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Heaps + Dijkstra’s Algorithm
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Agenda Reminders

■ Heaps Review

■ Dijkstra’s 

Algorithm

• A5 Design Doc

Due Wednesday
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HEAPS
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Trees
Trees

 

As a quick review, trees are data 
structures consisting of data in nodes 
and pointers to more nodes, called 
“children” 
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Binary Trees
Trees

Binary Trees

 

A binary tree is a specific type of tree 
where each node only has at most 2 
children 
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A binary search tree is a further 
specialization that enforces the 
invariant that all children to the left of 
a node are smaller, and all children to 
the right are bigger (according to 
some sort order) 
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A heap, on the other hand, is a 
different type of binary tree, and is 
not a search tree. The heap invariant 
requires the a node be smaller than all 
its children (for a min-heap; a max-
heap is the exact opposite). 
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Note that heaps have this up-down 
relationship as opposed to a BST’s left-
right ordering 
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Also unlike a BST, a heap cannot be 
missing arbitrary children 
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Shape Invariant

1

2 3

4 5

For every node  at depth  :

■ All     nodes above  exist

■ All nodes to the left of  exist

 

A heap must fulfill this shape 
invariant, which bounds which 
children can be missing 
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Representation

1 2 3 4 5 6 7

Children:     and     Parent: 
   

 

 

As a result, a heap can be compactly 
stored in an array instead of with 
pointers to arbitrary objects in 
memory. 
Note that all we have changed is 
where the nodes are stored in 
memory (consecutively, instead of in 
random places). We still are modelling 
this as a tree, with parent and children 
nodes. 
The convenient part is that we no 
longer need to explicitly store the 
pointers, because we can just 
compute the index of where the 
children and parents are. 
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Practice: How would you add this 2 
node to the heap? 
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Add
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The time complexity of add is O(log n) 
because it’s proportional to the height 
of the tree. 
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Remove
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Practice: Now how would you remove 
the smallest node from this heap? 
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Remove
2

3 4

6 5 7 10

12 9

     

 

Like add, remove is also O(log n) 
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Interface vs.

Implementation
Sorted Set
■ Set (no duplicates)

■ Sorted (first = smallest)

Unsorted List
■ Duplicates in list

■ No ordering
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Switching gears a bit, remember there 
is a difference between an interface, 
which is how users will interact with 
your code, and the implementation, 
which is how your code works behind 
the scenes. 
To take A3’s example, a sorted set as 
an interface gives users the illusion 
that there’s no duplicates and the first 
element must be the smallest one, but 
the implementation might be an 
unordered linked list, where you have 
to scan the whole list to find the 
minimum and have to remember to 
remove all duplicates when removing 
an element. 
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Priority Queue

Interface

■ add

■ extractMin

■ increasePriority

■ isEmpty

Implementation: Heap
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In that vein, a priority queue is an 
interface that supports adding and 
removing elements based on some 
priority, as well as perhaps changing 
the priority. 
A heap is a particularly efficient 
implementation of that interface. 
(Note a BST has the same asymptotic 
complexity; the heap is preferable 
only because of better constant 
factors) 
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DIJKSTRA’S
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Graph Traversals
use

while ( not empty) {

node = get from

for (each neighbor of node) {

update with neighbor

}

}

stack

stack

stack

stack

 

You’ve probably seen this graph 
traversal algorithm, where you push 
neighbors to a stack and pop from the 
stack each cycle. 
This is a DFS (depth first search). 
 
 

Slide 21 

Graph Traversals
use

while ( not empty) {

node = get from

for (each neighbor of node) {

update with neighbor

}

}

stack

stack

stack

stack

queue

queue

queue

queue

 

Notice that if you replace the stack 
with a queue, you end up with a BFS 
(breadth first search), but the 
algorithm itself is the same. 
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Graph Traversals
use

while ( not empty) {

node = get from

for (each neighbor of node) {

update with neighbor

}

}

stack

stack

stack

stack

queuepriority queue*

queue

queue

queue

priority queue

priority queue

priority queue

* using shortest found distance to node as priority  

The core insight is that if we replace 
the data structure instead with a 
priority queue (using the shortest 
known path to a node as its priority), 
then we get Dijkstra’s algorithm. 
That’s it. 
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Dijkstra’s algorithm, to remind you, 
finds the shortest path between two 
nodes in a directed graph with non-
negative edges. 
(technically Dijkstra’s can find the 
distance to every other node, not just 
the target one). 
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Invariant

This loop invariant formalization and proof for Dijkstra’s 

algorithm comes from Prof. David Gries of CS 2110

1. For any black node  , the shortest path 

to  is known and only uses black nodes

2. For any gray node  , the shortest path to 

 through black nodes is known.

