
CS 2110 1Lecture 20: Hashing November 4, 2025

PollEv.com/leahp
text leahp to 22333

Review poll

In a Map backed by a balanced binary search
tree, what is the worst-case time complexity of
the get() method? Express your answer in terms
of N, the number of entries in the Map.

a) O(1)
b) O(log N)
c) O(N)
d) O(N2)
e) None of the above

errata: this slide initially said “balanced binary tree” in error and has been updated to say “balanced binary search tree”

CS 2110
November 4, 2025

CS 2110, Matt Eichhorn and Leah Perlmutter

Lecture 20: Hashing

CS 2110 3Lecture 20: Hashing November 4, 2025

• Prelim 2 on Thursday
• Today is an election day. Vote if you are able!

• If voting in NY state, you can look up your polling place:
voterlookup.elections.ny.gov/

• Polls open 6am to 9pm in Tompkins County

Announcements

https://edstem.org/us/courses/81279/discussion/7228745
https://edstem.org/us/courses/81279/discussion/7228745
https://voterlookup.elections.ny.gov/

CS 2110 4Lecture 20: Hashing November 4, 2025

ADTs II
• Trees

• Tues 10/21, Thurs
10/23, Thurs 10/28

• Set and Map
• Thurs 10/30

• Hash Tables
• Tues 11/4

• Graphs
• Tues 11/6, Thurs

11/11, Tues 11/13

Roadmap

Java, Complexity,
OOP
• start– 9/30

ADTs I
• List, Stack,

Queue, Iteration
• 10/2 – 10/16

Beyond ADTs
• Graphical User

Interfaces,
Parallel
Programming
• 11/18 – end of

semester

CS 2110Motivation for Hashing

CS 2110 6Lecture 20: Hashing November 4, 2025

PollEv.com/leahp
text leahp to 22333

Review poll

In a Map backed by a balanced binary search
tree, what is the worst-case time complexity of
the get() method? Express your answer in terms
of N, the number of entries in the Map.

a) O(1)
b) O(log N)
c) O(N)
d) O(N2)
e) None of the above

errata: this slide initially said “balanced binary tree” in error and has been updated to say “balanced binary search tree”

Answer: O(log N). Balanced BST guarantees
the height will be at most log N. To get an
element, we do at most one operation per
level of the tree.

CS 2110 7Lecture 20: Hashing November 4, 2025

Review

Sets
• unordered, unique elements
• contains, add, remove, size
Maps
• associations between keys and values
• key/value pair is called an entry
• put, get, remove, containsKey, size

Set/Map Performance

Representation Contains Put Get Size

Unordered List O(N) O(N) O(N) O(1)

Ordered List O(log N) O(N) O(N) O(1)

Balanced BST O(log N) O(log N) O(log N) O(1)

??? O(1)* O(1)* O(1)* O(1)

errata: this slide initially said “Balanced Tree” in error and has been updated to say “Balanced BST”

CS 2110 9Lecture 20: Hashing November 4, 2025

Hashing: The Big Idea

What if we could store our elements in an array? (Hash Table)
• With array indexing, we get O(1) access
• Allow the array to have gaps, so we don’t need to move elements

over when we add or remove
• Use an algorithm to calculate the index each element goes at
 If element X is in the array, we know it belongs at index K
 (hashing function)
• Caveat: What do we do if two elements end up at the same

index? (collisions)
• Consideration: How big should the array be compared to the

number of elements to minimize likelihood of collisions?

CS 2110 10Lecture 20: Hashing November 4, 2025

Overview of today

Hashing
• Motivation
• Hash Table Basics
• Chaining
• Linear Probing

CS 2110Hash Table Basics

Example Hash Set

Hash function h for String keys

• h(“Turing”) -> 3
• h(“von Neumann”) -> 7
• h(“Liskov”) -> 5

Index Element

0 null

1 null

2 null

3 Turing

4 null

5 Liskov

6 null

7 von Neumann

Example Hash Map

Hash function h for String keys

• h(“Turing”) -> 3
• h(“von Neumann”) -> 7
• h(“Liskov”) -> 5

Index Element

0 null

1 null

2 null

3 (Turing, 1912-06-23)

4 null

5 (Liskov, 1939-11-07)

6 null

7 (von Neumann, 1903-12-28)

Hash codes and indices

"Hashing” an object to an index is a two-step process:

String

“Turing”

0 1 2 3 4 5 6 7

.hashCode()

