COMMENT DATE
CREATED MAIN LOOP & TIMING CONTROL.
ENABLED CONFIG FiLE PARSING
MISC BUGFIXES
CODE ADDITIONS/EDITS
MORE CODE
HERE HAVE CODE.
ARAPAARA

ADKFISLKDFISDKLFT
MY HANDS ARE TYPING WORDS
HARARARAAANDS
AS A PROJECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

Comic Credit: Randall Munroe, xkcd.com

Lab 5/6: Version Control


https://www.xkcd.com

Lab 5/6: Version Control
CS 2112 Fall 2025

September 29 / October 8, 2025

Lab 5/6: Version Control



Why Version Control?

You're emailing your project back and forth with your partner. An
hour before the deadline, you and your partner both find different
bugs and work feverishly to correct them. When you try to submit,
you find that you have two different versions of the code, and you
don't have enough time to figure out who changed what, how to
merge them together into one final project, and what, if any, bugs
were introduced along the way!

Lab 5/6: Version Control



Part 0: Git-ing Started
©000

One-Time Setup

Download Git

First, if necessary download and install Git (follow the instructions
for your OS) https://git-scm.com/downloads

The Git CLI is a powerful tool, but you prefer a graphical interface,
IntelliJ comes with a Git client built-in, and is sufficient for most
use-cases covered in this class.

Note Cornell requires the use of SSH. If you are on Windows, Git
Credential Manager will automatically let you authenticate via the
browser, but on macOS and Linux, if you are not comfortable with
SSH keys, we recommend using IntelliJ instead.

Lab 5/6: Version Control


https://git-scm.com/downloads

Part 0: Git-ing Started
000

One-Time Setup

Configure Git (Terminal)

If you're using git on the terminal, enter the following two
commands to set up your name and email:

1 |git config --global user.name "<Your Name>"
2 | git config --global user.email <netid>@cormnell.edu

Lab 5/6: Version Control



Part 0: Git-ing Started
00®0

One-Time Setup

Configure IntelliJ Git

If you're using IntelliJ, choose File > New > Project from Version
Control

On the following screen, choose GitHub Enterprise. Enter
github.coecis.cornell.edu as the server, and click " Generate” next
to the token field.

Your browser should open to the Cornell GitHub page. Set an
expiration date late enough to cover the end of this class
(December should work) and click " Generate token.”

Copy the token from the resulting page and paste it back into
IntelliJ.

Lab 5/6: Version Control



Part 0: Git-ing Started
oooe

One-Time Setup

SSH

For CLI users, the newest version of Git on Windows should come
with Git Credential Manager, which will automatically prompt you
to log in.

Otherwise, please follow these instructions to add an SSH key to
your Cornell GitHub account.

Lab 5/6: Version Control


https://docs.github.com/en/enterprise-cloud@latest/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account?platform=mac

Part 0: Git-ing Started
©0000

Creating a Repository

Repository

Git calls a project a “repository”.
Go to https://github.coecis.cornell.edu and login with your netid
to get started.

Note: for future assignments in this class, we will be assigning you a
repository.

Lab 5/6: Version Control


https://github.coecis.cornell.edu

Part 0: Git-ing Started
00000

Creating a Repository

Creating the Repository

Click the plus sign in the top right to make a new repository. Enter
a repository name, choose “Private” for privacy, and check
“Initialize with a README.”

VERY IMPORTANT: You MUST remember to make your
repositories private. Academic integrity is enforced very strictly at
Cornell and you do not want to open yourself to potential liability.

Lab 5/6: Version Control



Part 0: Git-ing Started
[e]e] Tele]

Creating a Repository

Adding Collaborators

From the repository’s main page, choose
“Settings’ — "Collaborators” and enter their Cornell emails.
Your partner should then be able to see the repo listed on the
home page if they refresh.

Lab 5/6: Version Control



Part 0: Git-ing Started
0000

Creating a Repository

Cloning a Repo (IntelliJ)

Both partners should clone the repo.

