Discussion 2 CS2112

September 6th/September 7th, 2022

Demo

Why Base-10 Works

$$147 = (100 * 1) + (10 * 4) + 7$$
$$= (10^{2} * 1) + (10^{1} * 4) + (10^{0} * 7)$$

abc ...
$$xyz = (10^n * a) + (10^{n-1} * b)$$
 ... $+ (10^1 * y) + 10^0 * z$

Why Base 2 Works: Binary Integers

```
147_{10} = (128 * 1) + (16 * 1) + (2 * 1) + 1
= (2^{7} * 1) + (2^{4} * 1) + (2^{1} * 1) + (2^{0} * 1)
= 10001011_{2}
```

Why Base 2 Works: Binary Integers

$$147_{10} = (128 * 1) + (16 * 1) + (2 * 1) + 1$$

$$= (2^{7} * 1) + (2^{4} * 1) + (2^{1} * 1) + (2^{0} * 1)$$

$$= 10001011_{2}$$
Most Significant Bit (MSB)

Each digit = 0 or 1 (bit = binary digit)

of bits in storage - 8 bit number

Exercise

Convert 7 and 11 to binary

Bitwise Operators

Operations on each bit of a number

Bitwise Operators: Complement

Flips each bit of the number

$$x = 0010$$

$$\sim x = 1101$$

Bitwise Operators: and, or, xor

$$x = 1010, y = 1100$$
And: $x & y = ??$
Or: $x | y = ??$
Xor: $x ^ y = ??$

Bitwise Operators: and, or, xor

$$x = 1010, y = 1100$$

And:
$$x \& y = 1000$$

Or:
$$x | y = 1110$$

Xor:
$$x ^ y = 0110$$

Two's Complement

Formal Definition:

A signed n-bit representation where the most significant bit stands for -2^{n-1} instead of 2^{n-1} . This ensures that x and -x always sum to 0 with normal binary addition.

$$b_{n-1}b_{n-2}...b_0$$

$$-b_{n-1}(2^{n-1}) + \sum_{i=0}^{n-2} b_i(2^i)$$

Two's Complement Example

$$11000001_{2} = -128 + 64 + 1$$

$$= -63$$

$$11111111_{2} = -128 + 64 + 32 + 16 + 8 + 4 + 2 + 1$$

$$= -1$$

Two's Complement Range

0 .. 127 128 .. 255 Unsigned representation

-128 .. -1 0 .. 127

Signed representation

Two's Complement Conversion

Converting to two's complement representation of -x can be done much more easily by flipping the bits of x, and adding 1

$$-1_{10}$$
= $-(00000001_2)$ $\rightarrow 111111110_2 + 1_2 = 111111111_2$

$$11000001_2 \rightarrow -(001111110_2 + 1_2) = -(001111111_2) = -63_{10}$$

Exercise

Convert 3 and -3 to two's complement

(Assume that the numbers are represented using 4 bits)

Verify that these two numbers sum to 0 in binary.

Bitwise Operators Deja Vu

Negation: flip bits using complement, then add 1.

$$x = 0010 = 2$$
 $\sim x = 1101 = -3$
 $\sim x + 1 = 1110 = -2$

Bitwise Operators: shift left

- Moves binary representation to left
 - Digits on left get thrown out
 - Zeros are appended on the right
 - Equivalent to multiplying by 2ⁿ

$$1011\ 0011\ 1000_{2} << 6 = 1110\ 0000\ 0000_{2}$$

Bitwise Operators: shift right arithmetic

- Moves binary representation to right
 - Digits on right get thrown out
 - MSB is appended on the left
 - Equivalent to dividing by 2ⁿ

$$1011\ 0011\ 1000_{2} >> 6 = 1111\ 1110\ 1100_{2}$$

Bitwise Operators: shift right logical

- Moves binary representation to right
 - Digits on right get thrown out
 - Zero is appended on the left
 - Equivalent to dividing by 2ⁿ

