Review poll

In a Map backed by a balanced binary search
tree, what is the worst-case time complexity of
the get() method? Express your answer in terms
of N, the number of entries in the Map.

a) O(1) PollEv.com/leahp
b) O(log N) text leahp to 22333
c) O(N)

d) O(N?)

e) None of the above

errata: this slide initially said “balanced binary tree” in error and has been updated to say “balanced binary search tree”

CS 2110 Lecture 20: Hashing November 4, 2025

Lecture 20: Hashing

CS 2110, Matt Eichhorn and Leah Perlmutter
November 4, 2025

Announcements

* Prelim 2 on Thursday

* Today is an election day. Vote if you are able!

* [f voting in NY state, you can look up your polling place:
voterlookup.elections.ny.gov/

* Polls open 6am to 9pm in Tompkins County

CS 2110 Lecture 20: Hashing November 4, 2025

https://edstem.org/us/courses/81279/discussion/7228745
https://edstem.org/us/courses/81279/discussion/7228745
https://voterlookup.elections.ny.gov/

Roadmap

Java, Complexity, ADTs I Beyond ADTs
OOP * Trees e Graphical User
e start—9/30 * Tues 10/21, Thurs nterfaces,

10/23, Thurs 10/28

* Set and Map
ADTs | * Thurs 10/30

* 11/18 —end of
. List, Stack, Hash Tables

- Tues 11/4 semester
Queue, lteration

* Graphs
* 10/2-10/16 e Tues 11/6, Thurs

11/11, Tues 11/13

Parallel
Programming

CS 2110 Lecture 20: Hashing November 4, 2025

Motivation for Hashing

Review poll

In a Map backed by a balanced binary search
tree, what is the worst-case time complexity of
the get() method? Express your answer in terms
of N, the number of entries in the Map.

a) O(1) PollEv.com/leahp
b) O(log N) text leahp to 22333
C) O(N) Answer: O(log N). Balanced BST guarantees

d) O(N?) the height will be at most log N. To get an

e) None of the above element, we do at most one operation per

level of the tree.

errata: this slide initially said “balanced binary tree” in error and has been updated to say “balanced binary search tree”

CS 2110 Lecture 20: Hashing November 4, 2025

Review

Sets

* unordered, unique elements

e contains, add, remove, size

Maps

* associations between keys and values
* key/value pair is called an entry

* put, get, remove, containsKey, size

CS 2110 Lecture 20: Hashing November 4, 2025

Set/Map Performance

Unordered List O(N) O(N) O(N) O(1)
Ordered List O(log N) O(N) O(N) O(1)
Balanced BST O(log N) O(logN) Of(logN) O(1)
777 O(1)* O(1)* O(1)* O(1)

errata: this slide initially said “Balanced Tree” in error and has been updated to say “Balanced BST”

Hashing: The Big Idea

What if we could store our elements in an array? (Hash Table)
* With array indexing, we get O(1) access

* Allow the array to have gaps, so we don’t need to move elements
over when we add or remove

* Use an algorithm to calculate the index each element goes at

If element Xis in the array, we know it belongs at index K
(hashing function)

 Caveat: What do we do if two elements end up at the same
Index? (collisions)

* Consideration: How big should the array be compared to the
number of elements to minimize likelihood of collisions?

CS 2110 Lecture 20: Hashing November 4, 2025

Overview of today

Hashing

* Motivation
* Hash Table Basics
* Chaining

* Linear Probing

CS 2110 Lecture 20: Hashing November 4, 2025

Hash Table Basics

Example Hash Set
Hash function h for String keys ndex |Element |

null

null

* h(“Turing”) -> 3 null

* h(“von Neumann”) ->7 Turing
null

* h(“Liskov”) -> 5 -

null

N O o0 A WON = O

von Neumann

Example Hash Map
Hash function h for String keys ndex |Element |

null

null

null

(Turing, 1912-06-23)

null

(Liskov, 1939-11-07)

null

(von Neumann, 1903-12-28)

* h(“Turing”) -> 3
* h(*von Neumann”) -> 7
* h(“Liskov”) -> 5

N O o0 A WON = O

Hash codes and indices

"Hashing” an objectto an index is a two-step process:

1. Convert object to 2. Compress that integer
some canonical into the range of indices
String integer
989586811 3
0
.hashCOde() hash code /0 table. length index
table “Turing”

The hashCode () method

Object defines a hashCode() method that returns an int
* Any Java object can be used as a key
* (Though, many of them probably shouldn’t be...)

