
CS 2110 1Lecture 25: Event-Driven Programming November 20, 2025

Temperature Check
On a scale of 1-10, where 10
is the most stressed out,
how are you doing today?

PollEv.com/leahp
text leahp to 22333

Picture: https://elgl.org/treat-yourself-caring-for-you-during-covid-19/stressed-meme/

No correct answer. 7, 8, and 11 were the most
common answers. Don’t forget to focus on self care
during this difficult time of the semester!

CS 2110
November 20, 2025

CS 2110, Matt Eichhorn and Leah Perlmutter

Lecture 25: Event Driven Programming

CS 2110 3Lecture 25: Event-Driven Programming November 20, 2025

Roadmap

Java, Complexity, OOP
• start– 9/30

ADTs I
• List, Stack, Queue,

Iteration
• 10/2 – 10/16

ADTs II
• Trees, Set, Map, Hash

Table, Graph
• Tues 10/21- 11/13

Beyond ADTs
• Graphical User Interfaces &

Event-Driven Programming
• 11/18, 11/20

• Parallel Programming
• 11/25, 12/2

• Data Structures and Social
Implications
• 12/4

CS 2110 4Lecture 25: Event-Driven Programming November 20, 2025

Swing Resources

• Swing Documentation – make use of the
search bar!

• SwingSet2 – interactive gallery of different
widgets, with source code demonstrating
how to create them

• A Visual Guide to Layout Managers – tutorial
explaining the different layouts available

• Swing Tutorial

https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/javax/swing/package-summary.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/javax/swing/package-summary.html
https://www.jdeploy.com/~jdeploy-demo-swingset2
https://www.jdeploy.com/~jdeploy-demo-swingset2
https://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html
https://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html
https://docs.oracle.com/javase/tutorial/uiswing/index.html
https://docs.oracle.com/javase/tutorial/uiswing/index.html

CS 2110 5Lecture 25: Event-Driven Programming November 20, 2025

Overview of today

Introduction (Tuesday)
TicTacToeGraphical (Tuesday)
• Review code for game logic
• Visual components
TicTacToe (Thursday)
• Event-Driven Programming
• Swing Event Loop
• Implementing Listeners and Callbacks

CS 2110Tic Tac Toe Application

CS 2110 7Lecture 25: Event-Driven Programming November 20, 2025

Ingredients for Graphical Applications
What’s in a GUI?
• Accept user input, interaction -

Controller
• Reset the game - Controller
• Display images in color - View
• Backend that stores state of game,

connected to visual component - Model
• Display text - View

CS 2110 8Lecture 25: Event-Driven Programming November 20, 2025

Model View Controller (MVC)

Model (backend)
• objects underlying application state,

including methods that access and
modify state

View (frontend)
• stuff shown on the screen for the

application
Controller
• logic that responds to user inputs (aka

events) by updating model and view

The model, view, and
controller must connect
to each other for the
application to work, but
the more we can
minimize coupling,
making each component
as self-contained as
possible, the easier it is
to maintain our program.

CS 2110 9Lecture 25: Event-Driven Programming November 20, 2025

Hierarchical design

Illustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110 10Lecture 25: Event-Driven Programming November 20, 2025

Hierarchical design

Illustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110 11Lecture 25: Event-Driven Programming November 20, 2025

Hierarchical design

Illustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110 12Lecture 25: Event-Driven Programming November 20, 2025

Hierarchical design

Illustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110 13Lecture 25: Event-Driven Programming November 20, 2025

Hierarchical design

Illustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110 14Lecture 25: Event-Driven Programming November 20, 2025

Hierarchical design

Illustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110 15Lecture 25: Event-Driven Programming November 20, 2025

Hierarchical design

Illustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110 16Lecture 25: Event-Driven Programming November 20, 2025

Hierarchical design

Illustration of how components are hierarchically
nested in our TicTacToe application. (This is not an
inheritance diagram.)

