
CS 2112 Fall 2025
Assignment 4

Interpretation and Simulation
Due: Thursday, November 6, 11:59PM

Design Document due: Tuesday, October 28, 11:59PM

This assignment requires you to implement

• an interpreter for the critter language introduced in the last assignment,
• a simulator that maintains a state of the execution environment and emulates the execution of pro-

grams, and
• a console interface for controlling the simulation and querying the state of execution.

In addition to implementing new functionality, you are expected to make sure that the functionality
implemented for Assignment 3 works correctly. This may require fixing bugs in your code. However, the
majority of the grades in this assignment will be on the new functionality.

1 Updates

Nothing yet.

2 Instructions

2.1 Grading

Solutions will be graded on design, correctness, testing, and style. A good design makes the implemen-
tation easy to understand and maximizes code sharing. A correct program compiles without errors or
warnings and behaves according to the requirements given here. A good test plan ensures good coverage
of features and edge cases. A program with good style is clear, concise, and easy to read.

A few suggestions regarding good style may be helpful. You should use brief but mnemonic variable
names and proper indentation. Public methods should be accompanied by Javadoc-compliant specifica-
tions. Class invariants should be documented. Other comments should be included to explain nonobvious
implementation details.

2.2 Final project

This assignment is the second installment of the final project for the course. Read the Project Specification
to find out more about the final project and the language you will be working with in this assignment.

2.3 Partners

You will work in groups of two or three for this assignment. This should be the same group as in Assign-
ment 3.

Remember that the course staff is happy to help with any problems you run into. Read all Ed posts and
ask questions that have not been addressed, attend office hours, or set up meetings with any course staff
member for help.

After each assignment, you will be asked to fill out a brief survey on CMSX providing peer evaluations
for your teammates, and they will do the same for you. Peer evaluations will be reviewed by course staff
and become a component of your grade.

CS 2112 Fall 2025 1/9 Assignment 4

http://www.cs.cornell.edu/courses/cs2112/2025fa/hw/a3/a3.pdf
http://www.cs.cornell.edu/courses/cs2112/2025fa/project/project.pdf


2.4 Restrictions

Use of any standard Java libraries from the Java SDK is permitted. However, the use of a parser generator
(e.g., CUP) is prohibited.

The release code contains all the new classes you should add to your existing code. You should follow
the instructions in their Javadoc, so that our testing software can test your code.

2.5 Release

The release files are available on CMS. You should download them and incorporate them into your critterworld
project. The folders correspond to packages in your project.

You will also need to make the following changes to your project build.gradle file:

• Underneath the application block (the block with mainClass inside), add the following code to include
console jar for A4:

1 // console jar for A4

2 jar {

3 duplicatesStrategy = DuplicatesStrategy.EXCLUDE

4 archiveBaseName.set(’Console’)

5 manifest {

6 attributes ’Main-Class’: ’console.Console’

7 }

8 from(sourceSets.main.output) {

9 include ’**’

10 }

11 }

• Inside the application block, change mainClass so that it reads

1 mainClass = "console.Console"

2.6 Generative AI

You are allowed to use Generative AI for this assignment only for writing test cases. However, you must
still write some test cases by hand. Furthermore, in our experience, test cases written by GenAI are not
up to the standards expected by this course. Remember that course policy requires that you document all
prompts given to GenAI in your final overview document. For this assignment and future assignments, we
will also require you to leave a comment flagging each use of AI, such as // NOTE: AI-GENERATED. Basic
code completion in IntelliJ is still permitted. Consult with the course staff if you have specific questions.

3 Design overview document

As with A3, we require that you submit an early draft of your design overview document in advance before
the assignment due date. The Overview Document Specification outlines our expectations. Your design and
testing strategy might not be complete at that point, but we would like to see your progress. Feedback on
this draft will be given promptly after the overview is due.

These are key topics to cover in your design overview document:

• What are the key data structures you will use for this assignment to simulate the world? What are the
core classes and abstractions you will implement?

• What are the key algorithms you will need? Which ones will be challenging to implement, and why?
• What will be your testing strategy for this assignment?

CS 2112 Fall 2025 2/9 Assignment 4

http://www.cs.cornell.edu/courses/cs2112/2025fa/handouts/design-overview-guidelines.html


• What will be your implementation strategy, and how will you go about dividing responsibilities between
the group members?

