
Basic Patterns Java Bonus

Credit: Randall Munroe xkcd.com

Lab 7: Regular Expressions

https://www.xkcd.com/1313/

Basic Patterns Java Bonus

Lab 7: Regular Expressions
CS 2112 Fall 2024

October 21 / 23, 2024

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Announcements

▶ Congratulations on finishing the prelim!

▶ A4 design doc feedback released

▶ A4 due Tuesday, Oct 29

▶ TA evaluations due Friday, Oct 25

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Regex Overview

▶ Regular Expressions, also known as ‘regex’ or ‘regexps’ are a
common scheme for pattern matching in strings

▶ A regular expression is represented as a single string and
defines a set of matching strings

▶ The set of strings matched by a regex is the language of the
regular expression.

▶ Example: the language of (a|b)c? is {a, b, ac, bc}.

Lab 7: Regular Expressions

Basic Patterns Java Bonus

The simplest regex

▶ The simplest regular expression is just a string

▶ The regex CS2112 matches only the string “CS2112” (that is,
its language is the singleton set {CS2112}).

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Concatenation and Alternation

▶ The concatenation AB of two regular expressions A and B
matches all strings with a first part matched by A followed by
a second part matched by B.
▶ Regex ab is really just the concatenation of a and b.

▶ The alternation A|B of regexes A and B matches any string
that is matched by either A or B.
▶ Regex hello|goodbye matches both hello and goodbye.
▶ Regex d(aa|bb)c matches both daac and dbbc.

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Quantifiers

▶ a* matches any number of a’s, including the empty string: its
language is {ε, a, aa, . . .} where ε denotes the empty string.

▶ (ab)* matches any number of ab’s, including the empty
string: its language is {ε, ab, abab, . . .}
▶ Precedence: ab* matches an a followed by any number of b’s:

“a”, “ab”, “abb”, etc.

▶ (ab)+ matches one or more ab’s. (Same as ab(ab)*)

▶ (ab)? matches “ab” or the empty string. (Same as ab|)

▶ 0{3} matches 000

▶ 0{3,5} matches 000, 0000, or 00000

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Character classes

▶ Character classes specify a set of characters to match against:
syntactic sugar for alternation.

▶ [1] is a trivial class that behaves just like “1”.

▶ [01] matches 0 or 1 but not 01. This is the same as 0|1.

▶ [01]{2} matches 00, 11, 01, or 10

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Character classes

Ranges let you match sets of consecutive characters without typing
them all out:

▶ [a-z] matches any lowercase letter, [a-z]+ any lowercase
word.

▶ [0-9] matches any digit.

▶ [A-Za-z] matches any lowercase or uppercase letter

▶ Note that there are ASCII characters between Z and a, so
[A-z] will also match characters like [, ^, etc.

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Negation

▶ The ˆ character beginning a character class is the logical
negation operator

▶ [^0] matches any character but 0

▶ [^abc] matches any character but abc

▶ [^a-z] matches any character but lowercase letters

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Predefined Character classes

▶ Predefined character classes are shorthand for commonly used
character classes

▶ In most cases the capital letter is the negation of the lowercase

▶ \d = [0-9], \D = [^0-9]

▶ \s matches white space. Same as [\n\r\t\f]. (\f: form
feed, page break)

▶ \w matches “word” characters, basically not whitespace and
punctuation. Same as [a-zA-Z0-9].

▶ . matches anything but a newline. This is super useful.

▶ There are a lot of these, fortunately the internet knows all of
them!

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Combinations

▶ Character classes and Quantifiers mix to give useful
expressions

▶ [a-z]* matches any number of consecutive lowercase
characters, or the empty string

▶ [0-9]+ matches all numbers (that may or may not have
leading 0s)

▶ \d{3} matches all three digit numbers (that may or may not
have leading 0s)

▶ .* matches all lines

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Groups

▶ Groups allow a section of the expression to be remembered for
later

▶ Use parentheses for grouping

▶ \1 matches the substring captured by the first capture group,
\2 matches the substring captured by the second capture
group, etc.

▶ (0|1) matches 0 or 1

▶ (0|1):\1 matches 1:1 or 0:0 but not 0:1

▶ (\d):\1 matches 1:1 or 7:7 but not 2:3

▶ We’ll see later that groups can be captured and extracted to
do something useful after matching.

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Anchoring

▶ ˆ (when not used in a character class) matches the beginning
of a string

▶ $ matches the end of a string
▶ Anchors are used to constrain or ”anchor” a regex to the

beginning or end of a string
▶ ^[A-Z]*$ matches entire strings that consist only of capital

letters

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Escapes

▶ regex uses the standard escape sequences like \n, \t, \\
▶ Characters normally used in quantifiers and groups must also

be escaped

▶ This includes \+ \(\. \^ among others.

▶ For example, A+ matches one or more As, but A\+ matches A+.

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Examples

▶ Multiple combinations start to get at the real power of regex

▶ [a-h][1-8] matches all squares on a chess board

▶ [A-Z][a-z]* [A-Z][a-z]* matches a properly capitalized
first and last name (unless you have a name like O’Brian or
McNeil)

▶ java\.util\.[^(Scanner)].* matches things disallowed on
A3.

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Exercise

▶ Write a regex to match Cornell netIDs. (A netID has 2 or 3
lowercase letters followed by a string of 1 or more digits.)

▶ Write a regex to match all even numbers (positive, negative,
or 0). Only numbers that do not start with a zero (unless the
number is 0) should be matched.

▶ Challenge: Write a regex to match all strings of the form
{0n1n : n ∈ N} (n zeros followed by n ones for all natural
numbers n).

