
Iterator Review Simple Example Harder Example Exercise

Credit: Reddit user u/mkawia

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

Lab 8: Iterators
CS 2112 Fall 2022

October 28 / 30, 2024

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

Motivation

Often we want to loop over all the elements in a collection:

1 for(int i = 0; i < a.length; i++) {

2 Object element = a[i];

3 // Do something with element

4 }

But this is cumbersome, especially if the collection does not allow
for easy random access. Imagine running the same on a linked list.

1 for(int i = 0; i < a.size (); i++) {

2 // With linked lists , get() is an O(n) operation!

3 Object element = a.get(i);

4 // Do something with element

5 }

This simple loop becomes O(n2)

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

Iterator Pattern

What we want is an efficient way to go through all the elements in
a collection, independent of the collection’s implementation. Of
course, as with all problems in computer science, the solution is to
introduce another abstraction.
We can design an iterator object that handles the details of
actually getting the individual elements out of the collection. All it
needs to provide to the user is the ability to check whether
elements are left, and if so, to get the next one.

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

Interfaces

This leads to the following interface for the iterator:

1 interface Iterator <T> {

2 boolean hasNext ();

3 T next ();

4 }

And for the collection we can iterate over:

1 interface Iterable <T> {

2 Iterator <T> iterator ();

3 }

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

Usage

You can use iterators directly:

1 Iterator <T> i = a.iterator ();

2 while(i.hasNext ()) {

3 T element = i.next ();

4 // Process element

5 }

But Java provides convenient syntactic sugar for Iterable

collections:

1 for(T element : a) {

2 // Process element

3 }

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

An Unhelpful Analogy

Figure: http://www-inst.eecs.berkeley.edu/∼cs61a/su14/

Lab 8: Iterators

http://www-inst.eecs.berkeley.edu/~cs61a/su14/

Iterator Review Simple Example Harder Example Exercise

Pitfalls to Avoid

ConcurrentModificationException

1 for(int x : lst) {

2 lst.remove(x); // bad bad bad

3 }

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

Linked List Iterator

Say we have a singly linked list we’d like to build an iterator for:

1 public class LinkedList <T> implements Iterable <T> {

2 Node head;

3 // ... other methods here

4 private class Node {

5 Node next;

6 T value;

7 }

8

9 @Override

10 public Iterator <T> iterator () {

11 // TODO make this

12 return new LinkedListIterator ();

13 }

14 }

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

Implementation

Create an inner class called LinkedListIterator and keep track of
the next unvisited node.

1 class LinkedListIterator implements Iterator <T> {

2 /** Next node to visit (unvisited) */

3 Node next;

4 public LinkedListIterator () {

5 next = head;

6 }

7 public boolean hasNext () {

8 return next != null;

9 }

10 public T next() {

11 if (! hasNext ()) { throw new NSEE (); }

12 Node curr = next;

13 next = next.next;

14 return curr.value;

15 }

16 }
Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

Binary Search Tree

Assume we have a binary search tree where each node also has a
backpointer to its parent. How could we build an iterator for this
tree?

▶ How to impose order?

▶ How to avoid duplicating work and wasting memory?

▶ How to keep track of state?

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

Approach

For a binary search tree, an in-order traversal returns elements in
order, so that makes the most sense.
Since next() has to call hasNext() anyways, it makes sense to do all
the traversal work inside hasNext().
An in-order traversal has four states:

1. The left subtree is unvisited (as is everything else)

2. The left subtree is visited (but the current node is unvisited)

3. The right subtree is unvisited (but everything else is)

4. Everything rooted at this node is visited (at which point we’d
want to move up to the previous parent node)

An obvious design pattern to use would be to create a finite state
machine with these four states.

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

Left Unvisited State

1 while (!node.left.isEmpty ()) {

2 node = node.left;

3 }

4 state = SELF_UNVISITED;

Left

Unvisited

Self

UnvisitedTraverse left child to bottom

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

Self Unvisited State

1 state = RIGHT_UNVISITED;

2 return node.value

Self

Unvisited

Right

UnvisitedVisit node

Note this is the only state transition that happens inside the next()

method, not inside hasNext()

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

Right Unvisited State

1 if (node.right.isEmpty ()) {

2 state = ALL_VISITED;

3 } else {

4 node = node.right;

5 state = LEFT_UNVISITED;

6 }

Right

Unvisited

Left

Unvisited

All

Visited

Traverse right child

No right child

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

All Visited State

1 Node child = node;

2 while (node.left != child) {

3 child = node;

4 node = node.parent;

5 if (node.isEmpty ()) {

6 return false;

7 }

8 }

9 state = SELF_UNVISITED;

All

Visited

Self

UnvisitedMove up until coming from left child

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

State Transition Diagram

Left Unvisited Self Unvisited Right Unvisited All Visited
Traverse left

child to bottom
Visit No right child

Move up until coming from left child

Traverse right child

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

Code

1 boolean hasNext () {

2 // Do all that state transition stuff

3 return true;

4 }

5 T next() {

6 if (! hasNext ()) {

7 throw new NoSuchElementException ();

8 }

9 state = RIGHT_UNVISITED;

10 return node.value;

11 }

See the exercise files for today’s lab for the full solution.

Lab 8: Iterators

Iterator Review Simple Example Harder Example Exercise

Exercise

Download the exercise from the course website under lab 8.

You will be implementing an iterator over an InputStream.

You may not use the available(), mark(), and reset() methods. In
fact, the solution code only uses the read() method on the
underlying stream.

Lab 8: Iterators

	Iterator Review
	Simple Example
	Harder Example
	Exercise

