Temperature Check

On a scale of 1-10, where 10
IS the most stressed out,
how are you doing today?

Whyyes, lama hil stresseidl.

PollEv.com/leahp
text leahp to 22333

\

& - - LS
: - " Y
>
- {, \
- ”- » 1
- e B e - "
- _ 5 - -~ .
> ~ 4 - n - - X - -
-~ o .
< ¢ - £
- - -
- = e e G S
SR~ — : LS Wie Fu
By A ey gn v O e s A o~ P
v . - y - 3 o~ jutkmeme conl

CS 2110 Lecture 25: Event-Driven Programming November 20, 2025

Lecture 25: Event Driven Programming

CS 2110, Matt Eichhorn and Leah Perlmutter
November 20, 2025

Roadmap

Java, Complexity, OOP Beyond ADTs
e start- 9/30 * Graphical User Interfaces &
Event-Driven Programming
ADTs | *11/18, 11/20
* List, Stack, Queue, * Parallel Programming
teration
¢ 10/2 -10/16 * 11/25,12/2

e Data Structures and Social

ADTs I Implications
* Trees, Set, Map, Hash e 12/4
Table, Graph

e Tues 10/21-11/13

CS 2110 Lecture 25: Event-Driven Programming November 20, 2025

Swing Resources

* Swing Documentation — make use of the
search bar!

e SwingsSet2 — interactive gallery of different
widgets, with source code demonstrating
how to create them

* AVisual Guide to Layout Managers —tutorial
explaining the different layouts available

* Swing Tutorial

CS 2110 Lecture 25: Event-Driven Programming November 20, 2025

https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/javax/swing/package-summary.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/javax/swing/package-summary.html
https://www.jdeploy.com/~jdeploy-demo-swingset2
https://www.jdeploy.com/~jdeploy-demo-swingset2
https://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html
https://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html
https://docs.oracle.com/javase/tutorial/uiswing/index.html
https://docs.oracle.com/javase/tutorial/uiswing/index.html

Overview of today

Introduction (Tuesday)
TicTacToeGraphical (Tuesday)

* Review code for game logic

* VVisual components

TicTacToe (Thursday)

* Event-Driven Programming

* Swing Event Loop

* Implementing Listeners and Callbacks

CS 2110 Lecture 25: Event-Driven Programming November 20, 2025

Tic Tac Toe Application

Ingredients for Graphical Applications

What’s in a GUI? =

Y Accept user input, interaCtiOn _ It's your turn Player X. Select a cell to claim.
Controller

* Reset the game - Controller
* Display images in color - View

* Backend that stores state of game,
connected to visual component - Model

* Display text - View

CS 2110 Lecture 25: Event-Driven Programming November 20, 2025

Model View Controller (MVC)

Model (backend)

* objects underlying application state, The model, view, and
including methods that access and controller must connect
modify state to each other for the

application to work, but
the more we can

View (frontend)

e stuff shown on the screen for the minimize coupling,
application making each component
as self-contained as

, . possible, the easieritis
* logic that responds to user inputs (aka to maintain our program.

events) by updating model and view

Controller

CS 2110 Lecture 25: Event-Driven Programming November 20, 2025

Hierarchical design

JFrame

()
LN

JLabel JButton JPanel

O) o
LN

JButton JButton JButton

[llustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110 Lecture 25: Event-Driven Programming

O Tic Tac Toe -1

It's your turn Player X. Select a cell to claim.

November 20, 2025

Hierarchical design

JFrame

()
N

JLabel JButton JPanel

O) o
LN

JButton JButton JButton

[llustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110 Lecture 25: Event-Driven Programming

Tic Tac Toe

It's your turn Player X. Select a cell to claim.

November 20, 2025

Hierarchical design

JFrame

()
LN

JLabel JButton JPanel

O O o
LN

JButton JButton JButton

[llustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110 Lecture 25: Event-Driven Programming

O Tic Tac Toe -1

It's your turn Player X. Select a cell to claim.

November 20, 2025

Hierarchical design

JFrame

()
LN

JLabel JButton JPanel

O O o
LN

JButton JButton JButton

[llustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110 Lecture 25: Event-Driven Programming

Tic Tac Toe

It's your turn Player X. Select a cell to claim.

~

November 20, 2025

Hierarchical design

JFrame

()
N

JLabel JButton JPanel

() O o
LN

JButton JButton JButton

[llustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110 Lecture 25: Event-Driven Programming

O Tic Tac Toe

It's your turn Player X. Select a cell to claim.