CS 2110Event-Driven Programming

CS 2110 18Lecture 25: Event-Driven Programming November 20, 2025

Declarative Programming

Imperative Programming
• Most of 2110 up until now
• Implementer specifies which instructions should be

executed in which order
• At runtime, instructions are followed to produce the

program's output or achieve its desired side-effects

Declarative Programming
• Implementer specifies the desired outcome of their

code
• At runtime, the way to achieve these outcomes is

determined and carried out behind the scenes

“Do X then do Y then do Z”

“When you do this, here’s
how it must come out”

CS 2110 19Lecture 25: Event-Driven Programming November 20, 2025

Event-Driven Programming

Event
• An occurrence that could necessitate a change in program

state

Event-Driven Program (aka Responsive Program)
• Program that executes certain code in response to events

CS 2110 20Lecture 25: Event-Driven Programming November 20, 2025

Ingredients for Event-Driven Programming
Events invoked by the user
• activating a view Component, e.g. by

clicking it
• keyboard events, e.g. Ctrl+Q
• mouse events, e.g. entering or exiting a

certain region of the screen
Events invoked from within the code
• methods called with invokeLater()

Event loop needs to execute very fast or the
view will freeze up
• Any callback that takes a "long time" needs

to happen concurrently with the execution
of the event loop (Concurrency: coming
soon!)

Events
• An occurrence that could necessitate a

change in program state
Callbacks
• Code to update the model and view under

certain conditions
• Can be passed around and invoked later
Associations between Events and Callbacks
• Code that records which kinds of events

should cause each callback to be called
Event Loop
• Code that detects events and executes the

associated callbacks

CS 2110 21Lecture 25: Event-Driven Programming November 20, 2025

Ingredients for Event-Driven Programming
Events
• An occurrence that could necessitate a

change in program state
Callbacks
• Code to update the model and view under

certain conditions
• Can be passed around and invoked later
Associations between Events and Callbacks
• Code that records which kinds of events

should cause each callback to be called
Event Loop
• Code that detects events and executes the

associated callbacks

Inversion of control
• custom subroutines allow an external

entity (such as a framework’s event loop)
to control when they are executed

Observer pattern
• Units of code called observers register

with a central module which notifies them
of relevant state changes by calling one of
their methods

Swing Event Loop

main()

(Main Thread)
Thread
• an entity that executes a sequence of

instructions
• can operate concurrently with other threads (in

parallel / at the same time as)
• more on this next week!

Swing Event Loop

main()

SwingUtilities
.invokeLater()

(Event Dispatch Thread)

Construct the view/model

Event
Loop

I was clicked!

Thanks for
letting me know!

Event

Event

Source

Listener

Program terminates

(Main Thread)

CS 2110 24Lecture 25: Event-Driven Programming November 20, 2025

Ingredients for Event-Driven Programming
Events
• An occurrence that could necessitate a

change in program state
Callbacks
• Code to update the model and view under

certain conditions
• Can be passed around and invoked later
Associations between Events and Callbacks
• Code that records which kinds of events

should cause each callback to be called
Event Loop
• Code that detects events and executes the

associated callbacks

CS 2110 25Lecture 25: Event-Driven Programming November 20, 2025

Events, Listeners, and Components

Event and
source

Example Listener
Type

Callbacks to Implement Type that can have
this kind of listener
added to it

KeyEvent
from keyboard

KeyListener void keyPressed(KeyEvent e)
void keyReleased(KeyEvent e)
void keyTyped(KeyEvent e)

Component

MouseEvent
from mouse or
touchpad

MouseMotionListener void mouseDragged(MouseEvent e)
void mouseMoved(MouseEvent e)

Component

ActionEvent
from Button

ActionListener void actionPerformed(ActionEvent e) JButton

https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/event/KeyEvent.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/event/KeyListener.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/Component.html#addKeyListener(java.awt.event.KeyListener)
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/event/MouseEvent.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/event/MouseMotionListener.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/Component.html#addKeyListener(java.awt.event.KeyListener)
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/event/ActionEvent.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/java/awt/event/ActionListener.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.desktop/javax/swing/JButton.html

CS 2110 26Lecture 25: Event-Driven Programming November 20, 2025

Creating Listeners and Callbacks

Demo: Reset Listener

Variable Capture -- An anonymous class
or lambda expression can capture a
variable declared within a surrounding
scope, making the value of that variable
accessible within

