CS 2112 Fall 2025
Assignment 2

Data Structures and Text Editing
Due: Tuesday, September 30, 11:59PM

Text editors must store large dictionaries of words and quickly access them when performing common
tasks such as word completion, spell checking, and text search. In this assignment you will implement core
data structures and algorithms for a simplified text editor. The first part introduces a generic hash table and
a prefix tree. The second part requires you to create plugins for a text editor that performs word completion
and spell checking.

The last part contains written problems focusing on the concepts introduced in class.
This assignment will take some time. Get started early!

Updates

® 9/19 - Clarify this is a solo assignment
® 9/23 - State that resizing down is not required for hash tables

1 Instructions
1.1 Grading

Submissions will be graded for design, correctness, testing, and style. A good design makes the imple-
mentation easy to understand and maximizes code sharing. A correct program compiles without errors or
warnings and behaves according to the requirements given here. A good test plan ensures good coverage
of features and edge cases. A program with good style is clear, concise, and easy to read.

A few suggestions regarding good style may be helpful. You should use brief but mnemonic variables
names and proper indentation. Your code should include comments as necessary to explain how it works,
but without explaining things that are obvious.

1.2 Collaboration

You must work alone for this assignment. The course staff are happy to help with any difficulties that might
arise. Use Ed for questions and don’t be shy about coming to office hours if you need help. You are also
welcome to discuss the assignment with other students, subject to the rules discussed on the website.

1.3 Documentation

For this assignment, we are especially looking for good documentation of the interfaces implemented by
your data structures. Write Javadoc-compliant comments that crisply explain what all the methods do at a
level of abstraction that enables a client to use your data structure effectively, while leaving out implemen-
tation details that a client does not need to know.

1.4 Restrictions

Your use of java.util will be restricted for this assignment. Classes from java.util, except for Scanner,
may not be used anywhere in your code except in a JUnit test suite (see §5). The class java.math.BigInteger
may not be used in your implementation either. Interfaces from java.util may be used anywhere in your
code to guide your internal data structures.

CS 2112 Fall 2025 1/10 Assignment 2

While we require that you respect any interfaces we release, you are allowed (and even expected) to
create your own classes and interfaces to solve portions of the assignment.

1.5 Generative Al

You are allowed to use Generative Al for this assignment only for writing test cases. However, you must
still write some test cases by hand. Furthermore, in our experience, test cases written by GenAlI are not
up to the standards expected by this course. Remember that course policy requires that you document all
prompts given to GenAl in README.pdf. Basic code completion in Intelli] is still permitted. Consult with
the course staff if you have specific questions.

1.6 Importing and Running

Download the release zip from CMSX and extract its contents to the place you keep your projects. In Intelli],
select File — Open and select the unzipped folder. Ensure your project is using Java 21 by choosing File
— Project Structure and checking to see that version 21 is selected under SDK.

Starting with this assignment, we will be using a system called Gradle in the release code. Gradle
automatically adds any dependencies into your project without the need to add them manually. Intelli]
should automatically build the project using Gradle.

Once the build is done, you will have to set up the run configuration for the project. On the right sidebar
of the IDE there will be an icon of an elephant that says Gradle when moused over, click on that. A sidebar
will open, select A2Release — Tasks — application — and then double click Run. This will run the project
and reveal the GUI you will be using. To stop running the project, close the GUI as you would any normal
computer application. To rerun the application, you should now just be able to select the green play arrow
at the top of the screen.

An alternative way to set up the run configuration is to click the drop-down menu to the left of the play
button at the top of the screen and click Edit Configurations. This will open up the Run/Debug Configurations
dialog. Now click the + on the top left of the screen and select Gradle. Then in the Name input box type some-
thing such as “Run A2”, then in the Run input field, simply type in “run”. Select Apply, then OK. You should
now be able to click the green play arrow to run the application.

1.7 Tips

In this assignment, you will be modifying an application with a graphical user interface (GUI). The appli-
cation has significant library dependencies because it builds on the JavaFX GUI library. To make sure you
don’t run into headaches right before the deadline, start early to make sure that you have the right setup to
successfully modify, compile, and run the application.