November 20, 2025

Hierarchical design

JFrame

()
LN

JLabel JButton JPanel

O) o
LN

JButton JButton JButton

[llustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110 Lecture 25: Event-Driven Programming

O Tic Tac Toe
It's your turn Player X. Select a cell to claim.

~

[Reset

November 20, 2025

Hierarchical design

JFrame

()
LN

JLabel JButton JPanel

O) o
LN

JButton JButton JButton

[llustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110 Lecture 25: Event-Driven Programming

O Tic Tac Toe -1

It's your turn Player X. Select a cell to claim.

November 20, 2025

Hierarchical design

JFrame

()
LN

JLabel JButton JPanel

O) o
LN

JButton JButton JButton

[llustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110 Lecture 25: Event-Driven Programming

O Tic Tac Toe -1

It's your turn Player X. Select a cell to claim.

November 20, 2025

Event-Driven Programming

Declarative Programming

Imperative Programming

* Most of 2110 up until now

* Implementer specifies which instructions should be
executed in which order

* At runtime, instructions are followed to produce the
program's output or achieve its desired side-effects

Declarative Programming

* Implementer specifies the desired outcome of their
code

* At runtime, the way to achieve these outcomes is
determined and carried out behind the scenes

CS 2110 Lecture 25: Event-Driven Programming

“Do XthendoYthendoZ”

“When you do this, here’s
how it must come out”

November 20, 2025

Event-Driven Programming

Event

* An occurrence that could necessitate a change in program
state

Event-Driven Program (aka Responsive Program)

* Program that executes certain code in response to events

CS 2110 Lecture 25: Event-Driven Programming November 20, 2025

Ingredients for Event-Driven Programming

Events

e An occurrence that could necessitate a
change in program state

Callbacks

 Code to update the model and view under
certain conditions

 Can be passed around and invoked later
Associations between Events and Callbacks

e Code that records which kinds of events
should cause each callback to be called

Event Loop

e Code that detects events and executes the
associated callbacks

CS 2110 Lecture 25: Event-Driven Programming

Events invoked by the user
activating a view Component, e.g. by
clicking it
keyboard events, e.g. Ctrl+Q
mouse events, e.g. entering or exiting a
certain region of the screen

Events invoked from within the code

« methods called with invokelLater()

Event loop needs to execute very fast or the

view will freeze up

* Any callbackthattakes a "long time" needs
to happen concurrently with the execution
of the event loop (Concurrency: coming
soon!)

November 20, 2025

Ingredients for Event-Driven Programming

Events

e An occurrence that could necessitate a
change in program state

Callbacks

 Code to update the model and view under
certain conditions

 Can be passed around and invoked later
Associations between Events and Callbacks

e Code that records which kinds of events
should cause each callback to be called

Event Loop

e Code that detects events and executes the
associated callbacks

CS 2110 Lecture 25: Event-Driven Programming

Inversion of control

 custom subroutines allow an external
entity (such as a framework’s event loop)
to control when they are executed

Observer pattern

* Units of code called observers register
with a central module which notifies them
of relevant state changes by calling one of
their methods

November 20, 2025

Swing Event Loop

| Thread
M an entity that executes a sequence of
main() instructions

can operate concurrently with other threads (in
parallel / at the same time as)
more on this next week!

Swing Event Loop

Event
> 4
. - Listener
(Main Thread) SwingUtilities 7
, > invokelater() -9
main()
(Event Dispatch Thread) Event
Construct the view/model LOOp
Event
ALS
\\

Source

Program termi>

Ingredients for Event-Driven Programming

Events

e An occurrence that could necessitate a
change in program state

Callbacks

 Code to update the model and view under
certain conditions

 Can be passed around and invoked later
Associations between Events and Callbacks

e Code that records which kinds of events
should cause each callback to be called

Event Loop

e Code that detects events and executes the
associated callbacks

CS 2110 Lecture 25: Event-Driven Programming November 20, 2025

Events, Listeners, and Components

Event and

source

KeyEvent
from keyboard

MouseEvent
from mouse or
touchpad

ActionEvent
from Button

CS 2110

Example Listener Callbacks to Implement Type that can have
Type this kind of listener
added to it

Keylistener void keyPressed(KeyEvent e) Component
void keyReleased(KeyEvent e)
void keyTyped(KeyEvent e)

MouseMotionlistener void mouseDragged(MouseEvente) Component
void mouseMoved(MouseEvent e)

Actionlistener void actionPerformed(ActionEvent €) JButton

Lecture 25: Event-Driven Programming November 20, 2025

https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/event/KeyEvent.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/event/KeyListener.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/Component.html#addKeyListener(java.awt.event.KeyListener)
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/event/MouseEvent.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/event/MouseMotionListener.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/Component.html#addKeyListener(java.awt.event.KeyListener)
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/event/ActionEvent.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/event/ActionListener.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/javax/swing/JButton.html