CS 2110 27Lecture 25: Event-Driven Programming November 20, 2025

Ingredients for Event-Driven Programming
Events
• An occurrence that could necessitate a change

in program state
Callbacks
• Code to update the model and view under

certain conditions
• Can be passed around and invoked later
Associations between Events and Callbacks

• Code that records which kinds of events should
cause each callback to be called

Event Loop
• Code that detects events and executes the

associated callbacks

CS 2110 28Lecture 25: Event-Driven Programming November 20, 2025

Poll: Action Listeners
Which line associates an
event with a callback?
A) 10
B) 2
C) 6
D) None of the above

1 | class App extends JFrame

2 | implements ActionListener {

2 |

3 | public App() {

4 | JButton button = new JButton("B");

5 | add(button);

6 | button.addActionListener(this);

7 | }

8 |

9 | @Override

10| public void actionPerformed(ActionEvent e) {

11| print("Got " + e.getActionCommand()
12| + " from " + e.getSource());

13| }

14|}PollEv.com/leahp
text leahp to 22333

CS 2110 29Lecture 25: Event-Driven Programming November 20, 2025

Poll: Action Listeners
Which line associates an
event with a callback?
A) 10
B) 2
C) 6
D) None of the above

As a result of line 10, any
ActionEvent associated
with button will cause
App.actionPerformed()
to get called with the event
passed in as its argument.

1 | class App extends JFrame

2 | implements ActionListener {

2 |

3 | public App() {

4 | JButton button = new JButton("B");

5 | add(button);

6 | button.addActionListener(this);

7 | }

8 |

9 | @Override

10| public void actionPerformed(ActionEvent e) {

11| print("Got " + e.getActionCommand()
12| + " from " + e.getSource());

13| }

14|}

CS 2110 30Lecture 25: Event-Driven Programming November 20, 2025

Cell Action Listener

Code Demo

CS 2110 31Lecture 25: Event-Driven Programming November 20, 2025

Whose turn is it?

Problem: the turnLabel needs to know
when the turn changes

Solution: Property Changes

CS 2110 32Lecture 25: Event-Driven Programming November 20, 2025

Exercise
How could we make the
available cells turn light gray
when the mouse is over them?

• which events to listen for?
• how to set up the listeners?
• any additional state?
• how to turn a component gray?

Use the documentation to figure it out!

Ingredients
• MouseListener: implement

mouseEntered() and mouseExited()
• hover field of cell, initialize to false,

create setter
• create Color field HOVER_COLOR
• cell.paintComponent() -- check for

hover to determine background color
• when adding symbol to cell, set hover

to false before repainting

CS 2110 33

Metacognition

• Take 1 minute to write down a brief summary
of what you have learned today

Thanks and have a great day!

Lecture 25: Event-Driven Programming November 20, 2025

	Slide 1:  Temperature Check
	Slide 2: Lecture 25: Event Driven Programming
	Slide 3:  Roadmap
	Slide 4:  Swing Resources
	Slide 5:  Overview of today
	Slide 6: Tic Tac Toe Application
	Slide 7:  Ingredients for Graphical Applications
	Slide 8:  Model View Controller (MVC)
	Slide 9:  Hierarchical design
	Slide 10:  Hierarchical design
	Slide 11:  Hierarchical design
	Slide 12:  Hierarchical design
	Slide 13:  Hierarchical design
	Slide 14:  Hierarchical design
	Slide 15:  Hierarchical design
	Slide 16:  Hierarchical design
	Slide 17: Event-Driven Programming
	Slide 18:  Declarative Programming
	Slide 19:  Event-Driven Programming
	Slide 20:  Ingredients for Event-Driven Programming
	Slide 21:  Ingredients for Event-Driven Programming
	Slide 22: Swing Event Loop
	Slide 23: Swing Event Loop
	Slide 24:  Ingredients for Event-Driven Programming
	Slide 25:  Events, Listeners, and Components
	Slide 26:  Creating Listeners and Callbacks
	Slide 27:  Ingredients for Event-Driven Programming
	Slide 28:  Poll: Action Listeners
	Slide 29:  Poll: Action Listeners
	Slide 30:  Cell Action Listener
	Slide 31:  Whose turn is it?
	Slide 32:  Exercise
	Slide 33:  Metacognition