1. Convert object to
some canonical

integer
989586811

hash code

table

% table.length

2. Compress that integer
into the range of indices

3
index

“Turing”

The hashCode() method

Object defines a hashCode() method that returns an int
• Any Java object can be used as a key
• (Though, many of them probably shouldn’t be…)

Hash code must be consistent with equality
• If x.equals(y), then x.hashCode() == y.hashCode()
• Override equals() and hashCode() as a pair
• Object defaults to using memory address for both, which is consistent

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Object.html#hashCode()
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Object.html#hashCode()
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Object.html#hashCode()
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Object.html#hashCode()

Good hashCode()s

• Goal: two non-equal objects should be unlikely to share a hash code
• Should depend on all of an object’s state
• Should depend on ordering of any sequential state (e.g. arrays)
• Outputs should span whole range of valid java integers

• When an object has multiple fields used to determine equality with
other objects, its hash code should be based on all of them
• Objects.hash(), Arrays.hashCode() can help

• When analyzing performance, we will assume hashCode() is O(1)
• Long strings, data tables would not make performant keys

Good hash function
A good hashCode() function returns values distributed over
the entire range of ints, even for inputs that look very similar.

Which of the following approaches is mostly likely to yield a
good hash code function?

A. Given any Object, generate a random number between -2^-31 and
2^31-1

B. Given a String, return its length

C. Given a String, return the Unicode codepoint of its last letter

D. Given an int, return its remainder when divided by 43 (a prime)

E. Given an int, add it to an arbitrary large constant, then multiply by a
large prime number

PollEv.com/leahp
text leahp to 22333

Good hash function
A good hashCode() function returns values distributed over
the entire range of ints, even for inputs that look very similar.

Which of the following approaches is mostly likely to yield a
good hash code function?

A. Given any Object, generate a random number between -2^-31 and
2^31-1

B. Given a String, return its length

C. Given a String, return the Unicode codepoint of its last letter

D. Given an int, return its remainder when divided by 43 (a prime)

E. Given an int, add it to an arbitrary large constant, then multiply by a
large prime number

PollEv.com/leahp
text leahp to 22333

Simple Uniform Hashing Assumption

Point

x: y: 1

Warning: Keys should be Immutable

• If an object’s hashCode() depends on its mutable state, don’t
use it as the key type in a HashMap or element type in a
HashSet.

0 1 2 3 4 5 6 7

Map<Point,String> map = new HashMap<>();
Point p = new Point(1,1);
map.put(p,"a");
p.shiftRight(); // mutate x-coordinate
System.out.println(map.containsKey(p));

> false

1

5

3

1 2

Collisions

• Different objects might be “hashed” to the same index.
• Could occur if hashCodes()are the same, or have the same remainder (so

compress to the same index)

0 1 2 3 4 5 6 7

String

“Turing” 989586811
hash code index

3

String

“Dijkstra”
1878315 3
hash code index

“Turing”“Dijkstra”

How can we
resolve collisions?

Collision resolution approaches

Chaining
• Treat array elements as

“buckets” storing a collection
of entries (e.g. a linked list)

• Finding the right bucket is O(1),
but searching it will be slower

Probing
• Array elements point directly to

entries
• If desired index is occupied,

pick the next index to try
according to a probing
sequence

CS 2110 23Lecture 20: Hashing November 4, 2025

Overview of today

Hashing
• Motivation
• Hash Table Basics
• Chaining
• Linear Probing

CS 2110Chaining

Chaining: Key Hash
code

Index
(%8)

Rume 126 6

Jinu 97 1

Mira 86 6

Zoey 255 7

Gwi-ma 118 6
0

1

2

3

4

5

6

7

put(k,v)

1. Compute h = k.hashCode()

2. Compute i = h %

table.length

3. Search bucket i for entry with key k

• Update value v if present

• Add entry (k,v) if not present

Similar for get(k) and remove(k) “Rumi” /

“Jinu” /

“Mira” /

“Zoey” /

“Gwi-ma” /

HashSet

Chaining: Key
(handle)

Hash
code

Index
(%8)

Value
(name)

@hero 126 6 Rumi

@deceiver 97 1 Jinu

@bravest 86 6 Mira

@spunky 255 7 Zoey

@pure_evil 118 6 Gwi-ma
0

1

2

3

4

5

6

7

put(k,v)

1. Compute h = k.hashCode()

2. Compute i = h %

table.length

3. Search bucket i for entry with key k

• Update value v if present

• Add entry (k,v) if not present

Similar for get(k) and remove(k) @hero “Rumi” /

@deceiver “Jinu” /

@bravest “Mira” /

@spunky “Zoey” /

@pure_evil “Gwi-ma” /

HashMap

CS 2110 27Lecture 20: Hashing November 4, 2025

Chaining code for HashSet
/** A Set implementation backed by a chaining hash table. */

public class HashSet<T> implements Set<T> {

 /** The backing storage of this HashSet. */

 private LinkedList<T>[] buckets;

 ...

