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Agenda Reminders

               

           

         

• A1 Out Now

• Design Doc

Due Wednesday
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Motivating Example

                                 

                           

      

 

If I spell the item I’m looking for 
wrong, indexOf returns -1 
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This code is going to call 
dispenseCoffee() a few billion times.  
Your coffee cup is going to overflow. 
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This is suddenly much less funny 
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It’s tempting to view Exceptions as the 
problem that needs to be fixed. You 
may even be tempted to wrap 
everything in a try catch to make the 
Exceptions stop. But Exceptions are 
just the symptom of an underlying 
issue – that your code is broken. And 
ignoring that fact only invites more 
trouble. 
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Slide 11 void main(String[] args) {

openFile(args[0]);

}

                                

                      

                     

 

                              

                          

 

                      

Responsible for the error

 

Making things harder is that often 
times, the code that encounters the 
error (eg reading a nonexistent file) 
and the code that is responsible for 
the error (eg specifying which file to 
read) don’t live in the same place and 
may not have even been written by 
the same person or team.  
 
We need to solve this long range 
communication problem. 
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 Represent abnormal execution status

 Delegate responsibility for handling problems

 Prevent execution in invalid state

 

As such, here are some features we’d 
like in our way of modelling problems 
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ATTEMPT 1:

ERROR CODES
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Error Codes
                                       

                                

                                        

 

Some old, low level libraries will 
provide either a function or a return 
value that is some number if 
successful and a different number for 
errors 
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glutInit(&argc, argv);

if (glGetError() != GL_NO_ERROR) { ... }

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA);

if (glGetError() != GL_NO_ERROR) { ... }

glutInitWindowSize(1024, 768);

if (glGetError() != GL_NO_ERROR) { ... }

glutCreateWindow("Tutorial 01");

if (glGetError() != GL_NO_ERROR) { ... }

 

You end up checking for these error 
codes all over the place 
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We do have a way of representing 
problems. However, if the place to 
handle these problems lives further 
away from the callsite, it’s still not 
easy to delegate. And there’s nothing 
that this does if the programmer 
forgets to check for the status code. 
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So instead this is how Java does it 
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Throwables

 Objects that subclass Throwable,

created when problem occurs

 “        ”                              

 “      ”                                 

 If uncaught, crashes program

 

An object of type Throwable is a 
special object that can be “thrown” to 
halt execution due to an issue 
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openFile(args[0]);

}

                                

                      

                     

 

                              

                          

 

                      

                         

 

Let’s start with the perspective of the 
code where the problem occurs 
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“     ”

              

                              

        

 

 

When a problem occurs that you’d like 
to pass off, create a new object of type 
Throwable like any other, and then 
pass that object to the “throw” 
keyword. 
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“     ”

              

}

new Exception();     

 

Often, we skip the step of assigning it 
to a variable first. However, don’t 
forget the “new” as we are 
instantiating a new object. 
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“     ”

main()

         

        

 

The throwable is then “thrown” down 
the call stack, waiting to be caught by 
the first method that tries to “catch” 
it. If it’s not caught, the program 
crashes. 
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 Mistakes or catastrophic problems

 Not recoverable and should not be 
caught

 eg: OutOfMemoryError

Error
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void openFile(String filename) {

// Do some other stuff

Files.open(filename);

}

static open(String filename) {

// Try to find the file...

}

Where the error occurs

                         

 

Now to look at the perspective of the 
code responsible for handling the 
error (for example, asking the user to 
pick a different file) 
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“     ”

     

                            

                       

                      

 

 

When you want to take responsibility 
for and handle the problems that may 
occur in another block of code, wrap 
that code in a “try” and you can catch 
the exception with a catch block. 
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Try vs. Catch

Where error occurs

                                  

              

                      

 

 

                     

     

                            

                       

                      

 

 

So to review, the place where a 
problem happens *throws* the 
exception, and the place responsible 
for handling the problem *catches* 
the exception. Often times, the place 
throwing the exception is in Java’s own 
code instead of what you wrote. 
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If an exception is thrown, the first 
catch block whose declared type is a 
supertype of the thrown exception will 
run. Multiple catch blocks can be 
chained. 
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BufferedReader br = null;

try {

br = Files.newBufferedReader(path);

// Do stuff with br

} finally {

if (br != null) {

br.close();

}

}

 

Finally blocks are often used to clean 
up resources when done 
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This is newer syntax that does the 
same thing as the previous slide. 
The new syntax is preferable especially 
if you have multiple resources, as if 
the close() method on one of them 
throws an exception, this will still 
make sure the others are closed 
properly. 
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Checked

 Must be explicitly handled or 

passed on

 Unusual but unpreventable 

circumstances

 Useful to factor out rare cases

 eg: IOException

         

 Need not be handled

 Usually a programmer error 

                                 … 

 Subclass of Error or 

RuntimeException

 eg: NullPointerException

 

Exceptions come in two types 
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Type
Hierarchy

Throwable

         

        
         

          
          

     

Red = Unchecked  
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The A1 release code has an example of 
a checked exception in the Cipher 
interface. Here, the non alphabetic 
ciphers will throw an exception if this 
method is called. 
 
 



Slide 34 

          
                                                                                    

                            

                       

               

        

                   

 

 

              

                              

                          

                             

                                  

 

As a side note, Java does provide a 
way to check the runtime type of an 
object. Don’t overuse this. 
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What’s wrong with this? 
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The pros and cons of these two 
variants were discussed in class 
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