
Slide 1

Credit: Randall Munroe, xkcd.com

Slide 2

CS 2112
Recitation 10

Heaps + Dijkstra’s Algorithm

November 5 / 6, 2024

Slide 3

Agenda Reminders

■ Heaps Review

■ Dijkstra’s

Algorithm

• A5 Design Doc

Due Wednesday

Slide 4

HEAPS

Slide 5

Trees
Trees

As a quick review, trees are data
structures consisting of data in nodes
and pointers to more nodes, called
“children”

Slide 6

Binary Trees
Trees

Binary Trees

A binary tree is a specific type of tree
where each node only has at most 2
children

Slide 7

BSTs
Trees

Binary Trees

Binary

Search

Trees

Small Large

4

2 6

1 3 5 7

A binary search tree is a further
specialization that enforces the
invariant that all children to the left of
a node are smaller, and all children to
the right are bigger (according to
some sort order)

Slide 8

Heaps
Trees

Binary Trees

Binary

Search

Trees

Small

Large

Heaps

1

2 3

4 5 6 7

A heap, on the other hand, is a
different type of binary tree, and is
not a search tree. The heap invariant
requires the a node be smaller than all
its children (for a min-heap; a max-
heap is the exact opposite).

Slide 9

Heaps
Small

Large

1

2 3

4 5 6 7

4

2 6

1 3 5 7

Small Large

BSTs

Note that heaps have this up-down
relationship as opposed to a BST’s left-
right ordering

Slide 10

Heaps
Small

Large

1

2 3

4 6 7

4

2 6

1 5 7

Small Large

BSTs

Also unlike a BST, a heap cannot be
missing arbitrary children

Slide 11

Shape Invariant

1

2 3

4 5

For every node at depth :

■ All nodes above exist

■ All nodes to the left of exist

A heap must fulfill this shape
invariant, which bounds which
children can be missing

Slide 12

Representation

1 2 3 4 5 6 7

Children: and Parent:

As a result, a heap can be compactly
stored in an array instead of with
pointers to arbitrary objects in
memory.
Note that all we have changed is
where the nodes are stored in
memory (consecutively, instead of in
random places). We still are modelling
this as a tree, with parent and children
nodes.
The convenient part is that we no
longer need to explicitly store the
pointers, because we can just
compute the index of where the
children and parents are.

Slide 13

Add
1

3 4

6 5 7 10

12 9

2

Practice: How would you add this 2
node to the heap?

Slide 14

Add
1

2 4

6 3 7 10

12 9 5

The time complexity of add is O(log n)
because it’s proportional to the height
of the tree.

Slide 15

Remove
1

2 4

6 3 7 10

12 9 5

Practice: Now how would you remove
the smallest node from this heap?

Slide 16

Remove
2

3 4

6 5 7 10

12 9

Like add, remove is also O(log n)

Slide 17

Interface vs.

Implementation
Sorted Set
■ Set (no duplicates)

■ Sorted (first = smallest)

Unsorted List
■ Duplicates in list

■ No ordering

1 2 3

4 5

2

3

5

1

2

4

1

3

3

2

Switching gears a bit, remember there
is a difference between an interface,
which is how users will interact with
your code, and the implementation,
which is how your code works behind
the scenes.
To take A3’s example, a sorted set as
an interface gives users the illusion
that there’s no duplicates and the first
element must be the smallest one, but
the implementation might be an
unordered linked list, where you have
to scan the whole list to find the
minimum and have to remember to
remove all duplicates when removing
an element.

Slide 18

Priority Queue

Interface

■ add

■ extractMin

■ increasePriority

■ isEmpty

Implementation: Heap

1

2 3

4 5

In that vein, a priority queue is an
interface that supports adding and
removing elements based on some
priority, as well as perhaps changing
the priority.
A heap is a particularly efficient
implementation of that interface.
(Note a BST has the same asymptotic
complexity; the heap is preferable
only because of better constant
factors)

Slide 19

DIJKSTRA’S

Slide 20

Graph Traversals
use

while (not empty) {

node = get from

for (each neighbor of node) {

update with neighbor

}

}

stack

stack

stack

stack

You’ve probably seen this graph
traversal algorithm, where you push
neighbors to a stack and pop from the
stack each cycle.
This is a DFS (depth first search).

Slide 21

Graph Traversals
use

while (not empty) {

node = get from

for (each neighbor of node) {

update with neighbor

}

}

stack

stack

stack

stack

queue

queue

queue

queue

Notice that if you replace the stack
with a queue, you end up with a BFS
(breadth first search), but the
algorithm itself is the same.

Slide 22

Graph Traversals
use

while (not empty) {

node = get from

for (each neighbor of node) {

update with neighbor

}

}

stack

stack

stack

stack

queuepriority queue*

queue

queue

queue

priority queue

priority queue

priority queue

* using shortest found distance to node as priority

The core insight is that if we replace
the data structure instead with a
priority queue (using the shortest
known path to a node as its priority),
then we get Dijkstra’s algorithm.
That’s it.