Hash code must be consistent with equality
* If x.equals(y), thenx.hashCode() == y.hashCode()
* Override equals() and hashCode() as a pair
* Object defaults to using memory address for both, which is consistent

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Object.html#hashCode()
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Object.html#hashCode()
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Object.html#hashCode()
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Object.html#hashCode()

Good hashCode()s

* Goal: two non-equal objects should be unlikely to share a hash code
* Should depend on all of an object’s state
* Should depend on ordering of any sequential state (e.g. arrays)
* Outputs should span whole range of valid java integers

* When an object has multiple fields used to determine equality with
other objects, its hash code should be based on all of them

 Objects.hash(), Arrays.hashCode() can help

* When analyzing performance, we will assume hashCode () is O(1)
* Long strings, data tables would not make performant keys

Good hash function

A good hashCode () function returns values distributed over
the entire range of ints, even for inputs that look very similar.

Which of the following approaches is mostly likely to yield a

PollEv.com/leah
good hash code function? P

text leahp to 22333

A. Given anyObject, generate arandom number between -2”*-31 and
2731-1

Given a String, return its length
Given a String, return the Unicode codepoint of its last letter

Given an int, return its remainder when divided by 43 (a prime)

mU oW

Given an int, add it to an arbitrary large constant, then multiply by a
large prime number

Good hash function

A good hashCode () function returns values distributed over
the entire range of ints, even for inputs that look very similar.

Which of the following approaches is mostly likely to yield a

PollEv.com/leah
good hash code function? P

text leahp to 22333

A. Given anyObject, generate arandom number between -2”*-31 and
2731-1

Given a String, return its length
Given a String, return the Unicode codepoint of its last letter

Given an int, return its remainder when divided by 43 (a prime)

moU oD

Given an int, add it to an arbitrary large constant, then multiply by a
large prime number

Simple Uniform Hashing Assumption

The Simple Uniform Hashing Assumption (SUHA) asserts that for a given hash
functonheo : T— {0,1,...,C — 1}, each objectinserted in the hash table is equally

likely to be placed in any of its buckets, and its placement is not affected by the objects
already in the hash table.

More concretely, for a given object = of type T, Pr (hc(a:) = z) = % for all

i € {0,1,...,C — 1}, and these probabilities are mutually independent from the
hash values of all other objects.

Warning: Keys should be Immutable

* If an object’s hashCode() depends on its mutable state, don’t

use it as the key type in a HashMap or element type in a
HashSet.

Point

< , > map = new <>(); [X‘*z y:| J
p = new (1,1);

map.put(p,”a”); !
p.shiftRight(); // mutate x-coordinate

3

System.out.println(map.containsKey(p));

> false \

o How can we
Collisions resolve collisions?

* Different objects might be “hashed” to the same index.

* Could occurif hashCodes ()are the same, or have the same remainder (so
compress to the same index)

989586811 » 3
hash code index

String

[. ”] 1878315 3
Dijkstra hash code index

/
“ﬂ'i,‘]mg’”

String

[“Turing”] »

Collision resolution approaches

Chaining Probing
* Treat array elements as * Array elements point directly to
“buckets” storing a collection entries

of entries (e.g. a linked list) e If desired index is occupied,

* Finding the right bucket is O(1), pick the next index to try
but searching it will be slower according to a probing
— sequence

g—»cf RIS I

o CO o O
— Key Value
Hash table

Overview of today

Hashing

* Motivation
* Hash Table Basics
* Chaining

* Linear Probing

CS 2110 Lecture 20: Hashing November 4, 2025

Chaining:

put (k,v)

1. Computeh = k.hashCode()

2. Compute i = h %
table.length

3. Search bucket i for entry with key k
e Update valuev if present

 Add entry (k,v) if not present

Similar for get (k) and remove (k)

_’{ “Jinu”

Index

Key Hash
code | (%8)

Rume

Jinu
Mira
Zoey

Gwi-ma

126 6
97 1
86 6
255 7
118 6

_’r “Rumi”

%ﬂ{“GwLma”

N (“Zoey”

—>| “Mira”

HashMap

P . Hash | Index | Value
Chalnlng. (handle) code %8) (name)

@hero 126 Rumi
@deceiver 97 1 Jinu
put (k,v) @bravest 86 6 Mira
1. Computeh = k.hashCode() 0 @spunky 255 7 Zoey
2. Compute i = h % . _{ — /@]pure_ewl 118 6 Gwi-ma
table.length
3. Search bucket i for entry with key k ‘
e Update valuev if present]
 Add entry (k,v) if not present 4
)

Similar for get (k) and remove (k) 6 ——{ @hero | “Rumi” ——»[@bravest|“Mira” H@pure_evi “Gui-ma” /]

—» @spunky| “Zoey” | /
.