• What are some design patterns that would be useful for helping to separate concerns such as interpreta-
tion and simulation in your implementation?

We also highly recommend that you read section 12 regarding other tips and tricks for the assignment.
We have a small portion dedicated towards good modular design which would be beneficial to read before
starting the assignment. We recommend spending some time to answer the questions in that section in
your design overview document.

4 Version control

As in the last assignment, you must submit file log.txt that lists your commit history from your group.
Before you do anything else, we highly recommend you create a tag in your GitHub repo with the state

of your final A3 submission, so that you can easily reference it in the future. From the right hand panel
of your GitHub repo, choose the “Create a new release” link. Then, give the release a title, and click the
dropdown above that says “Choose a tag”. Give your tag a memorable name like a3 and choose “Publish
release”. This will mark this location in time on your repo with the tag name for easy reference.

You must submit a file named a4.diff showing differences for changes you have made to files you
submitted in Assignment 3. To generate the diff file, you can then use git diff a3 main > a4.diff to
generate a file named a4.diff with all the changes between your a3 tag and the current state of your main
branch.

5 Interpretation

The core of this assignment is implementing an interpreter for critter programs. An interpreter is a program
that emulates the execution of programs written in some programming language. For example, the Java
run-time system includes a bytecode interpreter that executes “bytecode” from Java class files.

Your interpreter will work directly on the AST generated by the parser from Assignment 3. It will
interpret the rules by recursively evaluating the AST nodes representing conditions and expressions in the
context of the current state of the critter and the state of the world. The current state of the critter and the
state of the world are known as the execution environment. The interpreter executes rules until an action
is taken. It also updates the critter’s memory as described by the rules applied.

For this assignment, do not implement the smell sensor. Instead, the expression smell should always
evaluate to 0. The full implementation of smellwill come in a future assignment.

5.1 Loading new critters

To add a new critter to the world, the critter’s initial state and program are read from a critter file. The
critter files may contain blank lines and lines beginning with //, indicating comments. These lines should
be ignored, as described in the previous assignment. Lines may be terminated either with just a line feed
character (‘\n’) or a Windows-style "\r\n" sequence, and trailing whitespace is allowed on any line. Oth-
erwise, the format of a critter file is as follows:

species: <name>

memsize: <memory size>

defense: <defensive ability>

offense: <offensive ability>

size: <size>

energy: <energy>

posture: <posture>

<program>

CS 2112 Fall 2025 3/9 Assignment 4



The species name <name> is a string. It is recorded for identification purposes, but is not otherwise
used for this assignment and has no effect on the critter simulation. The next six values specified in angle
brackets are nonnegative integers. The first represents the number of memory locations of the critter and
the rest represent initial values for some of the memory locations. Following these values are the critter
rules. These are given in the syntax described in the Project Specification. The critter rules should be parsed
with your parser from Assignment 3. An example of a critter file is given in the example directory. A
valid critter file must have these elements occurring in this order. Except for syntax errors generated while
parsing the critter rules, any anomalies discovered when reading a critter file should result in a warning
message to the user and a default value supplied if appropriate, but execution should proceed. In addition
to specifying a critter file to load, the user should be able to specify the number of such critters to be added
to the world. These critters are placed at randomly chosen legal positions in the world: that is, not on top
of a rock, food, or another critter.

5.2 Interpreting critter rules

You will need to implement the recursive algorithm described in the Project Specification to decide which
action to take using the evaluated AST. You will also need to use your AST mutation code from the last
assignment to implement budding.

6 Simulation

A simulator keeps track of the state of the world and all the critters and other artifacts in it. Your simulator
will load the initial state of the world from a file.

As mentioned in section 5, the smell sensor should always evaluate to 0 for this assignment.