3. All edges from black nodes go to black or 

gray nodes.

 

Here is a loop invariant for Dijkstra’s 
algorithm. Note this particular 
formalization comes from Prof. David 
Gries and CS 2110, and differs slightly 
from the one shown in class. I find this 
one more intuitive so I wanted you to 
see it. 
Note that on point 2, it states we 
know the shortest path through other 
black nodes to any gray node n, but 
there may be even shorter paths 
outside the black nodes we haven’t 
seen. 
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Theorem

For the gray node  with the 

shortest known path, that path 

is the global shortest path to  

3

65

7

2

 

The key to understanding why the 
algorithm works is this theorem. 
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3

65  

Let’s imagine what the shortest path 
to a gray node might look like. In the 
first scenario, the shortest path just 
goes through all the black nodes we’ve 
seen. 
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In the second scenario, the shortest 
path travels through a different gray 
node first, and then perhaps takes 
some shortcut outside to the target 
node. 
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In the third scenario, the shortest path 
doesn’t touch another gray node at all 
and takes a shortcut outside directly. 
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However, the third point of the 
invariant guarantees that scenario 3 is 
not possible, since any edge leaving a 
black node cannot go straight to a 
white node. 
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So there’s only two possibilities. 
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Closest gray 

node

 

  

 

 

Zooming back in on scenario 2, notice 
that the theorem explicitly looks at the 
short path to any gray node. Which 
means that a path to a different gray 
node must be longer than the original 
path to the target gray node. So it 
doesn’t matter how fast the shortcut 
outside the frontier is, because the 
path to get to the shortcut must be 
longer. 
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Therefore scenario 2 is not possible. 
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1

Path 

through 

black

 

This means the shortest path to this 
gray node must be through the black 
nodes. But the invariant guarantees 
we know the shortest path through 
the black nodes to any gray node.  
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Theorem

For the gray node  with the 

shortest known path, that path 

is the global shortest path to  

3

65

7

 

Therefore, we know the shortest path 
to this node. 
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Algorithm
use

while ( not empty) {

node = get from

for (each neighbor of node) {

update with neighbor

}

}

priority queue*

priority queue

priority queue

priority queue

* using shortest found distance to node as priority

Add if white, 

update path 

if gray

 

It’s for this reason that, if our priority 
queue models our frontier, it is safe to 
pop the node with the shortest known 
path off the frontier each step. 
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while ( not empty) {

node = get from

for (each neighbor of node) {

update with neighbor

}

}

priority queue*

priority queue

priority queue

priority queue

frontier = new PriorityQueue();

root.dist = 0; frontier.push(root);

while (frontier not empty) {

g = frontier.pop();

foreach (edge from g to v) {

if (v.dist == ∞) {

v.dist = g.dist + edge.len;

frontier.push(v);

} else {

if (g.dist + edge.len < v.dist) {

v.dist = g.dist + edge.len;

frontier.changePriority(v);

}

}

}

}

1. For any black node  , the shortest path 

to  is known and only uses black nodes

2. For any gray node  , the shortest path to 

 through black nodes is known.

3. All edges from black nodes go to black or 

gray nodes.

 

Using our invariant, we can construct 
the full logic of the algorithm. Any 
node that has infinite distance is 
white, anything in the priority queue is 
gray, and any node removed from the 
queue is black. 
For initialization, the only node whose 
distance we know is the starting node, 
so we set its distance to zero and add 
it to the frontier. 
The postcondition is that we’ve found 
the shortest path to every node, which 
happens when all reachable nodes 
turn black – thus our loop continues 
while there’s still nodes to process. 
The theorem tells us we can make 
progress towards termination by 
popping the shortest distance node in 
the frontier. 
To preserve the invariant, we must 
color any white neighbors of the 
newly blackened node to be gray (by 
computing its only known path 
distance and adding them to the 
frontier). Also, if we find a new shorter 
path to a neighbor, we have to update 
it too. 
And that’s it! 
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Exercise A
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This question comes from the CS 2112 Fall 2017 final exam  

Exercise: compute the state of the 
priority queue at each iteration of 
Dijkstra’s algorithm starting at node A. 
This was a question from my final 
exam. 
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