 /** Returns the hash value of the given `elem` */

 private int index(T elem) {

 return Math.abs(elem.hashCode() % buckets.length);

 }

 @Override

 public boolean contains(T elem) {

 assert elem != null;

 return buckets[index(elem)].contains(elem);

 }

 ...

}

What is the worst-
case time
complexity of
contains() ?

PollEv.com/leahp
text leahp to 22333

CS 2110 28Lecture 20: Hashing November 4, 2025

Chaining code for HashSet

What is the worst-case time complexity of contains() ?

A. O(1)
B. O(L) where L is the maximum chain length
C. O(C) where C is the number of buckets
D. O(N) where N is the number of elements in the set
E. Something else

CS 2110 29Lecture 20: Hashing November 4, 2025

Chaining code for HashSet

What is the worst-case time complexity of contains() ?

A. O(1)
B. O(L) where L is the maximum chain length
C. O(C) where C is the number of buckets
D. O(N) where N is the number of elements in the set
E. Something else
B is correct because it takes O(1) time to find the correct array index, then we have to
traverse the chain at that index, which is at worst O(L) nodes long. D is also correct
because in the degenerate case, where all elements are stored at the same array index,
O(N) is equal to O(L).

CS 2110 30Lecture 20: Hashing November 4, 2025

Load factor and performance

• Load Factor is the average chain length

• Load Factor λ is the expected runtime of hash table operations
that need to traverse chains.

• When λ <= 1, expected runtime for hash table operations is O(1)
• If N >> C, then λ approaches N and runtime approaches O(N)

Set/Map Performance

Representation Contains Put Get Size

Unordered List O(N) O(N) O(N) O(1)

Ordered List O(log N) O(N) O(N) O(1)

Balanced BST O(log N) O(log N) O(log N) O(1)

??? O(1)* O(1)* O(1)* O(1)

errata: this slide initially said “Balanced Tree” in error and has been updated to say “Balanced BST”

Set/Map Performance

Representation Contains Put Get Size

Unordered List O(N) O(N) O(N) O(1)

Ordered List O(log N) O(N) O(N) O(1)

Balanced BST O(log N) O(log N) O(log N) O(1)

Hash Table with
λ close to 1

O(1)* O(1)* O(1)* O(1)

* = expected runtime
errata: this slide initially said “Balanced Tree” in error and has been updated to say “Balanced BST”

CS 2110 33Lecture 20: Hashing November 4, 2025

Load factor and resizing

• When load factor gets too big, we expand our array
• Recall that in our hashing function, we did modular arithmetic

with the length of the array
• When array length changes, we need to recompute indices for

all elements

CS 2110 34Lecture 20: Hashing November 4, 2025

Overview of today

Hashing
• Motivation
• Hash Table Basics
• Chaining
• Linear Probing

CS 2110Linear Probing

Linear probing: add(k)

0

1

2

3

4

5

6

7

Rumi

Jinu

Mira

Zoey

Gwi-ma

Key Hash
code

Index
(%8)

Rume 126 6

Jinu 97 1

Mira 86 6

Zoey 255 7

Gwi-ma 118 6

HashSet

Linear probing: contains(k)

0

1

2

3

4

5

6

7

Rumi

Jinu

Mira

Zoey

Gwi-ma

contains("Jinu")

contains("Zoey")

contains("Derpy")

Key Hash
code

Index
(%8)

Rume 126 6

Jinu 97 1

Mira 86 6

Zoey 255 7

Gwi-ma 118 6

Derpy 105 1

HashSet

Linear probing: remove(k)

0

1

2

3

4

5

6

7

Rumi

Jinu

Mira

Zoey

Gwi-ma

remove("Jinu")

contains("Gwi-ma")

A tombstone indicates something has been removed and
is used to prevent breaking probing sequences.

