"= Function

Meme Credit: Grayson Schultz

Lab 4: Optionals and Lambdas

Lab 4: Optionals and Lambdas
CS 2112 Fall 2025

September 22 / 24, 2025

Lab 4: Optionals and Lambdas

Null
[YeleYolo)

The Billion Dollar Mistake

Dynamic Typing

In dynamically typed languages, no type-checking is performed for
the programmer.

function subtract(a, b) {
return a - b;

}

[I O N I

subtract ("1", 1);

While this has its advantages, it can lead to difficult-to-debug
errors, and thus has been losing popularity in recent years.

Lab 4: Optionals and Lambdas

Null
08000

The Billion Dollar Mistake

Type System

A statically typed language can enforce correct types. Thus, this
entire class of error is impossible to reproduce in a typed language,
as the code would never have compiled.

int subtract(int a, int b) {
return a - b;

}

subtract("1", 1); // TYPE ERROR

String concat(String a, int b) {
return a.concat(b);

}

concat ("1", 1); // ok

© ®© N o U A W N R

Lab 4: Optionals and Lambdas

Null
00@00

The Billion Dollar Mistake

Null

Except...

String concat(String a, int b) {
return a.concat(b);

}

[I N

concat (null, 1);

Null is a magic value that overrides all type-checking and can be
passed in as any type, despite not being an object of that class. As
such, NullPointerExceptions are frequent and difficult to debug.

Lab 4: Optionals and Lambdas

Null
00080

The Billion Dollar Mistake

Regret

“I call it my billion-dollar mistake.
It was the invention of the null reference in 1965."”

- Tony Hoare, inventor of null (and QuickSort)

Lab 4: Optionals and Lambdas

Null
0000e

The Billion Dollar Mistake

Why null?

It can be useful to have an empty value

1| /*x*

2 * Returns middle initial of the given user.
3 */

4 | public char getMiddleInitial ()

It's convenient to use null to represent an empty value, but it's
easy to forget to check

Lab 4: Optionals and Lambdas

Optional
©0000

Optional

Fundamental Theorem of Software Engineering

All problems in computer science can be solved by another level of
indirection (abstraction)

Lab 4: Optionals and Lambdas

Optional
08000

Optional

Optional

» Contains a value, or is empty

> Makes you check when you access the value

Lab 4: Optionals and Lambdas

Optional
0000

Optional

Optional<T> API

1 | public boolean isEmpty () { ... %}
2 |public T get() { ... }

Unfortunately, get() can throw an unchecked exception, which
kind of defeats the point.

Lab 4: Optionals and Lambdas

Optional
0000

Optional

Creating Our Own Abstraction

We'll build our own class, called Maybe<T>.
TODO list:

» Class Signature
» Instance Variables
» Class Invariant

» Constructors

Lab 4: Optionals and Lambdas

Optional
0oo0e

Optional

Basic Setup

Implement the following three methods:

boolean isPresent ()

T get() throws AbsentInformationException

[I N I

T orElse(T other)

You may choose another checked exception for get() to throw if
you wish.

Lab 4: Optionals and Lambdas

Anonymous Functions
©000000000000000

Lambdas

Why “Lambda”?

Anonymous functions are also called lambdas.

Name originates from Alonzo Church’s “Lambda Calculus” (1930s)
Wrote functions as (Ax.M) with x as the parameter, M as the
expression

Portions of this section’s slides are adapted from CS 2110 by Prof. David Gries

Lab 4: Optionals and Lambdas

Anonymous Functions
0@00000000000000

Lambdas
Motivation

Imagine having two methods that share almost all their code, save
for a single value in the middle:

1 |void methodl () { 1|| void method2 () {
2 // Lots of code 2 // The same code
3 int ¢ = a + 1; 3 int ¢ = a + 2;
4 // More code 4 // More code
5 |} 5[
The solution is to factor this code into a helper function and then
each implementation can call that function.
1 |// methodl: 1||void helper (int v) {
2 |helper (1); 2 // The same code
3 3 int ¢ = a + v;
4 |// method2: 4 // More code
5 |helper (2); 5[

Lab 4: Optionals and Lambdas

Anonymous Functions
00®0000000000000

Lambdas

Motivation cont.

