
Documentation Unit Testing JUnit Files & Paths Streams

Meme Credit: Twitter user @PinkFreudHokie

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Lab 2: Javadoc, JUnit, & I/O
CS 2112 Fall 2025

September 8 / 10, 2025

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Enable Assertions

▶ Choose Run → Edit Configurations

▶ Click ”Edit configuration templates”

▶ Choose ”Application” then ”Modify options”

▶ Click ”Add VM options”

▶ Type ”-ea” into the VM arguments field and click OK

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Javadoc Overview

Javadoc Overview

▶ Javadoc is a tool for creating HTML documentation from
comments

▶ It produces actual HTML web pages

▶ Helps keep documentation consistent with the code

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Javadoc Overview

Doc Comments

Doc comments start with /** and end with */.

1 /**

2 * This is a javadoc comment

3 */

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Javadoc Overview

Writing Good Docs

▶ First sentence: high level overview (no fluff)
▶ Bad: This method is a method that computes the square root

of a number
▶ Good: Computes the square root

▶ Go into detail if necessary after first sentence
▶ Don’t repeat things in the method signature

▶ Bad: The first argument is an integer

▶ Document preconditions and invariants

▶ If helpful, use @param and @return for organization

▶ Cover edge cases

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Javadoc Overview

Writing Good Docs

The ultimate goal is to provide useful, non-obvious information

1 // set x to 3

2 int x = 3

Comments like the above are useless and do not add value.
It’s common to make the mistake that more documentation is
better documentation, but it’s easy to write a lot of words that
don’t say anything. Even Java’s own docs do this sometimes -
notice how the linked method specs do not explain any edge cases
at all or how to use the method.
Documentation is written for people to read. Don’t waste people’s
time.

Lab 2: Javadoc, JUnit, & I/O

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/Calendar.html#roll(int,boolean)

Documentation Unit Testing JUnit Files & Paths Streams

Javadoc and IntelliJ

Javadoc and IntelliJ

▶ IntelliJ autocompletes Javadoc comments if the method
signature is already written

▶ Type in /**, then Enter to generate a Javadoc template

▶ Hover over a method to see its Javadoc in the tooltip

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Unit Testing Overview

What’s a ‘Unit’ Test?

When writing test cases, try to make them as small as possible. If
you have e.g. one test that checks three things, consider breaking
it into three tests that each check one thing.

This way, if a test fails, you know exactly what is broken.

▶ Unit = Usually one method or a small group of methods

▶ Try to keep units as independent as possible

▶ Test and fix units as you go

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Unit Testing Overview

Why Write Tests?

“Manual testing works just fine!”
- Famous Last Words

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Unit Testing Overview

Why Write Tests?

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Unit Testing Overview

Why Write Tests?

▶ There is too much code to manually test

▶ Manual testing is error-prone
▶ Make sure tests are actually run

▶ Manual testing takes time, so it is frequently skipped or put off
▶ Automated test cases can be run automatically and as

frequently as needed

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

How to Write Tests

Edge Cases

When writing tests, ensure that you not only cover the common
case, but also have ample coverage of corner / edge cases, which is
where most bugs occur.
When writing tests for data structures, always test with structures
that have one or zero elements in them. When writing numerical
tests, always test 0 and 1, negative numbers, min and max value,
etc. With strings, test empty strings and strings with only one
character.

In Java, it’s also a good idea to add tests for null objects.
Without proper testing, a NullPointerException might not be
noticed until enough code has been written to make it difficult to
track down where in the program the nulls are coming from.

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

How to Write Tests

Black Box Testing

Black box tests are written based on the specification alone.
They can help ensure that the code works correctly from the client
perspective.

1 /**

2 * Compute whether one date occurs before another

3 * @param d1 The first date

4 * @param d2 The second date

5 * @return Whether d1 occurs on or before d2

6 */

7 public boolean dateComp(Date d1, Date d2)

In this example, valid black box tests would check cases where the
first date occurs before the second, when it occurs after the
second, and also when they appear on the same day (edge case).

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

How to Write Tests

Black Box Exercise

Given the following method, what cases would you test?

1 /**

2 * Finds the index of target inside a sorted array arr.