Chaining code for HashSet

public class <T> implements Set<T> { What is the worst-
case time
private LinkedList<T>[] buckets; Complexity Of
contains() ?

private int index (T elem) ({

return Math.abs (elem.hashCode () % buckets.length) ;
}

@Override
public boolean contains (T elem) {
assert elem '= null;

return buckets[index (elem)] .contains (elem) ;

}
. PollEv.com/leahp
} text leahp to 22333

CS 2110 Lecture 20: Hashing November 4, 2025

Chaining code for HashSet

What is the worst-case time complexity of contains() ?

O

A. O(1)

B. O(L) where L is the maximum chain length
C. O(C) where C is the number of buckets
D.O

(N) where N is the number of elements in the set
E. Something else

CS 2110 Lecture 20: Hashing November 4, 2025

Chaining code for HashSet

What is the worst-case time complexity of contains() ?

O(1)
O(L) where L is the maximum chain length
O(C) where C is the number of buckets

o0 ® >

. O(N)where N is the number of elements in the set
E. Something else

B is correct because it takes O(1) time to find the correct array index, then we have to
traverse the chain at that index, which is at worst O(L) nodes long. D is also correct

because in the degenerate case, where all elements are stored at the same array index,
O(N)is equalto O(L).

CS 2110 Lecture 20: Hashing November 4, 2025

Load factor and performance

* Load Factor is the average chain length

)\ — N _ number of elements
~ C number of buckets

* Load Factor A is the expected runtime of hash table operations
that need to traverse chains.

* When A <=1, expected runtime for hash table operations is O(1)
* If N>>C, then A approaches N and runtime approaches O(N)

CS 2110 Lecture 20: Hashing November 4, 2025

Set/Map Performance

Unordered List O(N) O(N) O(N) O(1)
Ordered List O(log N) O(N) O(N) O(1)
Balanced BST O(log N) O(logN) Of(logN) O(1)
777 O(1)* O(1)* O(1)* O(1)

errata: this slide initially said “Balanced Tree” in error and has been updated to say “Balanced BST”

Set/Map Performance

Unordered List O(N) O(N) O(N) O(1)
Ordered List O(log N) O(N) O(N) O(1)
Balanced BST O(log N) O(logN) Of(logN) O(1)
Hash Table with O(1)* O(1)* O(1)* O(1)

A closeto 1

* = expected runtime

errata: this slide initially said “Balanced Tree” in error and has been updated to say “Balanced BST”

Load factor and resizing

* When load factor gets too big, we expand our array

* Recall that in our hashing function, we did modular arithmetic
with the length of the array

* When array length changes, we need to recompute indices for
all elements

CS 2110 Lecture 20: Hashing November 4, 2025

Overview of today

Hashing

* Motivation
* Hash Table Basics
* Chaining
* Linear Probing

CS 2110 Lecture 20: Hashing November 4, 2025

Linear Probing

HashSet

Linear probing: add (k) -

Rume 126

0 Jinu 97 1
@ Zosey Mira 86 6

1 Jinu Zoey 255 7

5 Gwi-ma Gwi-ma 118 6

3

4

5

6 Rumi

@ 7 Mira

HashSet

Linear probing: contains (k) -

Rume 126
Jinu 97 1
0
Zoey Mira 86 6
1 Jinu Zoey 255 7
2 : Gwi-ma 118 6
Gwi-ma
Derpy 105 1
3
4
S contains("Jinu")
6 Rumi contains("Zoey")
7 Mira

contains("Derpy")

Linear probing: remove (k) -

Rume 126
0 , Jinu 97 1
oey
Mira 86 6
. =y
T Sipe— = Zoey 255 7
2 Gwita Gwi-ma 118 6
3
4
S remove("Jinu")
6 Rumi
contains("Gwi-ma")
7 Mira

A tombstone indicates something has been removed and
is used to prevent breaking probing sequences.

