
Poll Everywhere
 PollEv.com/javabear text javabear to 22333

(A)

(B)

(C)

(D)
1

assertEquals(2,med3(1,2,3))

On the left is a buggy med3() definition. Which JUnit
assertion will detect the bug?

/** Returns median of `a`, `b`, `c`. */
static int med3(int a, int b, int c) {
 if (a >= b) {
 return Math.max(b, c);
 } else if (a >= c) { // a < b
 return a;
 } else { // a is smallest
 return Math.min(b, c);
 }
}

assertEquals(2,med3(2,3,1))

assertEquals(2,med3(2,1,3))

assertEquals(2,med3(3,1,2))

CS 2110 2

Announcements

Lecture 4: Loop Invariants September 4, 2025

Assignment 1 due yesterday
• Grading now, should be completed by Monday

Assignment 2 released, due next Wednesday

Check your grades on the "Grades" tab on the course website
• Lecture participation, discussion grades, etc.
• We'll update this at least once per week
• Remember to choose your grade calculation by Monday!

CS 2110 3

Announcements

Lecture 4: Loop Invariants

Support Resources: (full list on website)
• Academic Excellence Workshop (AEW) Sections

• Engineering Tutors-on-Call program

• Office Hours, Ed Discussion, etc.

Please reach out if there's anything we can do to help!

January 29, 2026

CS 2110
January 29, 2026

Lecture 4: Loop Invariants

Today's Learning Outcomes

CS 2110 5

20. Describe the loop invariant of an iterative method involving an
array and visualize it using a diagram.

21. Use an array diagram to develop an iterative method.

22. Write precise specifications for methods involving arrays that use
range notation.

Lecture 4: Loop Invariants January 29, 2026

CS 2110 6

Loop Anatomy

Lecture 4: Loop Invariants January 29, 2026

CS 2110 7

while Loops

Lecture 4: Loop Invariants January 29, 2026

CS 2110 8

Range Notation

Lecture 4: Loop Invariants January 29, 2026

Poll Everywhere
 PollEv.com/javabear text javabear to 22333

(A)

(B)

(C)

(D)
9

4

5

6

7

If a.length == 8, how many elements belong to
the range a(1..) ?

CS 2110 10

Range Properties and Array Diagrams

Lecture 4: Loop Invariants January 29, 2026

CS 2110 11

Writing "Loopy" Code

Lecture 4: Loop Invariants

/** Returns # of occurrences of `key` among the elements in array `a`. */
static int frequencyOf(int key, int[] a) { ... }

January 29, 2026

CS 2110 12

(Loop) Invariants

Lecture 4: Loop Invariants January 29, 2026

CS 2110 13

Developing a Loop: Initialization

Lecture 4: Loop Invariants

/** Returns the # of occurrences of `key` among the elements in array `a`.*/
static int frequencyOf(int key, int[] a) {

 /* Loop invariant: `count` = # of occurrences of `key` in `a[..i)` */
 while (…) { … }
}

January 29, 2026

Poll Everywhere
 PollEv.com/javabear text javabear to 22333

(A)

(B)

(C)

(D)
14

loop invariant is true loop guard is true

loop invariant is false loop guard is true

loop invariant is false loop guard is false

Which of these is true immediately after we fall
through the loop body?

loop invariant is true loop guard is false

CS 2110 15

Developing a Loop: Guard

Lecture 4: Loop Invariants

/** Returns the # of occurrences of `key` among the elements in array `a`.*/
static int frequencyOf(int key, int[] a) {
 int i = 0; // next index of `a` to check
 int count = 0;
 /* Loop invariant: `count` = # of occurrences of `key` in `a[..i)` */
 while () { … }

}

January 29, 2026

CS 2110 16

Developing a Loop: Body

Lecture 4: Loop Invariants

int i = 0; int count = 0;
/* Loop invariant: `count` = # of occurrences of `key` in `a[..i)` */
while (i < a.length) {

}

January 29, 2026

CS 2110 17

Back to the Array Diagrams

Lecture 4: Loop Invariants January 29, 2026

CS 2110 18

Example 2: argmin()

Lecture 4: Loop Invariants

/** Returns an *index* of the minimum element in `a`.
 * Requires that `a.length > 0`. */
static int argmin(double[] a) { ... }

What do we need to keep track of?

argmin(new double[]{1.0, 3.5, 4.2, 0.7, 6.3, 2.8}) =

January 29, 2026

CS 2110 19

argmin() Array Diagrams

Lecture 4: Loop Invariants January 29, 2026

CS 2110

Coding Demo:

20

argmin()

Lecture 4: Loop Invariants January 29, 2026

CS 2110 21

Example 3: paritySplit()

Lecture 4: Loop Invariants

/** Rearranges `a` so that all even elements appear before all odd elements.
 * Returns the index of the first odd element, or `a.length` if all elements
 * are even. */
static int paritySplit(int[] a) { ... }

January 29, 2026

CS 2110 22

paritySplit() Array Diagrams

Lecture 4: Loop Invariants January 29, 2026

CS 2110

Coding Demo:

23

paritySplit()

Lecture 4: Loop Invariants January 29, 2026

CS 2110 24

paritySplit() Loop Body

Lecture 4: Loop Invariants January 29, 2026

CS 2110 25

Review: Steps for Developing Loops

Lecture 4: Loop Invariants

1. Identify the local variables.
2. Draw out the “Pre” and “Post” array diagrams.
3. Draw the “Inv” array diagram

• Hybridizes "Pre" and "Post" diagrams
• Incorporates all local variables

4. Write the loop invariant.
5. Slide the “Inv” → "Pre" to write initialization
6. Slide “Inv” → "Post" to write loop guard, post-loop code
7. Develop the loop body

• Make progress toward the post-condition
• Re-establishes the loop invariant

January 29, 2026