6.1 Loading world definitions

The initial state of the world is given in a world file, which may contain blank lines and lines beginning
with //, indicating comments. These lines should be ignored. The first two lines of the world file have the
following format:

name <world name>

size <width> <height>

The <world name> parameter is a string specifying the name of the world, which should be printed
out when the world is loaded. The <width> and <height> parameters specify the width and height of the
world. Each subsequent line must have one of the following three forms, which specify where to place a
rock, food or a critter:

• rock <column> <row>
• food <column> <row> <amount>
• critter <critter file> <column> <row> <direction>

You are not required to check for objects being placed on the same hex or on hexes outside of the
world, although you are encouraged to do so. All critter files must be in the same directory as the world
file. This means that if the world file is located at /home/bob/world.txt, and that file contains the line
critter alice.txt 0 0 0, then the critter file is located at /home/bob/alice.txt. Two methods that may
be useful for finding critter files are java.io.File.getAbsoluteFile() and java.io.File.getParent().
An example world file is given in world.txt. As with critter files, any anomalies discovered when reading
a world file should result in a warning message to the user and a default value supplied if appropriate, but
execution should proceed.

CS 2112 Fall 2025 4/9 Assignment 4

http://www.cs.cornell.edu/courses/cs2112/2025fa/project/project.pdf
http://www.cs.cornell.edu/courses/cs2112/2025fa/project/project.pdf


# F - -

- - -

- - - #

- - -

- 1 - -

- - -

# - - -

- - -

- 5 - -

(a) An ASCII-art map of the world

(0,8) (2,8) (4,8) (6,8)

(1,7) (3,7) (5,7)

(0,6) (2,6) (4,6) (6,6)

(1,5) (3,5) (5,5)

(0,4) (2,4) (4,4) (6,4)

(1,3) (3,3) (5,3)

(0,2) (2,2) (4,2) (6,2)

(1,1) (3,1) (5,1)

(0,0) (2,0) (4,0) (6,0)

(b) Coordinates in an ASCII-art map

Figure 1: The structure of ASCII-art maps

6.2 Simulating the world

You will need to implement a model that keeps track of the state of the world: its dimensions and contents,
critters and their states, etc., as described in the Project Specification. The world will be able to advance
time steps, update the state of the world, and allow each critter to execute its rule set in each time step.

7 User interface

The console.Console class is provided to you. If you implement the Controller right, the command line
interface should just work. It should support the following commands:

• new
Start a new simulation with a world populated by randomly placed rocks.

• load <world file>
Start a new simulation with the world specified in file <world file>. Your world initializer should read
critter files associated with any critters specified in <world file>.

• critters <critter file> <n>
Read the critter file <critter file> and randomly place n such critters into the world.

• step <n>
Advance the world for n time steps.

• info
Print the number of time steps elapsed, the number of critters alive in the world, and an “ASCII art” map
of the world. The hex contents displayed in the map should follow these notations:

– - for an empty space
– # for a rock
– d for a critter facing in direction d
– F for food.

Figure 1(a) shows an example ASCII-art map for a world with 7 columns and height of 9. The columns
of this map corresponds to the columns of the world, and adjacent columns are staggered by one line.
Figure 1(b) shows the (column,row) coordinates corresponding to various positions on the example
ASCII-art map.

• hex <column> <row>
Print a description of the contents of the hex at coordinate (column,row). If food is present, print the
amount of food. If a critter is present, print the following as a description of the critter:

– its species
– the contents of at least its first seven memory locations
– its rule set, using the pretty-printer from Assignment 4
– the last rule executed

CS 2112 Fall 2025 5/9 Assignment 4

http://www.cs.cornell.edu/courses/cs2112/2025fa/project/project.pdf


8 Adjustable Priority Queue

While the full implementation of smell is not a portion of this assignment, we ask you to implement a
data structure that will be used as part of smell in a future assignment. The end goal will be to use an
adjustable priority queue to run Dijkstra’s single-source shortest path algorithm over the graph of possible
critter moves. However, Java’s builtin PriorityQueue does not support efficient updates to the priority of
elements already inserted. As a result, you will instead make your own priority queue.

Complete the class BinaryHeap in src/main/java/a4 that implements the AdjustablePriorityQueue
interface. As a hint, you will need an additional data structure (in addition to a binary heap) to be able to
look up the index of any item in expected O(1) time. Don’t forget to keep this second data structure updated
every time you modify the heap; checking the invariant that connects the data structures may save you a
lot of debugging. A second hint is to unit-test your implementation of this interface extensively. Trying to
implement algorithms that rely on a buggy data structure is a recipe for disaster.

At the beginning of each method, you must provide a brief justification of the method’s run-time com-
plexity. A short comment will suffice. The methods in your class must adhere to the required time com-
plexities provided in the interface.