Choose File > New > Project from Version Control.

Select GitHub Enterprise, choose your repo name, and then click
Clone.

Lab 5/6: Version Control



Part 0: Git-ing Started
0000e

Cloning a Repo (CLI)

From the repository’'s main page, click the green “Code” button.
Copy the provided link.

Lab03Demo o

cd to the directory you want and then run git clone <PASTE>
(where <PASTE> is where you paste the link from the last slide).
Then, open the resulting folder in IntelliJ as a normal project like
any other.

Lab 5/6: Version Control



Part 1: Essential Basics
©00000

Workflow

The Workflow

To get your code to your partner’'s computer, there are three main
steps.

1) Commit - Tell Git about your changes
2) Push - Send your changes up to the server

3) Pull - Your partner gets changes down from the server

Lab 5/6: Version Control



Part 1: Essential Basics
0®0000

Workflow

1) Commit

To demonstrate, create a file with some text in it.

On terminal, run git add <filename> followed by

git commit -m "Commit Message".

In IntelliJ, when asked if you want to add the file, click yes. Then,
in the Git tab, check the box next to your file under the " Changes”

list, type a commit message, and choose Commit (or Commit and
Push).

Lab 5/6: Version Control



Part 1: Essential Basics
008000

Workflow

1) Commit (Add vs. Commit)

Why two separate steps?

By default, Git doesn’t see anything until you tell it to.

The first step of "adding” (or "staging”) your changes tells Git to
notice that you've changed a file (and moves it from what's called
your "Working Directory” to the " Staging Area”).

Then, when you "commit” the change, Git confirms those changes
into your repository.

This way, you can pick and choose what you want to commit,
adding only finished work and leaving work-in-progress files in your
working directory.

Lab 5/6: Version Control



Part 1: Essential Basics
000800

Workflow

2) Push

Send your changes to the server.

On terminal, run git push
In IntelliJ, choose Git > Push (if you didn't click " Commit and
Push” in the last step) and then click the Push button.

Lab 5/6: Version Control



Part 1: Essential Basics
000080

Workflow

3) Pull

Your partner can now get your changes on their machine.

On terminal, run git pull
In IntelliJ, choose Git > Pull and then click the Pull button.

Lab 5/6: Version Control



Part 1: Essential Basics
00000e

Workflow

Basic Workflow

You now have the bare minimum needed to get work done with
Git. If you remember nothing else from this presentation, at least
remember this.

Knowledge Check

Say you just came back from dinner and you sit down at your
computer to resume work on a project you and your partner have
been working on. What is the first step you should do?

Answer: Pull! You want to make sure you have your partner’s
latest changes before you start working again.

Lab 5/6: Version Control



Part 1: Essential Basics

@00

Version Control Basics

What is Version Control?

Pulling back a bit, Git is software that keeps track of and controls
various versions of your code (hence, "Version Control”).

Version Control allows multiple people to work on a project
simultaneously by keeping versioned copies of each file in your
project for each edit that you make. This makes it easy to:

» Revert files back to a previous state if you make a mistake.
P> Look over any changes made by you or your collaborators.
» Recover any files if they are lost.

> Merge changes between multiple people’s contributions

Lab 5/6: Version Control



Part 1: Essential Basics

(e] le}

Version Control Basics

What's a Commit?

Every time you commit your code, you create a snapshot of your
code in time.
These snapshots form a linear chain of history, like a linked list.

class Hello {

class Hello {
void main() {

}

class Hello {
void main() {

}

int compute() {

}

Lab 5/6: Version Control




Part 1: Essential Basics
ooe

Version Control Basics

Git is Complicated

It's actually a bit more THSI5 GIT. 1T TRACKS COLLABORATIVE LORK
. ON PROJECTS THROUGH A BEAUTIFUL
complicated, because when you DISTRBUTED GRAPH THEORY TREE MODEL.
. . . Co0L. HOU DO LJE USE IT?
start branching, it turns into a o 106 6T MEMORE TESE. SHELL
. AND d
tree, and then you start merging vt Cor ERoRS SR,
) ELSELHERE, DELETE THE PROJECT,
and it's a graph, and the whole PND DOLKLORD A FRESHCOPY.

thing is beautiful and also not
something you need to worry

about right this moment. % %

Comic Credit: Randall Munroe, xkcd.com

Lab 5/6: Version Control


https://www.xkcd.com

Part 2: Common Usage
°0

Merging Changes

Automatic Merge

If two people edit different files or different parts of the same
file, the second person to push will fail. Instead, they will first
need to pull the changes.

