
Slide 1

Slide 2

CS 2112
Recitation 3
Exceptions

Slide 3

Agenda Reminders

• A1 Out Now

• Design Doc

Due Wednesday

Slide 4

Slide 5

Motivating Example

If I spell the item I’m looking for
wrong, indexOf returns -1

Slide 6

This code is going to call
dispenseCoffee() a few billion times.
Your coffee cup is going to overflow.

Slide 7

This is suddenly much less funny

Slide 8

Slide 9 try {

It’s tempting to view Exceptions as the
problem that needs to be fixed. You
may even be tempted to wrap
everything in a try catch to make the
Exceptions stop. But Exceptions are
just the symptom of an underlying
issue – that your code is broken. And
ignoring that fact only invites more
trouble.

Slide 10

Slide 11 void main(String[] args) {

openFile(args[0]);

}

Responsible for the error

Making things harder is that often
times, the code that encounters the
error (eg reading a nonexistent file)
and the code that is responsible for
the error (eg specifying which file to
read) don’t live in the same place and
may not have even been written by
the same person or team.

We need to solve this long range
communication problem.

Slide 12

 Represent abnormal execution status

 Delegate responsibility for handling problems

 Prevent execution in invalid state

As such, here are some features we’d
like in our way of modelling problems

Slide 13

ATTEMPT 1:

ERROR CODES

Slide 14

Error Codes

Some old, low level libraries will
provide either a function or a return
value that is some number if
successful and a different number for
errors

Slide 15

glutInit(&argc, argv);

if (glGetError() != GL_NO_ERROR) { ... }

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA);

if (glGetError() != GL_NO_ERROR) { ... }

glutInitWindowSize(1024, 768);

if (glGetError() != GL_NO_ERROR) { ... }

glutCreateWindow("Tutorial 01");

if (glGetError() != GL_NO_ERROR) { ... }

You end up checking for these error
codes all over the place

Slide 16

We do have a way of representing
problems. However, if the place to
handle these problems lives further
away from the callsite, it’s still not
easy to delegate. And there’s nothing
that this does if the programmer
forgets to check for the status code.

Slide 17

So instead this is how Java does it

Slide 18

Throwables

 Objects that subclass Throwable,

created when problem occurs

 “ ”

 “ ”

 If uncaught, crashes program

An object of type Throwable is a
special object that can be “thrown” to
halt execution due to an issue

Slide 19 void main(String[] args) {

openFile(args[0]);

}

Let’s start with the perspective of the
code where the problem occurs

Slide 20

“ ”

When a problem occurs that you’d like
to pass off, create a new object of type
Throwable like any other, and then
pass that object to the “throw”
keyword.

Slide 21

“ ”

}

new Exception();

Often, we skip the step of assigning it
to a variable first. However, don’t
forget the “new” as we are
instantiating a new object.

Slide 22

“ ”

main()

The throwable is then “thrown” down
the call stack, waiting to be caught by
the first method that tries to “catch”
it. If it’s not caught, the program
crashes.

Slide 23

 “ ”

 Mistakes or catastrophic problems

 Not recoverable and should not be
caught

 eg: OutOfMemoryError

Error

Slide 24

void openFile(String filename) {

// Do some other stuff

Files.open(filename);

}

static open(String filename) {

// Try to find the file...

}

Where the error occurs

Now to look at the perspective of the
code responsible for handling the
error (for example, asking the user to
pick a different file)

Slide 25

“ ”

When you want to take responsibility
for and handle the problems that may
occur in another block of code, wrap
that code in a “try” and you can catch
the exception with a catch block.

Slide 26

Try vs. Catch

Where error occurs

So to review, the place where a
problem happens *throws* the
exception, and the place responsible
for handling the problem *catches*
the exception. Often times, the place
throwing the exception is in Java’s own
code instead of what you wrote.

Slide 27

If an exception is thrown, the first
catch block whose declared type is a
supertype of the thrown exception will
run. Multiple catch blocks can be
chained.

Slide 28

Slide 29

BufferedReader br = null;

try {

br = Files.newBufferedReader(path);

// Do stuff with br

} finally {

if (br != null) {

br.close();

}

}

Finally blocks are often used to clean
up resources when done

Slide 30

This is newer syntax that does the
same thing as the previous slide.
The new syntax is preferable especially
if you have multiple resources, as if
the close() method on one of them
throws an exception, this will still
make sure the others are closed
properly.

Slide 31

Checked

 Must be explicitly handled or

passed on

 Unusual but unpreventable

circumstances

 Useful to factor out rare cases

 eg: IOException

 Need not be handled

 Usually a programmer error

 …

 Subclass of Error or

RuntimeException

 eg: NullPointerException

Exceptions come in two types

Slide 32

Type
Hierarchy

Throwable

Red = Unchecked

Slide 33

The A1 release code has an example of
a checked exception in the Cipher
interface. Here, the non alphabetic
ciphers will throw an exception if this
method is called.

Slide 34

As a side note, Java does provide a
way to check the runtime type of an
object. Don’t overuse this.

Slide 35

Slide 36

What’s wrong with this?

Slide 37

The pros and cons of these two
variants were discussed in class

Slide 38

Slide 39

