
Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Lab 12: Monitors
CS 2112 Fall 2024

December 2 / 4, 2024

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Threads

▶ Multiple threads may execute within the same program

▶ This is called called multithreading

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Race Conditions

1 class TugOfWar {

2 int position = 0;

3 void pullLeft () {

4 position --;

5 }

6 void pullRight () {

7 position ++;

8 }

9 }

If thread 1 runs pullLeft() a thousand times and thread 2 runs
pullRight() a thousand times, where does the rope end up?

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Locks

A lock, or a mutex (mutual exclusion object), is a mechanism that
stops multiple threads from executing code at the same time.

Think of the lock as a physical object. Only one thread is allowed
to “hold” the lock at any one point in time. Pass the lock object
to the synchronized keyword to acquire it. Java automatically
releases the lock at the end of the block.

1 public void run() {

2 synchronized(mutex) {

3 // Do unsafe mutable operation

4 }

5 }

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Using Mutexes

Note that the existence of a lock does not inherently protect your
data. It’s the job of the programmer to make sure that any unsafe
calls acquire the mutex first.

A common pattern is to keep unsafe variables as private instance
variables inside a class, and then enforce all accesses to those
variables through publicly exposed methods in the class.

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Java Mutexes

Java allows any object to be used as a mutex.

Since the common use case involves keeping all lock acquisitions
inside one object, it’s customary to use this as the lock.

1 public void safeMethod () {

2 synchronized(this) {

3 // Do unsafe mutable operation

4 }

5 }

Since this is so common, using the synchronized keyword in the
method header is syntactic sugar for the same.

1 public synchronized void safeMethod () {

2 // Do unsafe mutable operation

3 }

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Busy-Waiting

What happens if your multi-threaded code needs to wait on some
condition being true?

One Solution:

1 public synchronized void waitingMethod () {

2 while (! condition) { }

3 // Do thing requiring condition

4 }

Do you see any problems with this?

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Why Busy-Waiting Sucks

▶ Wastes CPU cycles

▶ Can cause deadlocks* if you hold a mutex

▶ It’s bad

* Remember that a deadlock is when two threads both hold one
lock and are both waiting on a lock held by each other

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Condition Variables

High Level Overview:

Mechanism for a thread to release its lock and wait on a condition.
Automatically reacquire the lock when the condition becomes true.

Theoretically, you can have one condition variable for every
condition you want to wait on.

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Condition Variables in Java

Java only allows one condition variable per object.

You can call the following methods from the Object API:

1 public void wait() // Makes this thread wait

2 public void notify () // Wake up one waiting thread

3 public void notifyAll () // Wake up all waiting threads

These methods can only be called by a thread that currently owns
the object’s lock.

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Using Monitors

A couple of best practices:

▶ You should wrap your wait commands inside a while loop,
since you might want to wait on multiple conditions.

1 while (! condition1 || !condition2) {

2 wait ();

3 }

▶ Call notifyAll() instead of notify() unless you have a very
good reason to only wake up one thread, since there’s no
guarantee which thread is woken up.

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Reentrant Locks

▶ Reentrant locks allow a single thread to acquire the same lock
multiple times

▶ This allows one synchronized method to call another on the
same object without getting stuck

▶ Each mutex keeps track of the number of times the thread
has acquired the mutex and is only released once the holding
thread releases it the same number of times.

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Read / Write Locks

▶ Any number of readers can hold the lock.

▶ Only one writer can hold it.

▶ Readers can starve out writers, so we need to stop new
readers from joining when writers show up.

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Performance

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

Exercise

Download the lab code and import it into IntelliJ (no Gradle :D)
Run MatrixTest.java with the argument unsafe, monitor, or rwlock

to run a bunch of threads without locks, with a normal lock, or
with a read-write lock, respectively.
Your task is to implement all the TODOs in RWLock.java.

Variables:
numReaders - Number of readers currently with the lock
numWritersWaiting - Number of writers waiting for the lock
heldCount - Number of times the writer has held this lock
writer - The writer with the lock, or null

Lab 12: Monitors

Intro Concurrency Mutual Exclusion Condition Variables Reentrant Read / Write Locks

The End + Thank You

It has been a pleasure working with all of you this semester. Best
of luck on all your future endeavors, and thanks for coming to lab.

Jonathan Gabor, Jonah Huang, Noah Schiff, Jake Silver, Michael Xing, James Zhang, Sean Zhang

Lab 12: Monitors

	Intro Concurrency
	Mutual Exclusion
	Condition Variables
	Reentrant Read / Write Locks
	