2 Hash tables

Your task in this section is to implement a hash table with chaining. The lecture notes on hash tables have
some helpful pointers, but we will also provide a high level overview here, since we won’t cover them for
a few more lectures.

A hash table is a data structure which maintains key—value pairs. Each key is mapped to an index in an
array using a hash function. Elements have a high probability of being hashed to unique indices, but in the
case of a collision (multiple elements mapping to the same index) elements can either be stored in the same
index through use of a linked list (chaining) or just stored in the next available index (probing).

The benefits of a hash table are that common data structure operations have a significantly better run
time in the average case. For example, lookup in an array is O(n) but for a hash table, it is O(1). You will
learn more about this in lecture, but getting a head start and understanding it on a high level can help with
this assignment.

CS 2112 Fall 2025 2/10 Assignment 2

https://andrewcmyers.github.io/oodds/lecture.html?id=hashtables

2.1 Collisions

You should use chaining to handle collisions. You are expected to keep track of the load factor and to resize
your table whenever the load factor crosses a threshold. A smart choice of load factor will keep memory
usage reasonable while avoiding collisions. You are only required to resize your hash table when the load
factor goes above a your chosen threshold. In other words, resizing down is not required.

2.2 Implementation

You will be implementing the class HashTable<K,V>. Your hash table should implement the interface
java.util.Map<K,V>, which is generic. The methods containsKey, get, put, and remove should have
expected O(1) (constant) running time. Your hash table should take up O(n) (linear) space, where n is the
number of entries in the hash table.

The HashTable<K, V> constructor takes an integer parameter numElements which should be used as a
hint to determine the starting number of buckets within the constructed object.

The implementation of the method keySet () should return an instance of an implementation of java.util.Set<K>
that supports the following methods: size(), isEmpty(), toArray(), and contains(Object). The re-
maining methods, including toArray(T[]), can throw an UnsupportedOperationException. The object
returned by this method must be updated automatically as the hash table is modified.

The method hashCode (), which is defined for every Java object, can be used by a hash function that you
create to compute the bucket in which to place each object. However, since hashCode () is not required to
produce results that behave as if they are random, you don’t want to use hashCode () directly to compute
the bucket index. For example, the default implementation of hashCode() returns the object’s memory
address, therefore only produces numbers that are multiples of 4. Another hash function is needed to
provide diffusion throughout the buckets. The class java.security.MessageDigest provides high-quality
hash functions that can be used for this purpose, although they are more expensive than necessary for most
applications. The course notes have tips on how to design a hashCode () method; see also this Wikipedia

page.
3 Prefix trees

A prefix tree, also known as a trie,! is a data structure tailored for storing and retrieving strings. The root
node represents the empty string.> Each possible next character branches to a different child node. Strings
stored in the trie must be inserted explicitly by the user; prefixes of such strings, although they occur along
paths in the trie, are not considered to be stored in the trie unless they have been explicitly inserted.

For example, the trie of Fig. 1 contains the four strings COW, CS, CS2110, and €S2112. The strings C, CS211,
CO, and the empty string, although they appear as prefixes of strings stored in the trie, are not considered
to be stored in the trie themselves.

If a string is stored in the trie, there is a unique node corresponding to that string and a unique path
from the root down to that node obtained by tracing the characters in the string. That node can contain a
boolean flag to indicate that that string has been stored in the trie. There is no need to store the string itself
at that node; the string can be recovered by tracing the path from the root down to that node, keeping track
of the characters along the way.

3.1 Implementation

Implement the provided Trie class. The operations insert, delete, and contains should have O(k)
running time, where k is the length of the string. In other words, the running time of these operations
should be proportional to the length of the given string. Your trie should also implement the method

IPronounced like “try”.
2Note that the empty string is "", the string of length 0, not nul1l.

