REGEX GOLF:
YOU TRY To MATCH ONE
GRouP BOT NOT THE OTHER.

/n I [mJIB/ MATCHES
Norsmﬁm

=)

i

[META-REGEX GOLF:}— [META-META-REGEX GOLF:) ... AND BEYOND: |——
50 T LJROTE A PROGRAM | | ... BUT I LOST MY CODE, ReAWY, THIS 15 ALL
THAT PLAYS REGEXGOLF | | 50 TM GREPPNG FOR | [/(META)*REGEX GoLF/,
WITH ARBITRARY LISTS... | | FILES THAT LOOK LIKE NOLIYOU HAVE

HOH... REGEX GOLF SOLVERS. INGMITE PROBLENS.
N No, T HAD \
K THOSE ALREADY. K

Lab 7: Regular Expressions

Credit: Randall

Munroe xkcd.com

https://www.xkcd.com/1313/

Lab 7: Regular Expressions
CS 2112 Fall 2024

October 21 / 23, 2024

Lab 7: Regular Expressions

Announcements

» Congratulations on finishing the prelim!
> A4 design doc feedback released

» A4 due Tuesday, Oct 29

» TA evaluations due Friday, Oct 25

Lab 7: Regular Expressions

Regex Overview

P> Regular Expressions, also known as ‘regex’ or ‘regexps’ are a
common scheme for pattern matching in strings

P> A regular expression is represented as a single string and
defines a set of matching strings

> The set of strings matched by a regex is the language of the
regular expression.

» Example: the language of (alb)c? is {a,b,ac,bc}.

Lab 7: Regular Expressions

Basic Patterns
©0000000000000

The simplest regex

» The simplest regular expression is just a string

» The regex CS2112 matches only the string “CS2112" (that is,
its language is the singleton set {CS2112}).

Lab 7: Regular Expressions

Basic Patterns
0@000000000000

Concatenation and Alternation

» The concatenation AB of two regular expressions A and B
matches all strings with a first part matched by A followed by
a second part matched by B.
» Regex ab is really just the concatenation of a and b.
» The alternation A| B of regexes A and B matches any string
that is matched by either A or B.
P> Regex hello|goodbye matches both hello and goodbye.
» Regex d(aalbb)c matches both daac and dbbc.

Lab 7: Regular Expressions

Basic Patterns
00@00000000000

Quantifiers

P> ax matches any number of a's, including the empty string: its
language is {¢, a, aa, ...} where € denotes the empty string.

» (ab)* matches any number of ab's, including the empty
string: its language is {¢, ab, abab, ...}
» Precedence: ab* matches an a followed by any number of b's:
“a” “ab’ “abb’. etc.

(ab)+ matches one or more ab’s. (Same as ab(ab) *)
(ab)? matches “ab” or the empty string. (Same as ab|)
0{3} matches 000

0{3,5} matches 000, 0000, or 00000

vvyYyy

Lab 7: Regular Expressions

Basic Patterns
000@0000000000

Character classes

» Character classes specify a set of characters to match against:
syntactic sugar for alternation.

> [1] is a trivial class that behaves just like “1".
» [01] matches 0 or 1 but not 01. This is the same as 0] 1.
» [011{2} matches 00, 11, 01, or 10

Lab 7: Regular Expressions

Basic Patterns
0000@000000000

Character classes

Ranges let you match sets of consecutive characters without typing
them all out:

» [a-z] matches any lowercase letter, [a-z]+ any lowercase
word.

» [0-9] matches any digit.
» [A-Za-z] matches any lowercase or uppercase letter

> Note that there are ASCII characters between Z and a, so
[A-z] will also match characters like [, =, etc.

Lab 7: Regular Expressions

Basic Patterns
00000@00000000

Negation

» The ™ character beginning a character class is the logical
negation operator

» [~0] matches any character but 0
» [“abc] matches any character but abc

> ["a-z] matches any character but lowercase letters

Lab 7: Regular Expressions

Basic Patterns
000000@0000000

Predefined Character classes

» Predefined character classes are shorthand for commonly used
character classes

» In most cases the capital letter is the negation of the lowercase

> \d = [0-9], \D = [~0-9]

» \s matches white space. Same as [\n\r\t\f]. (\f: form
feed, page break)

» \w matches “word” characters, basically not whitespace and
punctuation. Same as [a-zA-Z0-9_].