3 *

4 * Requires: arr be sorted , target be present

5 *

6 * @param arr Sorted array to search

7 * @param target Value to search for

8 * @return index such that arr[index] == target

9 */

10 public int findIndex(int[] arr , int target);

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

How to Write Tests

White Box Testing

White (or glass) box tests are written by looking at the
implementation and writing tests to target the specific code.
They can help find additional edge cases.

1 /**

2 * Compute whether one date occurs on or before ... etc.

3 */

4 public boolean dateComp(Date d1, Date d2) {

5 if (d1.year != d2.year) { return d1.year < d2.year; }

6 if (d1.month != d2.month) {

7 return d1.month < d2.month;

8 }

9 return d1.day <= d2.day;

10 }

In this example, glass box tests would deliberately test dates with
different years, then different months, then different days to ensure
each branch functions correctly.

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

How to Write Tests

Glass Box Exercise

Given the same method, what cases would you add?

1 /** F inds the i ndex o f t a r g e t i n s i d e a s o r t e d a r r a y a r r .
2 * Requ i r e s : a r r be so r t ed , t a r g e t be p r e s e n t */
3 p u b l i c i n t f i n d I n d e x (i n t [] a r r , i n t t a r g e t) {
4 i n t mid = a r r . l e n g t h / 2 ;
5 i f (t a r g e t < a r r [mid]) {
6 f o r (i n t i = 0 ; i < mid ; i++) {
7 i f (a r r [i] == t a r g e t) {
8 r e t u r n i ;
9 }

10 }
11 } e l s e {
12 f o r (i n t i = a r r . l e n g t h = 1 ; i > mid ; i==) {
13 i f (a r r [i] == t a r g e t) {
14 r e t u r n i ;
15 }
16 }
17 }
18 r e t u r n =1;
19 }

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

How to Write Tests

Glass Box vs. Spec

It may be tempting on the previous slide to write a test case that
an array missing the target would return -1, but that may not be a
good idea!
A glass box test looks at the implementation as a way to target
test cases towards high risk code paths (like different if/else
branches, or loop boundaries). The tests it produces should still
comply with the spec. This way, if the implementation changes in
the future, even if the changes makes the glass box tests
redundant, they won’t fail. This creates less work for the
programmer, and also means the existing test suite can be used to
help ensure the new implementation is still correct.

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

IntelliJ: Creating a Test Class

Setting up JUnit with IntelliJ is fairly simple. IntelliJ should have
come with JUnit support.

After creating a project, place the caret at the class that you want
to create a test for, then press Alt+Enter/Opt+Enter, and click
Create Test. Click OK when it asks whether to create test in the
same source root. If JUnit5 library not found in module, click Fix.

Note that there are options in the dialog for automatically
generating test stubs for existing methods.

In the test file, if there is red text, hover over it, and select
Add library to classpath.

The JUnit website is: http://junit.org/

Lab 2: Javadoc, JUnit, & I/O

https://junit.org/

Documentation Unit Testing JUnit Files & Paths Streams

Basic Test Case

1 @Test

2 void basicTest () {

3 Calculator calc = new Calculator ();

4 assertEquals (4, calc.multTwo (2));

5 }

Any method that is preceded by @Test, returns void and has no
arguments will be run as a test case. The actual testing in the test
case is done using assertion statements such as assertEquals.
Pass the expected value first and the actual test second into
assertEquals.

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Useful Assertion Statements

▶ assertFalse(boolean cond)

▶ assertNotNull(Object o)

▶ assertNull(Object o)

▶ assertTrue(boolean cond)

▶ fail(String msg)

fail(String msg) is useful when you have code that is supposed
to be unreachable, e.g. if you expect an exception to be thrown.

Each of these methods can also take a description as the second
argument: assertTrue(boolean cond, String msg)

For a complete list, go to:
https://junit.org/junit5/docs/current/api/org/junit/jupiter/api/Assertions.html

Lab 2: Javadoc, JUnit, & I/O

https://junit.org/junit5/docs/current/api/org/junit/jupiter/api/Assertions.html

Documentation Unit Testing JUnit Files & Paths Streams

Testing Exceptions

1 @Test

2 public void exceptionTest () {

3 try {

4 Integer.parseInt("error");

5 } catch (NumberFormatException e) {

6 // Desired exception , so test passes

7 }

8 }

If you want to test if a particular method throws an exception, you
can use try/catch blocks with the appropriate assert statements to
make the test fail if the appropriate exception isn’t thrown.