CS 2112 Fall 2025 3/10 Assignment 2

https://docs.oracle.com/javase/10/docs/api/java/util/Map.html
https://docs.oracle.com/javase/10/docs/api/java/util/Map.html#containsKey(java.lang.Object)
https://docs.oracle.com/javase/10/docs/api/java/util/Map.html#get(java.lang.Object)
https://docs.oracle.com/javase/10/docs/api/java/util/Map.html#put(java.lang.Object,java.lang.Object)
https://docs.oracle.com/javase/10/docs/api/java/util/Map.html#remove(java.lang.Object)
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function

0 S
[
W
2
cow ®
I
[]
I
@,
0 2

Figure 1: A trie containing the strings COW, CS, CS2110, and CS2112.

closestWordToPrefix (), which returns the shortest entry in the trie having the given prefix. This shortest
string can be found using breadth-first search.

The method closestWordToPrefix() should be case-sensitive. For example, it should report CS2110 or
CS2112 if the argument is CS211, but not if the argument is cs211.

Your trie should be able to handle strings containing any character, not just alphanumeric characters.

4 Text editor

The text editor supports text search, spell checking, and autocompletion. These features are specified by the
interfaces SearchModule, SpellCheckModule, and AutoCompleteModule. You are to provide implementa-
tions. The factory class ModuleFactory contains factory methods that should access your implementations.
Instances returned from the factory methods are used by the main text editor program.

4.1 Architecture

The text editor project is broken up into three packages. The editor package contains the code for the user
interface. The modules package contains all of the plugins providing functionality for text search, spell
checking, and autocompletion. The util package contains all of the data structures you will implement.
These data structures store and manipulate data for the plugins. While all the code you are required to
write resides in the modules and util packages, you are welcome to look inside the editor package to get
a taste of graphical user interface (GUI) code.

4.2 Dictionary file

After the text editor is started, spell checking and autocompletion are unavailable until a dictionary file is
loaded. Any newline-separated list of words will work as a dictionary file. WinEdt provides such a file. On
Macintosh and most Linux distributions, a good dictionary file can be found at /usr/share/dict/words.
To load a dictionary file, click the top left button of the text editor.

CS 2112 Fall 2025 4/10 Assignment 2

http://mirror.ctan.org/systems/win32/winedt/dict/us.zip

4.3 User interaction

If your modules work correctly, word-completion suggestions from the autocomplete module should be
displayed in the lower-left corner of the editor window. Misspelled words should be highlighted if you
click the “check” button in the top left. To reset spell checking, click the adjacent “X” button. Additionally,
the time spent spell checking should be reported in the lower-right corner after each run of spell checking.
If you enter a string in the search window at the bottom and click the search button, the first occurrence of
this string should be highlighted.

4.4 Implementation

You should not modify any code in the editor package. The functionality for the editor will come from
your implementations of the interfaces in the modules package. Your implementation of these interfaces
should stand alone and follow the given specifications without modifications to the editor package.

Spell checking and autocompletion should both convert dictionary words to lowercase before being
entered. The text editor will automatically convert text from the GUI to lowercase before passing it into
getWordForPrefix or isValidWord. It does not do this for search queries, which should be case-sensitive.

5 Testing

In addition to the code you write for the data structures and text editor plugins, you should also submit
any tests that you write. Testing is a component of the grade for this assignment.

You should implement your test cases using JUnit, a framework for writing test suites. Intelli] makes
running JUnit tests very easy; just click the green arrow next to the test class name to run all tests, or run
individual test methods by clicking the green arrow next to the one you would like to run.

You should not only test whether the program works correctly from the command line interface, but
also write test cases for each of the data structures you implement.

Test cases should be placed in a top-level directory named src/test, whereas the rest of your imple-
mentation would be in src/main.

There are several good strategies for writing test cases. In black-box functional testing, the tester de-
fines input-output pairs in which the inputs provide good coverage of the input space. Each input is
accompanied by the expected output as defined by the specification. We expect you to define functional
test cases for your program as a whole and for each data structure you implement.