But now, imagine the difference is in an operation in the middle:

1 |void methodl () { 1| void method2 () {

2 // Lots of code 2 // The same code
3 int ¢ = a + b; 3 int ¢ = a * b;

4 // More code 4 // More code

5 |} 501}

The setup is the same. But here, the difference is in code. How
could we pass in the operation we with to perform as a parameter?

Lab 4: Optionals and Lambdas

Anonymous Functions
0008000000000000

Lambdas

Assert Throws

Or consider the AssertThrows method from JUnit. How does the
method call the code that's supposed to throw an exception?

1 |try {

2 // 777 What goes here?

3 fail ();

4 |} catch (Throwable t) {

5 // Test passes if t has correct type
6 |}

We know how to pass primitives and objects to a method, but how
could we go about passing an entire function as a value?

Lab 4: Optionals and Lambdas

Anonymous Functions
0000800000000000

Lambdas

Example

The expression on the right below is equivalent to the method in
the class on the left.

class Test { 1| (a, b) => a + b
int sum(int a, int b) {
return a + b;

}

[N

}

Lab 4: Optionals and Lambdas

Anonymous Functions
0000080000000000

Lambdas

More Examples

// without parameters
() -> System.out.println("Hello, world")

// with only 1 parameter
a -> a

// with explicit types
(int id, String name) -> name + id

© 0 N o O A W N R

// with a code block
(a, b) -> { if (a < b) return a; else return b; }

= e
= o

Lab 4: Optionals and Lambdas

Anonymous Functions
0000008000000000

Lambdas

Implementation

Imagine trying to figure out how to pass a function as a value
before lambdas existed in Java.

If we want to call a method, we have to call it on an object. If we
accept an object as a parameter, we should declare an interface to
ensure the object has the method we require.

interface F1 {
Integer m(String s);

}

void doSomething(F1 v1) {
System.out.println(vli.m("34"));

o A W N R

}

Lab 4: Optionals and Lambdas

Anonymous Functions
0000000800000000

Lambdas

Implementation

To use this method, we'd then need to make a new class that
implements the interface, instantiate the class, and pass that
object in as the parameter.

interface F1 { Integer m(String s); 1}
void doSomething(F1 v1) {
System.out.println(vli.m("34"));
}
class C implements F1 {
public Integer m(String s) {
return Integer.valueOf (s);

}

© 0 N o U A W N R

}
doSomething (new C());

-
o

Lab 4: Optionals and Lambdas

Anonymous Functions
0000000080000000

Lambdas

Implementation

An anonymous function is actually equivalent to doing all of that.
The anonymous function itself will create a new class that
implements the interface and its method:

1 |interface F1 { Integer m(String s); 1}

void doSomething(F1 v1) {
System.out.println(vli.m("34"));

}

// equivalent to last slide
doSomething (s -> Integer.valueOf(s));

~N o o A~ W N

Lab 4: Optionals and Lambdas

Anonymous Functions
000000000e000000

Lambdas

Demo

You can actually see this by creating your own interface, and then
calling toString() on some lambdas, as the default toString() is to
print the class name and memory location:

interface F1 { Integer m(String s); 1}

F1 vl = s -> Integer.valueOf(s);
vl.toString(); // $Lambda$13/0x000008@6cc4
F1 v2 = s -> Integer.valueOf(s);
v2.toString (); // $Lambda$14/0x0000040643Db

[I N I

Lab 4: Optionals and Lambdas

Anonymous Functions
0000000000800000

Lambdas

Functional Interface

An interface that has exactly one abstract method in it can be
annotated with @FunctionalInterface

QFunctionalInterface
interface F1 {
Integer m(String s);

E N N

}

Lab 4: Optionals and Lambdas

Anonymous Functions
00000000000e0000

Lambdas

Functional Interface Example

An example of a commonly used functional interface.

1 |int[]1 a = {1,2,3,4};

2 |a = Arrays.stream(a).filter(x -> x%2 == 0).toArray();
3 1// a now contains {2,4}

Lab 4: Optionals and Lambdas

Anonymous Functions
000000000000e000

Lambdas

Syntactic Sugar

An anonymous function that takes the same parameters as an
existing method can be used directly with double colon notation

1 |s -> Integer.valueOf (s)
2 | // equivalent to
3 | Integer::valueOf

Lab 4: Optionals and Lambdas

Anonymous Functions
0000000000000e00

Lambdas

Built-In Interfaces

Java's standard library provides a large number of built-in
functional interfaces that you may find useful. They are under the
java.util.function package.