Linear probing: put (k,v)

—

S
S

(@spunky, Zoey)

(@deceiver, Jinu)

(@pure_evil, Gwi-ma)

(@hero, Rumi)

(@bravest, Mira)

Hash | Index | Value
(handle) code %8) (name)

@hero
@deceiver
@bravest
@spunky
@pure_evil

126
97
86
255
118

0O N oo -

Rumi
Jinu
Mira
Zoey

Gwi-ma

Linear probing: contains (k)

Hash | Index | Value
(handle) code %8) (name)

0 (@spunky, Zoey) @hero 126 Rumi

- @deceiver 97 1 Jinu
(@deceiver, Jinu) @bravest 86 6 Mira

2 (@pure_evil, Gwi-ma) @spunky 255 7 Zoey

3 @pure_evil 118 6 Gwi-ma

@Kkitty 105 1 Derpy

4

S contains(@deceiver)

6 (@hero, Rumi) contains(@spunky)

7 (@bravest, Mira) contains(@kitty)

HashMap
Hash | Index | Value
(handle) code %8) (name)

Linear probing: remove (k)

0 (@Spunky’ Zoey) @hel’o 126 Rumi

- @deceiver 97 1 Jinu
@bravest 86 6 Mira

2 (@pure_evil, Gwi-ma) @spunky 255 7 Zoey

3 @pure_evil 118 6 Gwi-ma

@Kkitty 105 1 Derpy
4
S remove(@deceiver)

6 @hero, Rumi
() contains(@pure_evil)

A tombstone indicates something has been removed and
is used to prevent breaking probing sequences.

7 (@bravest, Mira)

Chaining vs. probing

Chaining Probing

Chaining vs. probing

Chaining Probing
* Less sensitive to load factor * More sensitive to load factor;
« Accommodates deletions vulnerable to “clustering”
better * Deletions deteriorate
performance
* Requires more memory (at * Requires less memory (at

same load factor) same load factor)

Overview of today

Hashing

* Motivation
* Hash Table Basics
* Chaining
* Linear Probing

CS 2110 Lecture 20: Hashing November 4, 2025

Metacognition

* Take 1 minute to write down a brief summary
of what you have learned today

CS 2110 Lecture 20: Hashing November 4, 2025

Announcements

* Prelim 2 on Thursday

* Today is an election day. Vote if you are able!

CS 2110 Lecture 20: Hashing November 4, 2025

https://edstem.org/us/courses/81279/discussion/7228745
https://edstem.org/us/courses/81279/discussion/7228745

	Slide 1:  Review poll
	Slide 2: Lecture 20: Hashing
	Slide 3:  Announcements
	Slide 4:  Roadmap
	Slide 5: Motivation for Hashing
	Slide 6:  Review poll
	Slide 7:  Review
	Slide 8: Set/Map Performance
	Slide 9:  Hashing: The Big Idea
	Slide 10:  Overview of today
	Slide 11: Hash Table Basics
	Slide 12: Example Hash Set
	Slide 13: Example Hash Map
	Slide 14: Hash codes and indices
	Slide 15: The hashCode() method
	Slide 16: Good hashCode()s
	Slide 17: Good hash function
	Slide 18: Good hash function
	Slide 19: Simple Uniform Hashing Assumption
	Slide 20: Warning: Keys should be Immutable
	Slide 21: Collisions
	Slide 22: Collision resolution approaches
	Slide 23:  Overview of today
	Slide 24: Chaining
	Slide 25: Chaining:
	Slide 26: Chaining:
	Slide 27:  Chaining code for HashSet
	Slide 28:  Chaining code for HashSet
	Slide 29:  Chaining code for HashSet
	Slide 30:  Load factor and performance
	Slide 31: Set/Map Performance
	Slide 32: Set/Map Performance
	Slide 33:  Load factor and resizing
	Slide 34:  Overview of today
	Slide 35: Linear Probing
	Slide 36: Linear probing: add(k)
	Slide 37: Linear probing: contains(k)
	Slide 38: Linear probing: remove(k)
	Slide 39: Linear probing: put(k,v)
	Slide 40: Linear probing: contains(k)
	Slide 41: Linear probing: remove(k)
	Slide 42: Chaining vs. probing
	Slide 43: Chaining vs. probing
	Slide 44:  Overview of today
	Slide 45:  Metacognition
	Slide 46:  Announcements

