Representing Java Values

Recitation 2

Decimal Integers

$$d_{n-1}d_{n-2}...d_0$$

$$\sum_{i=0}^{n-1} d_i(10^i)$$

$$131 = (100 * 1) + (10 * 3) + 1$$

$$= (10^2 * 1) + (10^1 * 3) + (10^0 * 1)$$

Binary Integers

$$b_{n-1}b_{n-2}...b_0$$

$$\sum_{i=0}^{n-1}b_i(2^i)$$

$$131 = (128 * 1) + (2 * 1) + 1$$

$$= (2^7 * 1) + (2^1 * 1) + (2^0 * 1)$$

$$= 10000011_2$$

Exercise

Convert 7 and 11 to binary

Two's Complement

Definition: It's a signed n-bit representation where the most significant bit stands for -2^{n-1} instead of 2^{n-1}

$$b_{n-1}b_{n-2}...b_0$$

$$-b_{n-1}(2^{n-1}) + \sum_{i=0}^{n-2} b_i(2^i)$$

Two's Complement Example

$$11000001_{2} = -128 + 64 + 1$$

$$= -63$$

$$11111111_{2} = -128 + 64 + 32 + 16 + 8 + 4 + 2 + 1$$

$$= -1$$

Exercise

Convert 3 and -3 to Two's complement

(Assume that the numbers are represented using 4 bits)

Memory

- Computer memory is a grid with a bit stored in every cell
- Each address names a group of 8 bits (a **byte**)
- Computer memory can read the four bytes beginning at an address. These four bytes are called a word

Variables

- Variables are assigned an integer number of words (even if it needs less space)
- char c = 'a'; long x = 1;

С	10012			0	97
х	10016	0	0	0	1
	10020	0	0	0	0

Objects

```
class A {
   char c;
    В у;
class B {
   long z;
B b = new B();
b.z = 1;
A a = new A();
a.c = 'a';
a.y = b;
```


Decimal Scientific Notation

- Consists of an integer n between 0 and 9
- A rational number between 0 and 1
- A factor of 10 raised to an integer power

 $7.234 * 10^{(-5)}$

Floating Point Representation

Consists of the following components:

- sign (s): 0 or 1
- exponent (exp): integer
- mantissa (m): sequence of binary digits such that $1 \le 1.m < 2$

 $(-1)^{s} \times 2^{exp} \times (1.m)$

Floating Point Pitfalls!!

- Due to precision related errors check for closeness instead of equality
 - o f1 == f2
 - \circ |f1 f2| < ε
- Floating point addition is not commutative
 - $0.01 + 10^{-40} 1 \neq 1 1 + 10^{-40}$