Lab 4: Optionals and Lambdas

Anonymous Functions
00000000000000e0

Lambdas
Practice
Fill in the blank:

1 | /** Remove empty strings from str.x/
public void practice(List<String> str) {
str.removelf (TODO)

I

}

Lab 4: Optionals and Lambdas

Anonymous Functions
000000000000000e

Lambdas
Practice
Fill in the blank:

1 |/** Remove empty strings from str.x*/
public void practice(List<String> str) {
str.removelf (TODO)

A woN

}

The answer is s -> s.isEmpty()

Lab 4: Optionals and Lambdas

Finishing Maybe
©000000

Finishing Maybe

ifPresent()

Write the method ifPresent () which calls a lambda on the value if
it exists.

You may find the interface Consumer<E> useful. It represents a
function from E to void.

1 |void ifPresent (Consumer< ??? > action);

What should the action be parameterized on? It is a lambda that
must be able to take something the value (of type T) can be cast
to, meaning T or a supertype of T. Thus, the answer is

Consumer<? super T>.

Lab 4: Optionals and Lambdas

Finishing Maybe
0@00000

Finishing Maybe

Contravariance

Why does the lambda need to
accept supertypes of T?

Imagine trying to pass an object
of type Pet to a function as an
argument. Which of these types

could the argument be declared ¥ v

as if this is to succeed? et
Notice that if the function ;

accepted Animal or Object as its

argument, this would still work. B e

The input type must be a

supertype of the given value.

Lab 4: Optionals and Lambdas

Finishing Maybe
0080000

Finishing Maybe

filter()

Write the method filter() which returns a Maybe with the value
if the value exists and matches a given condition.

You may find the interface Predicate <E> useful. It represents a
function from E to boolean.

1 |Maybe<T> filter (Predicate< 77?7 > predicate);

What should the predicate be parameterized on? It is a lambda
that must be able to take something the value (of type T) can be
cast to, meaning T or a supertype of T. Thus, the answer is

Predicate<? super T>.

Lab 4: Optionals and Lambdas

Finishing Maybe
0008000

Finishing Maybe

map()

Write the method map() which calls a lambda on the value if it
exists and returns a Maybe with the result.

You may find the interface Function<E, F> useful. It represents a
function from E to F.

1 | <U> Maybe<U> map (Function< ?77 , 7?77 > mapper);

What should the mapper be parameterized on? It is a lambda that
must be able to take something the value (of type T) can be cast
to, meaning T or a supertype of T. It must return something that
can be cast to U, either U or a subtype of u. Thus, the answer is

Function<? super T, ? extends U>.

Lab 4: Optionals and Lambdas

Finishing Maybe
0000800

Finishing Maybe

Covariance

We saw that the lambda must accept function returns, the function is
a supertype of T. Why does the giving. Hence the asymmetry.
lambda need to return a subtype of U?

Imagine calling a function and

expecting an object of type Pet as the

return value. Which of these types

could the function return if this is to

succeed?

Notice that if the function returned

Dog or Cat as its argument, this would v v
still work. The output type must be a
subtype of what's expected.

In essence, the given type must be a

subtype of the receiving type. When

passing arguments into a function, the [E I E————
function is receiving. When the

Lab 4: Optionals and Lambdas

Finishing Maybe
0000080

Finishing Maybe

toString()

Now implement toString(), which returns the value of calling
toString() on the value if it is present, or a special string (you get
to pick) if it is not.

This can be done in just one line using map() and orElse().
Hopefully this shows how powerful lambdas can be, helping you
keep your code succinct and legible.

Lab 4: Optionals and Lambdas

Finishing Maybe
0000000

Finishing Maybe

Additional Exercise

Implement any or all of the following methods you may find useful.
P int hashCode()
P> Maybe<T> or(Supplier<? extends Maybe<? extends T>>)
> T orElseGet(Supplier<? extends T>)

P <U> Maybe<U> flatMap(

Function<? super T, ? extends Maybe<? extends U>>)

Congratulations! You've built your own abstraction that will
hopefully make your future code cleaner and simpler.

Lab 4: Optionals and Lambdas

	Null
	The Billion Dollar Mistake

	Optional
	Optional

	Anonymous Functions
	Lambdas

	Finishing Maybe
	Finishing Maybe