Key Hash
code

Index
(%8)

Rume 126 6

Jinu 97 1

Mira 86 6

Zoey 255 7

Gwi-ma 118 6

HashSet

Linear probing: put(k,v)

0

1

2

3

4

5

6

7

Key
(handle)

Hash
code

Index
(%8)

Value
(name)

@hero 126 6 Rumi

@deceiver 97 1 Jinu

@bravest 86 6 Mira

@spunky 255 7 Zoey

@pure_evil 118 6 Gwi-ma

(@hero, Rumi)

(@deceiver, Jinu)

(@bravest, Mira)

(@spunky, Zoey)

(@pure_evil, Gwi-ma)

HashMap

Linear probing: contains(k)

0

1

2

3

4

5

6

7

Key
(handle)

Hash
code

Index
(%8)

Value
(name)

@hero 126 6 Rumi

@deceiver 97 1 Jinu

@bravest 86 6 Mira

@spunky 255 7 Zoey

@pure_evil 118 6 Gwi-ma

@kitty 105 1 Derpy

(@hero, Rumi)

(@deceiver, Jinu)

(@bravest, Mira)

(@spunky, Zoey)

(@pure_evil, Gwi-ma)

contains(@deceiver)

contains(@spunky)

contains(@kitty)

HashMap

Linear probing: remove(k)

0

1

2

3

4

5

6

7

Key
(handle)

Hash
code

Index
(%8)

Value
(name)

@hero 126 6 Rumi

@deceiver 97 1 Jinu

@bravest 86 6 Mira

@spunky 255 7 Zoey

@pure_evil 118 6 Gwi-ma

@kitty 105 1 Derpy

(@hero, Rumi)

(@deceiver, Jinu)

(@bravest, Mira)

(@spunky, Zoey)

(@pure_evil, Gwi-ma)

remove(@deceiver)

🪦

contains(@pure_evil)

A tombstone indicates something has been removed and
is used to prevent breaking probing sequences.

HashMap

Chaining vs. probing

Chaining
• ...

Probing
• ...

Chaining vs. probing

Chaining
• Less sensitive to load factor
• Accommodates deletions

better

• Requires more memory (at
same load factor)

Probing
• More sensitive to load factor;

vulnerable to “clustering”
• Deletions deteriorate

performance

• Requires less memory (at
same load factor)

CS 2110 44Lecture 20: Hashing November 4, 2025

Overview of today

Hashing
• Motivation
• Hash Table Basics
• Chaining
• Linear Probing

CS 2110 45

Metacognition

• Take 1 minute to write down a brief summary
of what you have learned today

closing announcements to follow...

Lecture 20: Hashing November 4, 2025

CS 2110 46Lecture 20: Hashing November 4, 2025

• Prelim 2 on Thursday
• Today is an election day. Vote if you are able!

Announcements

https://edstem.org/us/courses/81279/discussion/7228745
https://edstem.org/us/courses/81279/discussion/7228745

	Slide 1:  Review poll
	Slide 2: Lecture 20: Hashing
	Slide 3:  Announcements
	Slide 4:  Roadmap
	Slide 5: Motivation for Hashing
	Slide 6:  Review poll
	Slide 7:  Review
	Slide 8: Set/Map Performance
	Slide 9:  Hashing: The Big Idea
	Slide 10:  Overview of today
	Slide 11: Hash Table Basics
	Slide 12: Example Hash Set
	Slide 13: Example Hash Map
	Slide 14: Hash codes and indices
	Slide 15: The hashCode() method
	Slide 16: Good hashCode()s
	Slide 17: Good hash function
	Slide 18: Good hash function
	Slide 19: Simple Uniform Hashing Assumption
	Slide 20: Warning: Keys should be Immutable
	Slide 21: Collisions
	Slide 22: Collision resolution approaches
	Slide 23:  Overview of today
	Slide 24: Chaining
	Slide 25: Chaining:
	Slide 26: Chaining:
	Slide 27:  Chaining code for HashSet
	Slide 28:  Chaining code for HashSet
	Slide 29:  Chaining code for HashSet
	Slide 30:  Load factor and performance
	Slide 31: Set/Map Performance
	Slide 32: Set/Map Performance
	Slide 33:  Load factor and resizing
	Slide 34:  Overview of today
	Slide 35: Linear Probing
	Slide 36: Linear probing: add(k)
	Slide 37: Linear probing: contains(k)
	Slide 38: Linear probing: remove(k)
	Slide 39: Linear probing: put(k,v)
	Slide 40: Linear probing: contains(k)
	Slide 41: Linear probing: remove(k)
	Slide 42: Chaining vs. probing
	Slide 43: Chaining vs. probing
	Slide 44:  Overview of today
	Slide 45:  Metacognition
	Slide 46:  Announcements