▶ Note: You can use https://regexr.com/ or
https://regex101.com/ to test your regex on various strings.

Lab 7: Regular Expressions

https://regexr.com/
https://regex101.com/

Basic Patterns Java Bonus

Answers

▶ Write a regex to match Cornell netIDs. (A netID has 2 or 3
lowercase letters followed by a string of 1 or more digits.)
▶ Answer: [a-z]{2,3}\d+

▶ Write a regex to match all even numbers (positive, negative,
or 0). Only numbers that do not start with a zero (unless the
number is 0) should be matched.
▶ Answer: -?([1-9]\d*)?[02468]
▶ Don’t want -0? Try

([1-9]\d*)?[02468]|-[2468]|-([1-9]\d*)[02468]
▶ Write a regex to match all strings of the form {0n1n : n ∈ N}.

▶ This is impossible due to the Pumping Lemma!! Why?
Take CS 2800 to find out!

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Answers

▶ Write a regex to match Cornell netIDs. (A netID has 2 or 3
lowercase letters followed by a string of 1 or more digits.)
▶ Answer: [a-z]{2,3}\d+

▶ Write a regex to match all even numbers (positive, negative,
or 0). Only numbers that do not start with a zero (unless the
number is 0) should be matched.
▶ Answer: -?([1-9]\d*)?[02468]
▶ Don’t want -0? Try

([1-9]\d*)?[02468]|-[2468]|-([1-9]\d*)[02468]

▶ Write a regex to match all strings of the form {0n1n : n ∈ N}.
▶ This is impossible due to the Pumping Lemma!! Why?

Take CS 2800 to find out!

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Answers

▶ Write a regex to match Cornell netIDs. (A netID has 2 or 3
lowercase letters followed by a string of 1 or more digits.)
▶ Answer: [a-z]{2,3}\d+

▶ Write a regex to match all even numbers (positive, negative,
or 0). Only numbers that do not start with a zero (unless the
number is 0) should be matched.
▶ Answer: -?([1-9]\d*)?[02468]
▶ Don’t want -0? Try

([1-9]\d*)?[02468]|-[2468]|-([1-9]\d*)[02468]
▶ Write a regex to match all strings of the form {0n1n : n ∈ N}.

▶ This is impossible due to the Pumping Lemma!! Why?
Take CS 2800 to find out!

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Java.lang.String

The easiest way to start using regular expressions in Java is
through methods provided by the String class. Two examples are
”String.split(String)” and ”String.replaceAll(String,String)”.

1 String alumni = "Ted&Ashneel&Sam&Michael&Sam";

2

3 String [] arr = alumni.split("&");

4 for(String s : arr){ System.out.println(s);}

5

6 System.out.println(alumni.replaceAll("[^&]+&", "Sam&"));

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Java.util.regex

▶ More powerful operations are unlocked by the
Java.util.regex package.

▶ There are two main classes in this package: Pattern and
Matcher

▶ Pattern objects represent regex patterns, and they have a
method to return a Matcher that allows the pattern to be
used.

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Java.util.regex.Pattern

▶ The Pattern object has no public constructor and instead
has a compile method that returns a Pattern object.

▶ Note that you must escape your backslashes when coding
literals

1 Pattern p1 = Pattern.compile("[a-z]{2 ,3}\\d+");

2 Pattern p2 = Pattern.compile("\\\\");

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Java.util.regex.Matcher

▶ The matcher method inside Pattern allows you to get a
Matcher object set to match on a specific string.

1 Pattern p1 = Pattern.compile("[a-z]{2 ,3}\\d+");

2 Matcher m1 = p1.matcher("acm22");

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Java.util.regex.Matcher

▶ The principal operations of the Matcher are matches and
find. matches returns true if the entire string matches the
pattern, find returns true if any part of the string matches
the pattern
▶ Anchors are useful: We can find abc in abcd, but we cannot

find abc$ in abcd.

▶ Matcher also has methods for operations such as replacement
or group capturing.

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Input checking

1 public boolean isUpperLevelCS(String course){

2 Pattern p = Pattern.compile("CS [456]\\d{3}");

3 Matcher m = p.matcher(course);

4 return m.matches ();

5 }

This example isn’t very powerful, what else can we do?

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Capture example

Here is another example this time used to capture a match:

1 Pattern p1 = Pattern.compile("([a-z]{2 ,3}\\d+)@.+");

2 Matcher m = p1.matcher("acm22@cornell.edu");

3 m.matches ();

4 System.out.println("NetID: " + m.group (1));

This starts to get at the real utility of regex, but this rabbit hole
goes much deeper than we have time for.

Lab 7: Regular Expressions

Basic Patterns Java Bonus

An example in my own project!

Credit: James’s Chess Project

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Challenge: Command line parsing

▶ Regex can be used to parse command line or console inputs,
capturing can be used to grab the different tags and access
them

▶ Write a calculator using regex that takes commands of the
form:
num op num or op num num

where num represents a positive decimal number (with or
without a decimal point) and op is the operation, one of +,
-, *, / or %.

▶ Parse the input and then print the result of the math.
Implement it as a console application, because command line
parses whitespace.

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Kleene’s Theorem

▶ Kleene’s Theorem: A language is regular if and only if it can
be recognized by a finite automaton.

▶ What are finite automata? Why is this true? Take CS 2800 to
find out!

Credit: Wikipedia

Lab 7: Regular Expressions

Basic Patterns Java Bonus

Exercise: Regex Crossword

https://regexcrossword.com/

Lab 7: Regular Expressions

https://regexcrossword.com/

	Basic Patterns
	Java
	Bonus