A second approach to testing is random testing, in which the inputs are generated randomly but in a
way that satisfies the preconditions. A random test case might generate a sequence of randomly chosen
inputs to a single method or to a randomly chosen method from a set of methods. This form of testing
can catch bugs simply when the code fails with an exception or assertion error. Often an effective way to
randomly test functional correctness is to test whether the behavior of the code matches that of a simple ref-
erence implementation on which the same operations are performed. For example, the java.util libraries
may be used to build simple reference implementations for each of the abstractions you are implementing.
We expect you to use random testing on at least one abstraction you develop in this assignment.

6 Performance and Correctness
Both correctness and performance are important when we evaluate how well the editor plugins work.

6.1 Performance

Performance analysis is a component of the grade for this assignment. You should choose data structure(s)
wisely to be efficient in both memory usage and run time. Justify your design in README. pdf.

CS 2112 Fall 2025 5/10 Assignment 2

In addition to providing a qualitative justification, you should conduct performance tests on your hash
table implementation by inserting random unique strings (the details of how these are generated are up to
you). For each of the following measurements, create a graph plotting it against the number of elements in
your hash table.

e Put time

® Get time

¢ Number of empty buckets
¢ Number of collisions

Hash table size should range from 0 to at least 100,000 elements, at intervals of at least 100. Additionally,
each data point should be the average of 5 timed method calls, (i.e. you should run 5 trials, each on a
different hash table instance, and average them to create your data points). Method calls should be timed
using System.nanoTime().

Include a line of best fit on each graph. Excel or Google Sheets can be helpful in creating these.

Include these graphs in the file perf.pdf, with a brief explanation of why your results show the follow-
ing properties of a good hash table implementation:

¢ The put and get methods are O(1).
¢ The hash function produces reasonable diffusion.

Be aware that Java programs run very slowly when they first start, because libraries are being loaded
and code is run in a slower, interpreted mode initially. Frequently used code is compiled “just in time” by
the JIT compiler to machine code that runs at least an order of magnitude faster. Try to collect performance
measurements only after the code being measured has run for 10 seconds.

6.1.1 Profiling

Inlab, we covered Visual VM and profiling, which can give a lot of insight about where time is being spent in
your code. You are encouraged to use profiling throughout your development process, but you are required
to profile your final product using VisualVM, and include a few paragraphs in README. pdf describing your
results and what they mean about the performance of your code.

Your response should include answers to the following questions:

* According to your CPU profiler results, which operation or code path in your hash table implementation
(other than put or get) consumes the most CPU time? Why do you think this is the case?

¢ How does resizing (rehashing) affect both CPU time and memory usage in your hash table? Approxi-
mately what fraction of total runtime and memory allocation does resizing account for in your tests?

* According to the memory profiler, which data structure or operation in your Trie implementation uses
the most memory? Explain why this occurs and whether it matches your expectations.

* Did you observe any unexpected CPU or memory performance bottlenecks in your data structures? If
so, what were they and how might you address them?

6.2 Correctness

A good way to see if your tests are actually festing your code well is to try and trace what branches of code
are executed. For instance, you may have inadvertently constructed a test suite that tests one method very
thoroughly, but that omits another method altogether. You also may could be always avoiding one buggy
else if statement that only executes for edge cases and all your tests pass because they bypass the bugs.
Regardless of whether you choose to approach testing from a randomized, glass or black box method, you
should always strive to make sure your code runs at least once in a test suite for sanity’s sake.

Tracing these branches manually can be rather difficult, but there are tools that can help you design
your tests to achieve better overall coverage of your code. IDEs like Intelli] often have built in coverage

CS 2112 Fall 2025 6/10 Assignment 2

https://visualvm.github.io/
https://www.jetbrains.com/help/idea/running-test-with-coverage.html#coverage-run-configurations

tools. These tools helpfully tell you exactly how much of your code is being executed in your unit tests.
You should use Run with Coverage to achieve as close to 100% coverage as possible on your tests for
HashTable.

To run a specific test with coverage, you should already have an existing active test/run configuration
that you wish to run with coverage. Then, you can select Run — Run <configuration> with Coverage
from the menu bar; it should look like a run with a shield icon. If the configuration runs as expected and
no coverage pops up, click into the edit run configuration window, and scroll all the way to the bottom to
add the specific directories that you are interested in tracing coverage for. Once you have successfully run
a test with coverage on, you should see a Coverage tab pop up. If not, you can go to View — Tool Windows
— Coverage to open it. The fourth button on the Coverage tool window will allow you to export your test
results as an HTML file; include this export in the Coverage/ subdirectory with your final submission in
your ZIP.