» . matches anything but a newline. This is super useful.

» There are a lot of these, fortunately the internet knows all of
them!

Lab 7: Regular Expressions

Basic Patterns
0000000@000000

Combinations

» Character classes and Quantifiers mix to give useful
expressions

» [a-z]* matches any number of consecutive lowercase
characters, or the empty string

» [0-9]+ matches all numbers (that may or may not have
leading Os)

» \d{3} matches all three digit numbers (that may or may not
have leading 0s)

» . x matches all lines

Lab 7: Regular Expressions

Basic Patterns
00000000800000

Groups

» Groups allow a section of the expression to be remembered for
later

» Use parentheses for grouping

v

\1 matches the substring captured by the first capture group,
\2 matches the substring captured by the second capture
group, etc.

(011) matches 0 or 1
(011) :\1 matches 1:1 or 0:0 but not 0:1
(\d) :\1 matches 1:1 or 7:7 but not 2:3

We'll see later that groups can be captured and extracted to
do something useful after matching.

vvyyy

Lab 7: Regular Expressions

Basic Patterns
000000000e0000

Anchoring

» “ (when not used in a character class) matches the beginning
of a string

» $ matches the end of a string

» Anchors are used to constrain or "anchor” a regex to the
beginning or end of a string

» ~[A-Z]*$ matches entire strings that consist only of capital
letters

Lab 7: Regular Expressions

Basic Patterns
0000000000e000

Escapes

> regex uses the standard escape sequences like \n, \t, \\

» Characters normally used in quantifiers and groups must also
be escaped

» This includes \+ \ (\. \~ among others.

» For example, A+ matches one or more As, but A\+ matches A+.

Lab 7: Regular Expressions

Basic Patterns
00000000000e00

Examples

> Multiple combinations start to get at the real power of regex

» [a-h] [1-8] matches all squares on a chess board

> [A-Z] [a-z]* [A-Z] [a-z]* matches a properly capitalized
first and last name (unless you have a name like O'Brian or
McNeil)

» java\.util\. [~ (Scanner)].* matches things disallowed on
A3.

Lab 7: Regular Expressions

Basic Patterns
0000000000000

Exercise

» Write a regex to match Cornell netlDs. (A netlD has 2 or 3
lowercase letters followed by a string of 1 or more digits.)

» Write a regex to match all even numbers (positive, negative,
or 0). Only numbers that do not start with a zero (unless the
number is 0) should be matched.

» Challenge: Write a regex to match all strings of the form
{0"1" : n € N} (n zeros followed by n ones for all natural
numbers n).

» Note: You can use https://regexr.com/ or
https://regex101.com/ to test your regex on various strings.

Lab 7: Regular Expressions

https://regexr.com/
https://regex101.com/

Basic Patterns
0000000000000e

Answers

» Write a regex to match Cornell netlDs. (A netID has 2 or 3
lowercase letters followed by a string of 1 or more digits.)

> Answer: [a-z]{2,3}\d+

Lab 7: Regular Expressions

Basic Patterns
0000000000000e

Answers

» Write a regex to match Cornell netlDs. (A netID has 2 or 3
lowercase letters followed by a string of 1 or more digits.)
> Answer: [a-z]{2,3}\d+
» Write a regex to match all even numbers (positive, negative,
or 0). Only numbers that do not start with a zero (unless the
number is 0) should be matched.
> Answer: -7 ([1-9]\d*) 7 [02468]
» Don't want -07 Try
([1-91\d*)7[02468] | -[2468] | - ([1-9]\d*) [02468]

Lab 7: Regular Expressions

Basic Patterns
0000000000000e

Answers

» Write a regex to match Cornell netlDs. (A netID has 2 or 3
lowercase letters followed by a string of 1 or more digits.)

> Answer: [a-z]{2,3}\d+
» Write a regex to match all even numbers (positive, negative,

or 0). Only numbers that do not start with a zero (unless the
number is 0) should be matched.

> Answer: -7 ([1-9]\d*) 7 [02468]
» Don't want -07 Try

([1-91\d*)7[02468] | -[2468] | - ([1-9]\d*) [02468]
» Write a regex to match all strings of the form {0"1" : n € N}.

» This is impossible due to the Pumping Lemma!! Why?
Take CS 2800 to find out!