Slide 23

Shortest Path

1

3

4

1

5

2
1

2

4

3

1
2

2

Dijkstra’s algorithm, to remind you,
finds the shortest path between two
nodes in a directed graph with non-
negative edges.
(technically Dijkstra’s can find the
distance to every other node, not just
the target one).

Slide 24

Invariant

This loop invariant formalization and proof for Dijkstra’s

algorithm comes from Prof. David Gries of CS 2110

1. For any black node , the shortest path

to is known and only uses black nodes

2. For any gray node , the shortest path to

 through black nodes is known.

3. All edges from black nodes go to black or

gray nodes.

Here is a loop invariant for Dijkstra’s
algorithm. Note this particular
formalization comes from Prof. David
Gries and CS 2110, and differs slightly
from the one shown in class. I find this
one more intuitive so I wanted you to
see it.
Note that on point 2, it states we
know the shortest path through other
black nodes to any gray node n, but
there may be even shorter paths
outside the black nodes we haven’t
seen.

Slide 25

Theorem

For the gray node with the

shortest known path, that path

is the global shortest path to

3

65

7

2

The key to understanding why the
algorithm works is this theorem.

Slide 26

3

65

Let’s imagine what the shortest path
to a gray node might look like. In the
first scenario, the shortest path just
goes through all the black nodes we’ve
seen.

Slide 27
1

Path

through

black

Slide 28

In the second scenario, the shortest
path travels through a different gray
node first, and then perhaps takes
some shortcut outside to the target
node.

Slide 29
1

Path

through

black
2

Exit

through

frontier

Slide 30

In the third scenario, the shortest path
doesn’t touch another gray node at all
and takes a shortcut outside directly.

Slide 31
1

Path

through

black
2

Exit

through

frontier
3

Exit

through

white

However, the third point of the
invariant guarantees that scenario 3 is
not possible, since any edge leaving a
black node cannot go straight to a
white node.

Slide 32
1

Path

through

black
2

Exit

through

frontier

So there’s only two possibilities.

Slide 33

Closest gray

node

Zooming back in on scenario 2, notice
that the theorem explicitly looks at the
short path to any gray node. Which
means that a path to a different gray
node must be longer than the original
path to the target gray node. So it
doesn’t matter how fast the shortcut
outside the frontier is, because the
path to get to the shortcut must be
longer.

Slide 34
1

Path

through

black
2

Exit

through

frontier

Therefore scenario 2 is not possible.

Slide 35
1

Path

through

black

This means the shortest path to this
gray node must be through the black
nodes. But the invariant guarantees
we know the shortest path through
the black nodes to any gray node.

Slide 36

Theorem

For the gray node with the

shortest known path, that path

is the global shortest path to

3

65

7

Therefore, we know the shortest path
to this node.

Slide 37

Algorithm
use

while (not empty) {

node = get from

for (each neighbor of node) {

update with neighbor

}

}

priority queue*

priority queue

priority queue

priority queue

* using shortest found distance to node as priority

Add if white,

update path

if gray

It’s for this reason that, if our priority
queue models our frontier, it is safe to
pop the node with the shortest known
path off the frontier each step.

Slide 38 use

while (not empty) {

node = get from

for (each neighbor of node) {

update with neighbor

}

}

priority queue*

priority queue

priority queue

priority queue

frontier = new PriorityQueue();

root.dist = 0; frontier.push(root);

while (frontier not empty) {

g = frontier.pop();

foreach (edge from g to v) {

if (v.dist == ∞) {

v.dist = g.dist + edge.len;

frontier.push(v);

} else {

if (g.dist + edge.len < v.dist) {

v.dist = g.dist + edge.len;

frontier.changePriority(v);

}

}

}

}

1. For any black node , the shortest path

to is known and only uses black nodes

2. For any gray node , the shortest path to

 through black nodes is known.

3. All edges from black nodes go to black or

gray nodes.

Using our invariant, we can construct
the full logic of the algorithm. Any
node that has infinite distance is
white, anything in the priority queue is
gray, and any node removed from the
queue is black.
For initialization, the only node whose
distance we know is the starting node,
so we set its distance to zero and add
it to the frontier.
The postcondition is that we’ve found
the shortest path to every node, which
happens when all reachable nodes
turn black – thus our loop continues
while there’s still nodes to process.
The theorem tells us we can make
progress towards termination by
popping the shortest distance node in
the frontier.
To preserve the invariant, we must
color any white neighbors of the
newly blackened node to be gray (by
computing its only known path
distance and adding them to the
frontier). Also, if we find a new shorter
path to a neighbor, we have to update
it too.
And that’s it!

Slide 39

Exercise A

B

C

D

E

F

G

15

2

4
7

3

10

53

2

6

1

This question comes from the CS 2112 Fall 2017 final exam

Exercise: compute the state of the
priority queue at each iteration of
Dijkstra’s algorithm starting at node A.
This was a question from my final
exam.

Slide 40

CS 2112