7 Written problems
7.1 Abstraction

The standard Java interface SortedSet describes a set whose elements have an ordering. Abstractly, the set
keeps its elements in sorted order. Here is a much simplified version:

1 /** A set of unique elements kept sorted in ascending order. */
2 interface SortedSet<T extends Comparable<T>> {

3 /** Effect: Add x to the set if it is not already there. */
4 void add(T x);

5

6 /** Tests whether x is in the set. */

7 boolean contains(T x);

8

9 /** Effect: Remove element x. */

10 void remove(T x);

11

12 /** Returns the first element in the set. */
13 T first(Q);

14 3}

1. The specifications of some of these methods are incomplete. Clearly identify the problems and write
better specifications for the methods that need to be improved. You may change method signatures if
you justify the change.

2. There are many ways to implement this set abstraction. One possibility is as a linked list data structure
in which there are no duplicates and the elements are kept in sorted order:

class SortedList<T extends Comparable<T>> implements SortedSet<T> {
Vadd
* A linked list of values starting at {@code head}, which may be {@code null}
* to represent an empty list.
* <p>Invariant: the list nodes starting from {@code head} have values in ascending
* sorted order with no duplicates.
:’:/
ListNode<T> head;
}

class ListNode<T extends Comparable<T>> {
T value;
ListNode<T> next;

ListNode(T v, ListNode<T> n) {

value = v;
next = n;

CS 2112 Fall 2025 7/10 Assignment 2

The SortedList implementation is obviously incomplete. Give the most efficient, concise code you can
to implement the first and remove methods, taking into account the representation and class invariant.

Now, suppose we want a different implementation UnsortedList that is similar to SortedList and uses
the same ListNode class, but has a much weaker class invariant:

class UnsortedList<T extends Comparable<T>> implements SortedSet<T> {
/:.‘7‘.‘
* A linked list of values starting at {@code head}, which may
* be {@code null} to represent an empty list.
%/
ListNode<T> head;

}...

UnsortedList should still correctly implement the SortedSet interface. Implement the add, first, and
remove methods as simply and concisely as you can, taking into account the representation and class
invariant.

Since SortedList and UnsortedList implement the same specification, the client should not be able to
tell which one is being used, except perhaps by timing.

Briefly discuss the advantages and disadvantages of each of these two implementations. Under what
conditions it would be more appropriate to use SortedList? ...UnsortedList?

7.2 Asymptotic complexity

Recall that a function f(n) is O(g(n)) if there exist positive constants k and ng such that for all n > ng, f(n) <
kg(n). The constants k and ny together are a witness to the fact that f(n) is O(g(n)).

5.

Consider the code snippet below. Give a tight bound on its time complexity using big-O notation, and
briefly justify your answer.

1 for (int i = 5; i < n; i++) {

2 if A%2==0 {

3 for (int j =i + 1; j <n; j+) {

4 for (int k = 7; k < 70000; k++) {

5 System.out.println("2112_is.great!");
6 }

7 }

8 }

9 1

Prove that n* Ign is O(n®). Be sure to specify a witness pair (k, n).
Prove that if f;(n) and f>(n) are both O(n?), then fi(n) + f>(n) is O(n?).

Is it true that 3 is O(3")? Give a witness if true, or prove that no such witness exists.

7.3 Hashing

9.

Show the state of the underlying array of a hash table, when implemented with chaining and then with
linear probing using a stride of 1. Assume the hash function is simply » modulo the length of the array.
The elements inserted into the array are 4, 15, 54, 43, 25, 42, 30, 2112, 2025, 21, 9, 65, 44, 219.

The initial length of the array is 5, and the maximum load factor for the chaining implementation is 2,
and for the probing implementation is 1. The array size is doubled when the maximum load factor is
reached. Assume that elements are rehashed in the order in which they were inserted.