Git will automatically merge the changes from both users by
creating a new “Merge Commit.”

Then, push again. This time, it should go through.

CLI users, run git pull first.

If it complains about a merge strategy, run git config
--global pull.rebase false then try again.

After the merge, run git push.

Lab 5/6: Version Control



Part 2: Common Usage
oce

Merging Changes

Merge Conflicts

If two people edit the same parts of the same file, then Git will
not be able to automatically merge and you will have a merge
conflict.

» IntelliJ: a window will pop up which displays your changes
compared to those on the server. Click the >> arrows to
accept changes from one side or the other (local or remote).

Or, open the conflicting file and you will see something like this:

1 | <<<<<<< HEAD
2 | Your changes

4 |Partner changes
5 | >>>>>>> 123456789

Git is marking which parts of the file conflict. Just delete what you
don’t want, keep what you do, and then run git commit again.

Lab 5/6: Version Control



Part 2: Common Usage
©0000000

Types of Version Control

Centralized Version Control

So far, you've seen pushing and pulling code from a server.

As such, you may think that version control works by keeping a
"main"” version and history on a server somewhere, and having
individual users work on their portions of it on their machines.
This model is called Centralized Version Control and used to be
popular. Examples of software include Subversion (previously used
by 2112) and Perforce (previously used by Amazon).

Main Server

¢ N

= G-

Partner A Partner B

Lab 5/6: Version Control



Part 2: Common Usage

O®@000000

Types of Version Control
Distributed Version Control

But as you may have guessed by the use of past tense, a new
model called Distributed Version Control has become much
more popular.

In a distributed model, there is no concept of a "main” server.
Everyone keeps a full and complete copy of the entire repository on
their own machines.

Examples include Mercurial (used by Facebook) and Git (used by
almost everyone else).

Partner A Partner B

Lab 5/6: Version Control



Part 2: Common Usage
00®00000

Types of Version Control

Sharing Code w/ Distributed Version Control

In a distributed model, you can set any other repository accessible
over the internet as your "remote” and then you can push and pull
from it to send changes back and forth.

However, especially with larger groups, sending changes between
individual contributors gets hard to manage, so it's conventional to
designate one particular repository as the one everyone pushes and
pulls from.

GitHub is a service that hosts a repository for you, allowing
everyone on your team a convenient place to push and pull from.

Lab 5/6: Version Control



Part 2: Common Usage
00080000

Types of Version Control

Benefits of Distributed Version Control

While this setup ends up looking a lot like Centralized VC, there’s
multiple benefits to distributed version control.

» You can work offline b/c the whole repo is on your machine

» Commands run faster because nothing talks to a server until
you ask it to

» If the server goes down, every individual user has a full backup

» Branching is easier, allowing for better separation of work

Lab 5/6: Version Control



Part 2: Common Usage
00008000

Types of Version Control

Branching

Since a commit in Git is just a snapshot of your code and a pointer
to the previous snapshot in history, it's very easy to create a
"branch” where you diverge from the main history (in fact, every
time you had a merge conflict, a branch was automatically made
behind the scenes).

We don’t require their use in this class, but branches are very
useful especially on larger teams so that different people can work
on different features and commit changes without messing with
the work of others.

In Git CLI, create a new branch with git switch -c <branch name>.
In IntelliJ, click the plus button in the Git window.