Lab 7: Regular Expressions

Java
©00000000

Java.lang.String

The easiest way to start using regular expressions in Java is
through methods provided by the String class. Two examples are

" String.split(String)” and " String.replaceAll(String,String)" .

String alumni = "Ted&Ashneel&Sam&Michael&Sam";

String[] arr = alumni.split("&");
for(String s : arr){System.out.println(s);}

o o A~ W N R

System.out.println(alumni.replaceAll (" ["&]+&", "Sam&"))

Lab 7: Regular Expressions

Java
0®0000000

Java.util.regex

» More powerful operations are unlocked by the
Java.util.regex package.

» There are two main classes in this package: Pattern and
Matcher

P> Pattern objects represent regex patterns, and they have a
method to return a Matcher that allows the pattern to be
used.

Lab 7: Regular Expressions

Java
00@000000

Java.util.regex.Pattern

» The Pattern object has no public constructor and instead
has a compile method that returns a Pattern object.

> Note that you must escape your backslashes when coding
literals

1 |Pattern pl = Pattern.compile("[a-z]{2,3}\\d+");
> | Pattern p2 Pattern.compile ("\\\\");

Lab 7: Regular Expressions

Java
000®00000

Java.util.regex.Matcher

» The matcher method inside Pattern allows you to get a
Matcher object set to match on a specific string.

1 |Pattern pl = Pattern.compile("[a-z]{2,3}\\d+");
2 |Matcher ml = pl.matcher ("acm22");

Lab 7: Regular Expressions

Java
0000@0000

Java.util.regex.Matcher

» The principal operations of the Matcher are matches and
find. matches returns true if the entire string matches the
pattern, £ind returns true if any part of the string matches
the pattern

» Anchors are useful: We can find abc in abcd, but we cannot
find abc$ in abcd.

> Matcher also has methods for operations such as replacement
or group capturing.

Lab 7: Regular Expressions

Java
000008000

Input checking

public boolean isUpperLevelCS(String course){
Pattern p = Pattern.compile("CS[456]\\d{3}");
Matcher m = p.matcher (course);
return m.matches ();

[N S I

}

This example isn't very powerful, what else can we do?

Lab 7: Regular Expressions

Java
00000000

Capture example

Here is another example this time used to capture a match:

1 |Pattern pl = Pattern.compile("([a-z]{2,3}\\d+)@.+");
2 |Matcher m = pl.matcher("acm22@cornell.edu");

3 |m.matches ();

4 | System.out.println("NetID: " + m.group(1l));

This starts to get at the real utility of regex, but this rabbit hole
goes much deeper than we have time for.

Lab 7: Regular Expressions

Java
000000080

An example in my own project!

String regex = "A((2<pawnQuiet>[a-h][1-81)|" +
"(?<pawnCapture>[a-hlx[a-h][)"+
"(?<regular>[KQRBN] (?<startFile>[a-h]?) (?<startRank>[1-8]?) (?<capture>x?)[a-h]1[1-81)|" +

"(?2<prom>[a-h][DI+
"(2<promCapture>[a-h]x[a-h]1[18]=[QRBN]) |" +
"(?<castleK>0)-0) | " +

"(?<castleQ>0-0-0|0-0-0)) (2<check>\\+?) (2<mate>#?)$";

Credit: James's Chess Project

Lab 7: Regular Expressions

Java
00000000e

Challenge: Command line parsing

P Regex can be used to parse command line or console inputs,
capturing can be used to grab the different tags and access
them

» Write a calculator using regex that takes commands of the
form:
num op num OfF Op num num
where num represents a positive decimal number (with or
without a decimal point) and op is the operation, one of +,
-, *, [or.

» Parse the input and then print the result of the math.
Implement it as a console application, because command line
parses whitespace.

Lab 7: Regular Expressions

Kleene's Theorem

» Kleene’s Theorem: A language is regular if and only if it can
be recognized by a finite automaton.

» What are finite automata? Why is this true? Take CS 2800 to
find out!

1 1

("~
~@

Credit: Wikipedia

Lab 7: Regular Expressions

Bonus
oe

Exercise: Regex Crossword

https://regexcrossword.com/

Lab 7: Regular Expressions

https://regexcrossword.com/

	Basic Patterns
	Java
	Bonus