CS 2112 Fall 2025 8/10 Assignment 2

8 Submission

You should submit these items on CMS:

* README.pdf: This file should contain your name, your netID, all known issues with your submitted code,
the names of anyone you discussed the assignment with (including clarifications from course staff), and
any other sources that should be acknowledged.

In addition, you should briefly describe your design, noting any interesting design decisions you encoun-
tered, and briefly discuss your testing strategy and profiling results. You can follow the design overview
guidelines on the course web site.

® written.txt or written.pdf: This file should include your response to the written problems.

e perf.pdf: This file should include your performance analysis.

® Source code: Please compress your code into a zip file with the following structure:

src
tmain
test
Coverage
Because this assignment is more open than the last, you should include all source code required to compile
and run your project. All source code should reside in the src directory with an appropriate package
structure. You should include code for all your test cases in test. Subpackages are permitted. Do not

include any .class files or any other extraneous files. Please export your code coverage report into a
subdirectory named Coverage in the root directory of your zip.

All . java files should compile and conform to the prototypes we gave you. We write our own classes
that use your classes’ public methods to test your code. Even if you do not use a method we require, you should
still implement it for our use.

9 Optional: Probabilistic Data Structures

This is not an official part of the assignment. No extra credit will be given, but you are welcome to give it a
try just for fun and good karma.

You may incorporate bloom filters into your text editor application as you see fit, but be careful not
to break any required functionality while doing so. Document anything you do that goes beyond what is
mandatory in your design overview.

9.1 Bloom Filters

A Bloom filter is a probabilistic constant-space data structure for maintaining a set of elements and testing
whether a given element is in the set. It is probabilistic in the sense that false positives may occur with
small probability (that is, an element may be reported to be in the set when it is not), but false negatives
never occur (that is, if an element is reported not to be in the set, then it is definitely not in the set).

An empty Bloom filter is a bit array of 0s. To insert an element into a Bloom filter, put the element
through k different hash functions. Use the results of these hash functions as indices into the bit array. Set
those k bits in the bit array to 1.

To determine if an element is in the Bloom filter, check all of its hash indices. If all of them are 1 in the
bit array, report that the element is in the set. If at least one of them is 0, report that the element is not in the
set.

If the objects contained in the Bloom filter are strings, the k different hash functions can be simulated
with a single hash function by appending a different single character (e.g., a,b, c,...) to the end of the string
before hashing.

CS 2112 Fall 2025 9/10 Assignment 2

https://courses.cs.cornell.edu/cs2112/2025fa/handouts/design-overview-guidelines.html
https://courses.cs.cornell.edu/cs2112/2025fa/handouts/design-overview-guidelines.html

9.1.1 Example of a false positive

Consider a Bloom filter for strings represented by a bit array of length 2, initially empty. Suppose only one
hash function is used to index strings. First, the string CS2112, whose (hypothetical) hash value is 0, was
inserted into the Bloom filter, setting the 0'" bit to 1 in the bit array. Now, to check whether CS2110, whose
hypothetical hash value is also 0, is in the Bloom filter, we check if the bit at position 0 is 1. Since this is the
case, we conclude that the Bloom filter does contain the String CS2110 when in fact it does not.

A larger bit array, more hash functions, and better quality hash functions all reduce the likelihood of
false positives.

9.2 Implementation

We have provided a BloomFilter class for you to implement if you choose to complete this optional part
of the assignment.

CS 2112 Fall 2025 10/10 Assignment 2

	Instructions
	Grading
	Collaboration
	Documentation
	Restrictions
	Generative AI
	Importing and Running
	Tips

	Hash tables
	Collisions
	Implementation

	Prefix trees
	Implementation

	Text editor
	Architecture
	Dictionary file
	User interaction
	Implementation

	Testing
	Performance and Correctness
	Performance
	Profiling

	Correctness

	Written problems
	Abstraction
	Asymptotic complexity
	Hashing

	Submission
	Optional: Probabilistic Data Structures
	Bloom Filters
	Example of a false positive

	Implementation

	Rhinoceroses

