t = e; }

}

?b

0 b.length

                     b

0 b.lengthi t

Invariant:  is sorted

e

                              b

0 b.lengthi t

Termination

Preservation

Postcondition

Establishment

 

This completes the loop invariant 
proof. 
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EXPONENTIATION
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*  Requires: e ≥ 0

*  Performance: O(log e) */

static int pow(int x, int e) {

int r = 1, b = x, y = e;

// loop invariant: r·b^y = x^e and  y ≥ 0

while (y > 0) {

if (y % 2 == 1) { r = r * b; }

y = y / 2;

b = b * b;

}

return r;

}

 

Now you try. Here’s a loop that 
exponentiates. The invariant is given 
to you. Prove its correctness. 
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