
ASTs, Regex, Parsing, and Pretty Printing
CS 2112 Fall 2016

1 Algebraic Expressions

To start, consider integer arithmetic. Suppose we have the following

1. The alphabet we will use is the digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

2. We will allow the unary operator (one argument) − for negation.

3. We will allow the binary operators:

+ addition
− subtraction
∗ multiplication
/ division

For ease and clarity of presentation, when we represent expressions as Ab-
stract Syntax Trees (AST), we will only allow for two children for a given
operation. In this is the maximum allowed, as we only have binary operators.
However, we will see ASTs later that will be more flexible.

Consider the following AST for integer algebra

∗

+

3 5

4

We parse it left to right, and bottom up, so it represents the expression

(3 + 5) ∗ 4

equally important, it is very much not

3 + 5 ∗ 4

Recitation 7 CS 2112 Fall 2016

Another example:

−

∗

+

3 5

/

32 2

This example represents the expression

−((3 + 5) ∗ (32/2))

Before continuing with more examples, lets revisit regular expressions.

2 Regular Expression Review

2.1 The “alphabet” of regular expressions

The alphabet of a regular expression is denoted by Σ. This set is what defines
what are “valid” components of the regular expression. For example,

1. Σ = {0, 1}
This is the alphabet of all binary strings, encoded as 0 ’s and 1 ’s.

2. Σ = {a, b, c}
This is the alphabet of all strings that contain either

i) all a’s

ii) all b’s

iii) all c’s

iv) all a’s and b’s

v) all a’s and c’s

2

Recitation 7 CS 2112 Fall 2016

vi) all b’s and c’s

vii) all a’s and b’s and c’s

As you can see, the ability to define the alphabet of a regular expression
using set notation is exceptionally convenient.

2.2 The Kleene Star (∗) is a post-fix operator

This operator represents 0 or more occurrences of whatever it operates on.
For example,

1. d∗ −→ {ε, d, dd, ddd, · · · }

2. (01)∗ −→ {ε, 01, 0101, 010101, · · · }

3. If Σ = {a, b}, then Σ∗ = {ε, a, b, ab, ba, aab, aba, baa, · · · }
where ε is the empty string. Later, we will use ∅ to represent the empty set.

2.3 A plus sign (+) represents a union

Recalling that regular expressions are sets, we use the notation

A + B −→ A ∪B

For example,

1. {a, b}+ {c, d} = {a, b, c, d}

2. {a, b, c}+ {b, c, d} = {a, b, c, d}
When we use +, it is a binary operator (it requires two arguments). Addi-
tionally, note that the unions produced do not have duplicated elements – in
the second example, we do not have duplicate b or c.

2.4 A dot product (·) represents a concatenation

We use the notation

A ·B −→ {xy | x ∈ A, y ∈ B}
For example,

1. {a, b} · {c, d} = {ac, ad, bc, bd}

2. {a, b, c} · {b, c, d} = {ab, ac, ad, bb, bc, bd, cb, cc, cd}

3

Recitation 7 CS 2112 Fall 2016

3 AST’s and regular expressions

Consider the AST

∗

+

a ·

·

b ∗

·

·

a ∗

b

a

b

This describes the regular expression

(a + b (ab∗a)∗ b)∗

which, when written as parsed from above with parentheses to group (paren-
theses colored to help hit be a little more understandable):

(a + ((b · ((a · b∗) · a)∗) · b))∗

4

Recitation 7 CS 2112 Fall 2016

4 Alternate interpretation

As it turns out, we can use (deterministic) finite state machines to represent
the regular expression presented in Section 3. The state machine would be
as follows:

Start S0 S1a

b a

b

ab

So in this example, the start state and the accept state (double circle) are
the same thing. Convince yourself that the regular expression

(a + b (ab∗a)∗ b)∗

is correctly represented by the finite state machine above by following the
arrows. For example, if we saw the string “ba” then we would go from the
“Start” state, to state “S0”, to state “S1”. This string would not be accepted
by the finite state machine, which is good because it is not described by the
regular expression.

On the other hand, consider the string “abbbabbbbbbbab”. Follow the edges
to see. The input will put you at the following states:

a b b b a b b b b b b b a b
Start S0 Start S0 S1 S1 S1 S1 S1 S1 S1 S1 S0 Start

So we can see that there is a direct relationship between the Kleene Star
and self-loops in a state machine. Abstract Syntax Trees and Finite State
Machines are both excellent conceptual models for understanding regular
expressions, but they are not the only ones. In fact, they are just barely the
tip of the iceberg!

5

Recitation 7 CS 2112 Fall 2016

5 Pretty Printing

When it comes to pretty printing ASTs, recursion should feel the most nat-
ural. Accompanying this PDF is a full version of the snippet below, in
PrettyPrint.java.

An excerpt from the program is sufficient for explaining the idea:

/* Class Node has

*

* Node[] children = new Node[2];

*

* where the following invariant is maintained:

*

* - Index 0 and 1 are null: terminal node

* - Index 0 has value and index 1 is null: unary operator

* - Index 0 is null and index 1 has value: post-fix operator

* - Index 0 and index 1 both have values: binary operator

*

* Clearly this tactic does not scale well, but illustrates the concept.

*/

public static void prettyPrint(Node n) {

// terminal nodes just get printed

if(n.isTerminal()) {

System.out.print(n);

}

// print the unary op followed by its only child

else if(n.isUnaryOp()) {

System.out.print(n);

prettyPrint(n.children[0]);

}

// post-fix operators get printed after their only child

else if(n.isPostFixOp()) {

prettyPrint(n.children[1]);

System.out.print(n);

}

// binary operators, print the left child first, the op, then right

else if(n.isBinaryOp()) {

System.out.print("(");

prettyPrint(n.children[0]);

6

Recitation 7 CS 2112 Fall 2016

System.out.print(" " + n + " ");

prettyPrint(n.children[1]);

System.out.print(")");

}

}

7