Lab 5/6: Version Control



Part 2: Common Usage
00000800

Types of Version Control

Pull Requests

On larger teams, when someone is done with their branch and
wants to request that it be pulled back into the main branch, it's
customary to create a Pull Request.

This is a feature of systems like GitHub that lets others review the
code written and make comments and suggestions before
approving.

When the PR is merged, a new merge commit is added on the
main branch that also points to your branch commits.

(After this, other people with their own branches can either merge
these changes into their branch too, or rebase their branch to
move their commits on top of the new changes).

Lab 5/6: Version Control



Part 2: Common Usage
00000000

Types of Version Control

Merging (details not covered in lab)

You can merge a branch back into another (such as your main
master branch). This creates a new merge commit with two parent
commits.
> IntelliJ: click the branch icon in the bottom right. In the
menu, select the branch to be worked with. A secondary
menu will appear with options to merge.
» Terminal: move to the destination branch, then run

git merge <branch>.

Lab 5/6: Version Control



Part 2: Common Usage
00000008

Types of Version Control

Rebasing (details not covered in lab)

Alternatively, a branch can be rebased, which moves the base of
the branch to a new location.

» IntelliJ: select Git > Rebase and choose which branch to
rebase onto

» Terminal: on the branch to rebase, run

git rebase <destination_branch>.

Lab 5/6: Version Control



Part 3: Advanced Features
°0

Git History

Git Log

Git Log displays a running chronological log of all the commits in

your repository and the changes made.
> IntelliJ: navigate to “Git" in the menu bar, then “Show Git

log".
» Terminal: you can run git log to see the same information.

Lab 5/6: Version Control



Part 3: Advanced Features
oce

Git History

Commit Hash

Each commit is identified by a unique hash (or any unambiguous
prefix of the hash).

» IntelliJ: once the desired commit is selected, the hash is
displayed on the bottom right (it will list: <hash> <author>
<email> <date and time>).

» Terminal: git 1og lists the hash next to the word “commit.”

Lab 5/6: Version Control



Part 3: Advanced Features
©0000000

Useful Features

Checkout

Your current Git state is just a pointer to a node in the graph of all
commits. You can point to a different node by checking out the
other node.

> IntelliJ: Right click a node in the git log and choose
" Checkout”

» Terminal: git checkout <hash>

You can also use this to switch branches. Checkout the latest
commit in your branch to go back to normal.

Lab 5/6: Version Control



Part 3: Advanced Features
0®000000

Useful Features

Revert

You can revert a bad commit to undo its changes.

Note that this is an undo, not a rewind. A revert does not rewind
a repository to its previous state. Instead, it creates a new commit
that does the opposite of the commit you're reverting.

» IntelliJ: right click the commit in the git log and choose
“Revert Commit”

» Terminal: run git revert <hash>.

Lab 5/6: Version Control



Part 3: Advanced Features
00®00000

Useful Features

Git Ignore

» Files and folders to not add to version control
> eg: IDE temporary files (.idea folder)

> _gitignore File
» Goes inside a directory; applies recursively to all subdirectories
» Supports wildcards (*)

Lab 5/6: Version Control



Part 3: Advanced Features
00080000

Useful Features

Stash

Temporarily store changes for later.

» IntelliJ: navigate to “Git" in the menu bar, then
“Uncommitted Changes”. Options to stash will be displayed.

» Terminal: git stash.

Lab 5/6: Version Control



Part 3: Advanced Features
00008000

Useful Features

Diff

Run git diff <commit1> <commit2> to get the difference between
two commits. Use HEAD to represent the current commit.

P IntelliJ: click the green and blue rectangles and the gray
triangles next to the line numbers on the left of the code to
see changes. Or for the full diff, in the toolbar, click the icon
with two blue arrows facing one another (next to the push
button).

dhcp-rhodes-252:1ab@2 benjamingillott$ git diff @9157c44b7cefd41967541d57d453b6BdT33463e HEAD
diff --git a/README.md b/README.md

index 2bcfca7..4f2ce3f 1008644

—-—- a/README.md

+++ b/README.md

e -2,4 +2,4 @@

Useful information is contained within this sentence.