9 Testing

A portion of your grade will be based on the quality and exhaustiveness of your test cases. Due to the open
ended nature of this assignment as well as the complexity of the tasks, small mistakes can often mean that
large amount of test can fail from our side. As a result, it is paramount to design an exhaustive testing
strategy and unlike the previous assigment, we do not provide a sample test plan. You must design your
own test plan for this assignment of similar size and scope.

As a starting point, we recommend that you work with small worlds and focus on testing each language
construct in isolation and on testing individual critter actions. This also includes testing language constructs
from both the interpreter side and the simulation side; whether our interpreter accurately output that critter
will walk versus actually simulating that walk are two different problems but both require isolation of the
language constructs. Make sure your info command prints out accurate ASCII-art representations of the
world so you (and we) can tell that your code is correct. Additionally, it may be difficult to debug your
implementation using only the output of the program as defined in the specification. As a result, it may be
useful to add debugging flags that print out why each rule is chosen or not chosen during the evaluation.

Testing correctness fully might be challenging to achieve by only running the simulation, so think about
what other test harnesses would be helpful. Time spent making viewing and testing as easy as possible will
be well worth it. If you put all your tests in src/test/java, Gradle will run them for you every time you
run the Gradle build task and print a report, which you can find in the Gradle build folder.

You should be sure to test:

• loading a full critter file
• generating a new world
• loading a full world file
• intepreting critter programs with a single instruction
• simulating critter programs with a single instruction
• stepping a single critter with more complex rules
• stepping multiple critters in a large world
• printing the ASCII-art world
• that the Spiral Critter travels in a spiral path.

This list is by no means exhaustive, but rather offers a few key milestones. Your full suite of tests should
be more thorough.

CS 2112 Fall 2025 6/9 Assignment 4



10 Written problems

1. Give a loop invariant for the following piece of code, which finds both the minimum and maximum
value of an even-length array a while using only 1 1

2 comparisons per element. Justify your answer by
showing Establishment, Preservation, Postcondition, and Termination.

1 // Precondition: a.length is even

2 int max = Integer.MIN_VALUE,

3 min = Integer.MAX_VALUE,

4 i = 0;

5 while (i < a.length-1) {
6 int x,y;

7 if (a[i+1] > a[i]) {
8 x = a[i];

9 y = a[i+1];

10 } else {
11 x = a[i+1];

12 y = a[i];

13 }

14 max = Math.max(max, y);

15 min = Math.min(min, x);

16 i += 2;

17 }

2. A bag is a collection that allows duplicate elements. The code below partially implements a bag abstrac-
tion.
1 /** A Bag is an unordered collection of elements (of type T). Elements

2 * are non-null and may be duplicates of other elements in the bag. */

3 public class Bag<T> implements Collection<T> {
4 private static class Node<T> {
5 T elem;

6 int count;

7 Node<T> next; // May be null.

8 // Invariant: count is positive and nodes starting from

9 // next form a null-terminated linked list.

10
11 public Node(T x) {
12 elem = x;

13 count = 1;

14 next = null;
15 }

16 }

17 // Class invariant: Every node in the list starting from ‘head’

18 // has a distinct n.elem.

19 // Representation: Each element n.elem is present in the bag the

20 // number of times specified by n.count.

21 private Node<T> head = null; // null if bag is empty
22
23 /** Effect: Adds x to the bag. If x is already in the bag,

24 * adds x again to the bag and returns true. Otherwise,

25 * returns false. */

26 public boolean add(T x) {
27 Node<T> n = head;

28 if (n == null) { head = new Node<>(x); return false; }
29 while (!n.elem.equals(x) && n.next != null) {
30 n = n.next;

31 }

32 // At this point n != null, and if there is a node m in the list

33 // where m.elem equals x, then n==m.

34 // Otherwise, n is the last node in the list.

35 if (n.elem.equals(x)) {
36 n.count++;

37 return true;
38 } else {
39 n.next = new Node<>(x);

CS 2112 Fall 2025 7/9 Assignment 4



40 return false;
41 }

42 }

43 }

Read the code carefully and answer the following questions:

a) Consider a bag constructed by making n calls to the method add(). What is the worst-case asymp-
totic time to construct the whole bag, as a function of n?