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Testing Exceptions

1 @Test

2 void exceptionTest () {

3 assertThrows(NumberFormatException.class , () -> {

4 Integer.parseInt("error")

5 });

6 }

A cleaner way to test if an exception should be thrown is to use
the new assertThrows method in JUnit 5. Now the test case will
be considered to have passed if that exception was thrown, and
failed if a different exception or no exception was thrown.

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Example: BasicTestClass

1 import static org.junit.jupiter.api.Assertions .*;

2 import org.junit.jupiter.api.Test;

3

4 public class BasicTestClass {

5 @Test

6 public void basicTest () {

7 assertTrue(true , "true is true");

8 }

9

10 @Test

11 public void exceptionTest () {

12 assertThrows(NumberFormatException.class ,

13 () -> Integer.parseInt("error"));

14 }

15 }

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Ignoring Tests

If you want to temporarily disable a test case (this might come up
if you have test cases for parts of your program that aren’t fully
implemented yet, for instance), you can do so by putting
@Disabled above @Test. When running tests, JUnit will
distinguish between tests that pass, tests that fail due to an
assertion, tests that fail due to an unexpected and uncaught
exception, and tests that were ignored.

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Example: IgnoredTestClass

1 import static org.junit.jupiter.api.Assertions .*;

2

3 import org.junit.jupiter.api.Disabled;

4 import org.junit.jupiter.api.Test;

5

6 public class IgnoredTestClass {

7 @Test

8 public void basicTest () {

9 assertFalse(false , "false is false");

10 }

11

12 @Disabled

13 @Test

14 public void ignoredTest () {

15 fail("ignore me");

16 }

17 }

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Advanced Topics

Test Fixtures

▶ Test fixtures are used to prevent repetition of setup/cleanup
code.

▶ Uses @BeforeEach, @AfterEach, @BeforeAll, and
@AfterAll annotations.

▶ Class members are used to store environment variables and
make them available to the tests.

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Advanced Topics

Example: BasicTestFixture

1 import org.junit.jupiter.api.BeforeEach;

2

3 public class BasicTestFixture {

4 private int[] x;

5

6 @BeforeEach

7 public void setup () {

8 x = new int [1];

9 }

10

11 @Test

12 public void sumTest () {

13 x[0] = 4;

14 assertEquals (4, x[0]);

15 }

16 }

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Advanced Topics

Test Suites

Suppose you have a lot of separate test classes for each piece of
your program. How do you run all of them at the same time?

A test suite is just a list of test classes which all get run together.
Test suites require different imports from test classes and test
fixtures. To write a test suite, start with an empty Java class, and
put the following above the class definition:

1 @RunWith(Suite.class)

2 @Suite.SuiteClasses ({

3 TestClass1.class ,

4 TestClass2.class ,

5 ...

6 })

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Advanced Topics

Example: BasicTestSuite

1 import org.junit.runner.RunWith;

2 import org.junit.runners.Suite;

3

4 @RunWith(Suite.class)

5 @Suite.SuiteClasses ({

6 BasicTestClass.class ,

7 IgnoredTestClass.class ,

8 BasicTestFixture.class

9 })

10

11 public class BasicTestSuite {}

In addition to running test classes and test fixtures, test suites can
also run other test suites.

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

I/O Handout

A detailed reference on I/O can be found in the I/O handout on
the course webpage:
https://courses.cs.cornell.edu/cs2112/2025fa/handouts/IO.pdf

Lab 2: Javadoc, JUnit, & I/O

https://courses.cs.cornell.edu/cs2112/2025fa/handouts/IO.pdf

Documentation Unit Testing JUnit Files & Paths Streams

Paths

A path represents the location of a file, typically on your computer.
e.g.,: C:\Users\andru\Documents\CS 2112\Lab 2.tex

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Types of Paths

There are two types of paths: absolute and relative.