This line was written by B.
-THis line added by mx37

+Testing
dhcp-rhodes-252:1ab@2 benjamingillotts git diff @9157c44b7cefd41967941d570453b6BdT33463e HEAD > git.txt

Version Control




Part 3: Advanced Features
00000800

Useful Features

Blame

Check the last person to edit a particular line in a file.
» IntelliJ: use the “Git” menu, then “Current file", then select
“Annotate with Git blame”.
» Terminal: git blame <file>.

> Alternatively, go to the GitHub website, find your file in the
repo, and click the “Blame” button.

Lab 5/6: Version Control



Part 3: Advanced Features
00000000

Useful Features

Further Reading

Official documentation: https://www.git-scm.com/docs

GitHub cheatsheet: https://github.github.com /training-
kit/downloads/github-git-cheat-sheet.pdf

Lab 5/6: Version Control


https://www.git-scm.com/docs
https://github.github.com/training-kit/downloads/github-git-cheat-sheet.pdf
https://github.github.com/training-kit/downloads/github-git-cheat-sheet.pdf

Part 3: Advanced Features
00000008

Useful Features

Turn on Autoformatting

If you have not yet already, turn on Autoformatting in IntelliJ with
the following steps:

» Open File > Settings
» Select Tools > Actions on Save
» Check the box " Reformat Code”

» Change the dropdown "Whole File” to " Changed Lines" (you
must have a Git repo open to see this option)

Lab 5/6: Version Control



(Optional) Shells
°

Command Line

The following slides were not shown in lab,
but are provided here as a reference.

Lab 5/6: Version Control



(Optional) Shells
€000

The Shell

The shell: a lower-level interface

A shell is a command-line interface to your computer’s operating
system. Less pretty than the GUI interface, more functional.

» Windows: PowerShell, WSL (Windows Subsystem for Linux),
Cygwin (Unix on Windows), or cmd

» Unix (Mac OS X, Linux): sh (bash), zsh

Lab 5/6: Version Control



(Optional) Shells
0000

The Shell

Shell commands

A shell command consists of a program name followed by some
optional command-line arguments. Spaces separate the command
and the arguments from each other.

Examples:

» "rm” (filename) (Windows: "del” (filename)) : remove a file

» "lIs" (directory) (Windows: "dir" (directory)): list contents of
directory

» "echo” (message) : print the message to standard output

» "cat” (filename) (Windows: "type" (filename)) : print the
contents of the file.

» "cd" (directory) : change the current directory (shell built-in
command)

Lab 5/6: Version Control



(Optional) Shells
0000

The Shell

Command context

Every command is executed with some context provided by the
operating system:
» The current directory in which the command runs. All files

accesses are relative to this directory. Note: folders are known
as directories at the operating system level.

» A set of environment variables that can be looked up by the
running program.!

» Standard input and output devices. Normally standard input
reads from the shell's input and output goes to the shell.
However, it is possible to override these. The syntax ">
(filename)” redirects output to the specified file.

1The ShellShock vulnerability exploits a bug in how the "bash” shell handles
environment variables.

Lab 5/6: Version Control



(Optional) Shells
felelel }

The Shell

Pathnames and directories

» Files and directories are specified by pathnames: names
separated by slashes (Unix, Cygwin) or backslashes
(Windows).

» Pathnames starting with a slash (backslash) are absolute and
start from the root of the file system.

P The special directory “." means the current directory, and
“." means the parent directory of the current directory.

”

» To go up a directory: "cd ..
» To go to the root directory: "cd /"
» To list the current directory: "lIs ."”, or just "Is".

Lab 5/6: Version Control



	Part 0: Git-ing Started
	One-Time Setup
	Creating a Repository

	Part 1: Essential Basics
	Workflow
	Version Control Basics

	Part 2: Common Usage
	Merging Changes
	Types of Version Control

	Part 3: Advanced Features
	Git History
	Useful Features

	(Optional) Shells
	The Shell