The code gives a postcondition for the while-loop. Let’s construct the argument that the while-loop
correctly achieves this postcondition.

b) Give a loop invariant for the while-loop that is strong enough to show its correctness.
c) Argue that the loop invariant is established at the beginning of the loop.
d) Argue that the loop invariant is preserved by each loop iteration.
e) Use the loop invariant to argue that the postcondition holds after the loop.
f) Use the loop invariant to argue that the loop terminates.

3. Write a critter program for a critter that walks in a growing hexagon spiral that, on an infinite world
without any rocks, would eventually hit every hex. When it comes to food, it should eat the food. It
should only eat the food directly in its path. (Hint: the critter will need additional memory slots.)

4. Write a critter program for a critter that sits in one place until food appears within one hex of it. It
then eats the food and moves to where the food was. While sitting, whenever it gets within 100 of its
maximum energy, it tries to bud a child.

11 Overview of tasks

Determine with your partner(s) how to break up the work involved in this assignment. Here is a list of the
major tasks involved:

• Implement the interpreter for critter programs.
• Implement the state of the world and its critters.
• Implement the controller interface and its communication with the world model.
• Develop a good test suite to ensure that the interpreter is implemented correctly.
• Solve the written problems.

12 Tips and tricks

Modular design It is especially important to think about properly designing your classes and how think-
ing about how they interact with each other. Without proper implementation of the MVC design pattern,
teams will likely have to refactor their code. In fact, it is important enough that you must mention it in your
design document to get full credit. The purpose of this section is to provide some insightful questions that
will force you to think about proper class design.

1. Can you keep the interpreter code largely separate from the rules of the world simulation?
2. Can you express the rules of the world simulation in code simply and with separation of concerns so

that it is obvious they are implemented correctly?
3. What classes should modify the internal values of critters and worlds?
4. How can we enforce certain objects only being able to read values in from critters and worlds, but not

being able to modify them?

CS 2112 Fall 2025 8/9 Assignment 4



Think carefully about the questions provided above and how to solve the problems present above effec-
tively will make it easier to succeed in future assignments. For example, in A5, the console interface
will be replaced by a graphical user interface (GUI), which will display information similar to the current
command-line interface. Consequently, if your world model is properly decoupled from the user inter-
face, you should be able to substitute the GUI for the command-line interface without changing the world
simulation. This is the essence of the Model-View-Controller design pattern.

File paths Note that all files (critter and world definitions) should be specified by relative file paths from
the project root. Make sure to write your relative file paths in an OS-agnostic way; that is, you should not
be hard-coding in any back or forward slashes.

13 Submission

You should submit these items on CMS:

• overview.txt/pdf: Your final design overview document for the assignment. It should also include
descriptions of any extensions you implemented.

• A zip file containing these items:

– Source code: You should include all source code required to compile and run the project. Source code
should reside in the src/main/java directory with an appropriate package structure.

– Tests: You should include code for all your test cases. These should be in in src/test/java, separate
from the rest of your source code. Subpackages are permitted.

– External libraries: If you imported any external libraries via Gradle, include your build.gradle file.

Do not include any .class files.
• log.txt: A dump of your commit log from your version control system.
• a4.diff: A text file showing diff of changes to files that were submitted in the last assignment, obtained

from the version control system.
• written.txt/pdf: This file should contain your solution to the written problems.
• spiral.txt: This file should be a plain text file containing your solution to written problem 10.3 (spiral

critter program) and nothing else. It should be possible to load and parse the file with the ParseAndMutateApp
program from A3. It does not need to include the rest of the metadata included in critter files - just the
program.

• eat-and-bud.txt: This file should be a plain text file containing your solution to written problem 10.4
and nothing else. It should be possible to load and parse the file with the ParseAndMutateApp program
from A3. It does not need to include the rest of the metadata included in critter files - just the program.

CS 2112 Fall 2025 9/9 Assignment 4


	Updates
	Instructions
	Grading
	Final project
	Partners
	Restrictions
	Release
	Generative AI

	Design overview document
	Version control
	Interpretation
	Loading new critters
	Interpreting critter rules

	Simulation
	Loading world definitions
	Simulating the world

	User interface
	Adjustable Priority Queue
	Testing
	Written problems
	Overview of tasks
	Tips and tricks
	Submission