Absolute Paths

▶ Starting at root, full path
of file

▶ Usually only works on your
machine

▶ e.g.,:
C:\Users\andru\Documents

\CS 2112\Lab 2.tex

Relative Paths

▶ Relative to current
directory

▶ In IntelliJ, project folder

▶ Typically used when
programming

▶ e.g.,:
Documents\CS 2112\Lab 2.tex

(if we’re in the andru

directory)

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Using Paths in Java

You can call Paths.get(...) with a relative path to acquire a Path

object, which represents the location of a file.

1 Path p = Paths.get("res", "map1.xml");

The above code returns a reference to the relative path
res/map1.xml.
Note you can seperate directories as separate arguments, or pass
an entire relative path in.

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Files

Once you have a path to a file, Java provides many methods that
allow you to operate on it, listed under the Files class.

eg: exists(Path p), isReadable(Path p), createFile(Path p),
delete(Path p), isWritable(Path p), size(Path p), and more.

Check the official documentation for more:
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/nio/file/Files.html

Lab 2: Javadoc, JUnit, & I/O

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/nio/file/Files.html

Documentation Unit Testing JUnit Files & Paths Streams

Streams

A stream is a sequence of data being processed (read / written)
from beginning to end.
Input streams are data coming into a program (for example,
reading from a file).
Output streams are data leaving a program (for example, writing
to a file).

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Types of Streams

▶ Byte Stream

▶ Character Stream

▶ Raw Stream

▶ Blocking Stream

▶ Buffered Stream

▶ NIO Stream

▶ Object Stream

▶ etc.

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Basic Streams

Reads one byte at a time.

1 InputStream is = Files.newInputStream(p);

2 is.read (); // Gets the next byte in the file

We can use a Buffered Stream to get more than one byte at a
time, for convenience.
Remember to always close a stream when finished working with it.

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Buffered Readers

1 InputStream is = Files.newInputStream(p);

2 BufferedReader br = new BufferedReader(is);

3 // or

4 BufferedReader br = Files.newBufferedReader(p);

5

6 // read whole line (or null if empty)

7 String s = br.readLine ();

8 br.close (); // close stream

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Buffered Writers

1 BufferedWriter bw = Files.newBufferedWriter(p);

2 // Overwrites p if exists , creates if not

3

4 bw.write("..."); // No newline

5 bw.close (); // Don’t forget

Use a PrintWriter to write non-String objects and get additional
methods.

1 PrintWriter pw =

2 new PrintWriter(Files.newBufferedWriter(p));

3 pw.println (6); // Includes newline

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Standard Streams

Your OS provides every program with three “standard” I/O
streams. These streams have defaults, but can be changed per
program. For example, a user may want to redirect standard error
into a log file instead of showing it in the console.
Standard Input: What the user types into your program, typically
in the console.
Standard Output: What your program shows to the user,
typically in the console.
Standard Error: Error messages from your program, typically in
red in the console.

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Standard Streams in Java

Java exposes each of the standard streams to the programmer as
fields in the System class: System.in, System.out, and System.err.

Standard input is an InputStream, and the other two are
PrintWriter.

Thus, System.out.println("") is calling the println("") method on
a PrintWriter that just happens to be standard output.

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

Character Encoding

Character encoding defines how characters we recognize get stored
to disk as individual bytes.

For this class, use Unicode UTF-8.

Lab 2: Javadoc, JUnit, & I/O

Documentation Unit Testing JUnit Files & Paths Streams

I/O Exercise

Linked under today’s lab on the schedule is FileCopier.java. This
class has a single static method that copies a file from one location
to another.
Write test cases for this method. At least one test case should
ensure that the copied output has the exact same bytes as the
original file.
(Hint: you may find this code helpful when testing RSA in A1)
Feel free to reference the IO handout:
https://courses.cs.cornell.edu/cs2112/2025fa/handouts/IO.pdf

Lab 2: Javadoc, JUnit, & I/O

https://www.cs.cornell.edu/courses/cs2112/2025fa/labs/lab02/FileCopier.java
https://courses.cs.cornell.edu/cs2112/2025fa/handouts/IO.pdf

	Documentation
	Javadoc Overview
	Javadoc and IntelliJ

	Unit Testing
	Unit Testing Overview
	How to Write Tests

	JUnit
	Advanced Topics

	Files & Paths
	

	Streams
	

