
Optimization Profiling VisualVM Exercise

Meme Credit: Randall Munroe, xkcd

Lab 3: Profiling

http://xkcd.com


Optimization Profiling VisualVM Exercise

Lab 3: Profiling
CS 2112 Fall 2025

September 15 / 17, 2025

Portions of today’s lab slides are
adapted from CS 4152 by Prof. Walker White

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Optimization

Slow Operations

Many normal operations are actually relatively slow. For example:

▶ Instantiating Objects

▶ Calling Methods

▶ Loops

You’ll learn more about why in CS 3410 and CS 4410/4

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Optimization

Optimization?

A common mistake is to attempt to optimize your code by not
doing these slow things. One might try to make everything public,
inline methods, unroll loops, etc. This is, however, a very bad
idea.

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Optimization

Premature Optimization

“Premature optimization is the root of all evil”
- Donald Knuth

▶ Compiler automatically optimizes code

▶ Almost always better than what a human can do

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Optimization

Compiler Optimizations

Raw Code

1 int x = 8 * y;

Sample Compiler Output

1 int x = y << 3;

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Optimization

Compiler Optimizations

Raw Code

1 for (int i = 0; i < 5; i++) {

2 System.out.println(i);

3 }

Sample Compiler Output

1 System.out.println (0);

2 System.out.println (1);

3 System.out.println (2);

4 System.out.println (3);

5 System.out.println (4);

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Optimization

Compiler Optimizations

Raw Code

1 int count = 0;

2 for (int i = 0; i < x; i++) {

3 count ++;

4 doSomething ();

5 }

Sample Compiler Output

1 int count = 0;

2 if (x > 0) {

3 count = x;

4 doSomething ();

5 for (int i = 1; i < x; i++) {

6 doSomething ();

7 }

8 }

Credit: MSDN Magazine, 2/2015, “What Every Programmer Should Know About Compiler Optimizations”

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Optimization

Compiler Optimizations

Raw Code

1 int sumTo(int n) {

2 int o = 0;

3 for (int i = 1; i <= n; i++) {

4 o += i;

5 }

6 return o;

7 }

8 ...

9 return sumTo (10);

Sample Compiler Output

1 return 55;

Credit: Matt Godbolt, CppCon 2017, “What Has My Compiler Done for Me Lately? Unbolting the Compiler’s Lid”

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Optimization

Compiler Optimizations

Raw Code

1 int sumTo(int n) {

2 int o = 0;

3 for (int i = 1; i <= n; i++) {

4 o += i;

5 }

6 return o;

7 }

8 ...

9 return sumTo(x);

Sample Compiler Output

1 return x + x * (x - 1) / 2;

Credit: Matt Godbolt, CppCon 2017, “What Has My Compiler Done for Me Lately? Unbolting the Compiler’s Lid”

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Optimization

Takeaway

Compilers are very smart, and do a better job making small
optimizations than people generally do.
Take CS 4120 Compilers with Professor Myers to learn more.

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Optimization

Tuning Performance

▶ Don’t overtune some inputs at the expense of others

▶ Be very cautious of making non-modular changes

▶ Focus on overall algorithm first

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Optimization

80/20 Rule

∼ 80% of the time is spent in ∼ 20% of the code

The Real Question: What’s the 20%?

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Profiling

Profiler

A profiler is a tool used to measure the performance of code

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Profiling

What Can We Measure?

Time

▶ What code takes longest

▶ What’s called most often

▶ Who’s calling what

Memory
▶ Number of objects in memory

▶ Size of objects in memory

▶ Memory leaks (some Java
libraries call C++ code)

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Profiling

How to Measure Code

Sampling

▶ Sample at periodic intervals

▶ Low overhead

▶ May miss small things

Instrumentation

▶ Count at specified places

▶ Gives exact view of
specified slice

▶ Targeted

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Profiling

Time-Sampling

Real Sampled

Modern profilers fix with random sampling

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

VisualVM

VisualVM

VisualVM is a Java profiler

Get started by downloading it here: https://visualvm.github.io/.

Lab 3: Profiling

https://visualvm.github.io/


Optimization Profiling VisualVM Exercise

VisualVM

Troubleshooting VisualVM

If VisualVM cannot find Java 1.8, or cannot find any active Java
programs, try manually specifying your JDK path like so:
Open IntelliJ and choose File > Project Structure > Project >
SDK > Edit and then copy the path in JDK home path

In your VisualVM directory, open the etc folder and open the
visualvm.conf file. Scroll to the line near the bottom with
visualvm_jdkhome and set the variable equal to your copied path.
Also delete the # at the beginning of the line.
Try launching VisualVM again after that.

If VisualVM says it does not have permission to see Java
applications, run it as admin.

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

VisualVM

VisualVM Interface

VisualVM will automatically detect all running Java processes on
your computer, with no additional setup required. They will be

listed on the left, under Applications.

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

VisualVM

Monitor

The monitor tab provides a quick, high-level overview of the state
of your program. Here, you can see CPU and memory usage in real

time.

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

VisualVM

Sampler / Profiler

The sampler and profiler tab provide access to a sampling profiler
and an instrumentation profiler, respectively.
While the instrumentation profiler can be used to collect more
accurate, targeted data if examining a specific part of your code,
the sampler is easier to use and good enough for our purposes.
Push either the “CPU” or “Memory” button to begin collecting
data on runtime or memory usage, respectively. Sampling stops
when “Stop” is pushed.
The collected data will be displayed for you to explore.

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

VisualVM

Sampler / Profiler

Lab 3: Profiling



Optimization Profiling VisualVM Exercise

Exercise

Exercise

In the profiling folder, two files are included: StringRepeater and
BetterStringRepeater. One uses a StringBuilder to
concatenate Strings, and the other uses the concatenation
operator. In this part of the lab, you will use VisualVM to study
the performance of the code.

Bonus Challenge: What is the slowest part of your RSA
implementation in A1? Using VisualVM, how can you tell?

Lab 3: Profiling


	Optimization
	Optimization

	Profiling
	Profiling

	VisualVM
	VisualVM

	Exercise
	Exercise