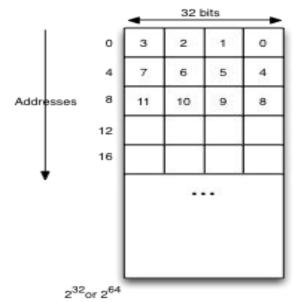
$$1011\ 0011\ 1000_{2} >>> 6 = 0000\ 0010\ 1100_{2}$$

Data Type Ranges

Data Type	Minimum	Maximum
int	-2 ³¹	2 ³¹ - 1
long	-2 ⁶³	2 ⁶³ - 1
short	-2 ¹⁵	2 ¹⁵ - 1
byte	-2 ⁷	2 ⁷ - 1
char	0	2 ¹⁶ - 1

Memory

- Computer memory is a grid with a bit stored in every cell
- Each address names a group of 8 bits (a byte)
- Computer memory can read the four bytes beginning at an address. These four bytes are called a word



Data Type Ranges

Data Type	Minimum	Maximum	Bits?	Bytes?
int	-2 ³¹	2 ³¹ - 1	??	??
long	-2 ⁶³	2 ⁶³ - 1	??	??
short	-2 ¹⁵	2 ¹⁵ - 1	??	??
byte	-2 ⁷	2 ⁷ - 1	??	??
char	0	2 ¹⁶ - 1	??	??

Data Type Ranges

Data Type	Minimum	Maximum	Bits?	Bytes?
int	-2 ³¹	2 ³¹ - 1	32	4
long	-2 ⁶³	2 ⁶³ - 1	64	8
short	-2 ¹⁵	2 ¹⁵ - 1	16	2
byte	-2 ⁷	2 ⁷ - 1	8	1
char	0	2 ¹⁶ - 1	16	2

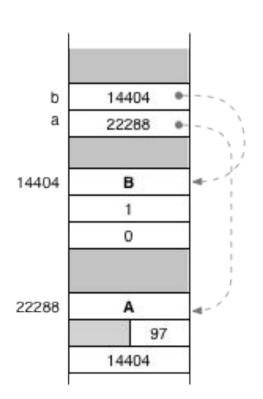
Variables

- Variables are assigned an integer number of words (even if it needs less space)
- char c = `a'; int i = 97long x = 1;

С	10012			0	97
х	10016	0	0	0	1
	10020	0	0	0	0

Objects

```
class A {
   char c;
    В у;
class B {
   long z;
B b = new B();
b.z = 1;
A a = new A();
a.c = 'a';
a.y = b;
```



Decimal Scientific Notation

- Consists of an integer n between 1 and 9
- A rational number r between 0 and 1
- A factor of 10 raised to an integer power i

n.r x 10ⁱ

 7.234×10^{-5}

How do we represent decimals?

 Real numbers can have infinite and non repeating representations, so they would take infinite memory to store (3.14159265358979323846264338327950288419716939 93751058209749445923078...)

How do we represent decimals?

- Real numbers can be approximated in Java using
 - Floats
 - Doubles

How do we represent decimals?

- Real numbers can be approximated in Java using
 - Floats
 - ~7 digits of precision
 - Roughly -10^{38} to 10^{38}

How do we represent decimals?

- Real numbers can be approximated in Java using
 - Doubles
 - ~17 digits of precision
 - **Roughly** -10^{308} to 10^{308}
 - Please, please use this over floats!

Consists of the following components:

- sign (s): 0 or 1
- exponent (exp): integer
- mantissa (m): sequence of binary digits such that $1 \le 1.m < 2$

 $(-1)^s \times 2^{exp} \times (1.m)$

Example

Convert 0.5 to its 1 byte floating point representation.

Here we will use 1 bit for the sign, 3 bits for the exponent and 4 bits for the mantissa

- $(-1)^s \times 2^{exp} \times (1.m)$
- $0.5 = (-1)^0 \times 2^{-1} \times (1.0)$
- $0.5_{10} \rightarrow 01110000_2$

Floating Point Pitfalls!!

- Due to precision related errors check for closeness instead of equality
 - o f1 == f2
 - \circ |f1 f2| < ε
- Floating point addition is not commutative
 - $0 1 + 10^{-40} 1 \neq 1 1 + 10^{-40}$
 - Roundoff error accumulates!