Creating Listeners and Callbacks

Demo: Reset Listener

Variable Capture -- An anonymous class
or lambda expression can capture a
variable declared within a surrounding
scope, making the value of that variable
accessible within

CS 2110 Lecture 25: Event-Driven Programming November 20, 2025

Ingredients for Event-Driven Programming

Events

* An occurrence that could necessitate a change
in program state

Callbacks

 Code to update the model and view under
certain conditions

 Can be passed around and invoked later
Associations between Events and Callbacks

e Code that records which kinds of events should
cause each callback to be called

Event Loop
e Code that detects events and executes the

C3 2110 Leciure 25: Event-Driven Programming November 20, 2025

Poll: Action Listeners

Which line associates an

_ 1 | class App extends JFrame
event with a callback? 5 implements {
A) 10 2
B) 2 3 public App() {
C) 6 4 button = new JButton("B");
D) None of the above > add(button);
| 6 button.addActionListener(this);
7 }
3
9 @Override
10| public void actionPerformed(e) {
11 print("Got " + e.getActionCommand()
12 + " from " + e.getSource());
- 13 }
PollEv.com/leahp 14|}

text leahp to 22333

CS 2110 Lecture 25: Event-Driven Programming November 20, 2025

Poll: Action Listeners

Which line associates an
event with a callback?

A) 10
B) 2
C) 6
D) None of the above

As a result of line 10, any
ActionEvent associated
with but ton will cause
App.actionPerformed ()
to get called with the event
passed in as its argument.

O 00O NOUT A~ WDNDNBRE

}

class App extends JFrame
implements ActionListener {

public App() {
JButton button = new JButton("B");

add(button);
button.addActionlListener(this);

}

@Override
public void actionPerformed(ActionEvent e) {

print("Got " + e.getActionCommand()
+ " from " + e.getSource());

}

CS 2110 Lecture 25: Event-Driven Programming November 20, 2025

Cell Action Listener

Code Demo

CS 2110 Lecture 25: Event-Driven Programming November 20, 2025

Whose turnis it?

Problem: the turnLabel needs to know
when the turn changes

Solution: Property Changes

CS 2110 Lecture 25: Event-Driven Programming November 20, 2025

Exercise

How could we make the
available cells turn light gray
when the mouse is over them?

e which events to listen for?

* how to set up the listeners?

any additional state?
* how to turn a component gray?

Use the documentation to figure it out!

CS 2110 Lecture 25: Event-Driven Programming

Ingredients

* Mouselistener: implement
mouseEntered() and mouseExited()

 hover field of cell, initialize to false,
create setter

* create Color field HOVER_COLOR

* cell.paintComponent() -- check for
hover to determine background color

* when adding symbolto cell, set hover
to false before repainting

November 20, 2025

Metacognition

* Take 1 minute to write down a brief summary
of what you have learned today

CS 2110 Lecture 25: Event-Driven Programming November 20, 2025

	Slide 1:  Temperature Check
	Slide 2: Lecture 25: Event Driven Programming
	Slide 3:  Roadmap
	Slide 4:  Swing Resources
	Slide 5:  Overview of today
	Slide 6: Tic Tac Toe Application
	Slide 7:  Ingredients for Graphical Applications
	Slide 8:  Model View Controller (MVC)
	Slide 9:  Hierarchical design
	Slide 10:  Hierarchical design
	Slide 11:  Hierarchical design
	Slide 12:  Hierarchical design
	Slide 13:  Hierarchical design
	Slide 14:  Hierarchical design
	Slide 15:  Hierarchical design
	Slide 16:  Hierarchical design
	Slide 17: Event-Driven Programming
	Slide 18:  Declarative Programming
	Slide 19:  Event-Driven Programming
	Slide 20:  Ingredients for Event-Driven Programming
	Slide 21:  Ingredients for Event-Driven Programming
	Slide 22: Swing Event Loop
	Slide 23: Swing Event Loop
	Slide 24:  Ingredients for Event-Driven Programming
	Slide 25:  Events, Listeners, and Components
	Slide 26:  Creating Listeners and Callbacks
	Slide 27:  Ingredients for Event-Driven Programming
	Slide 28:  Poll: Action Listeners
	Slide 29:  Poll: Action Listeners
	Slide 30:  Cell Action Listener
	Slide 31:  Whose turn is it?
	Slide 32:  Exercise
	Slide 33:  Metacognition

