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• TA evaluations due Friday at 5pm
• https://apps.engineering.cornell.edu/TAEval/survey.cfm  ---→
• if you’re not sure your TA’s name for the eval, check the staff roster 

for their photo

• A8 released
• long, hard, lots of reading (both code and English)
• start early! go to office hours!

• Know your support resources 
• course website → About → Tips for Success

Announcements

https://apps.engineering.cornell.edu/TAEval/survey.cfm
https://apps.engineering.cornell.edu/TAEval/survey.cfm
https://courses.cis.cornell.edu/courses/cs2110/2025fa/about/staff/
https://courses.cis.cornell.edu/courses/cs2110/2025fa/about/success/
https://courses.cis.cornell.edu/courses/cs2110/2025fa/about/success/
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Tree Data Structures
1. Describe the binary search tree invariant and determine whether it is 

satisfied by a given tree.

2. Write modifying methods on a binary search tree that preserve its invariant.

3. Analyze the time/space complexities of a given method on a binary search 
tree.

Comparator
1. Describe the use cases for the Comparable and Comparator interfaces. 

2. Explain the semantics of generic type bounds and write code that 
incorporates them.

Lecture 17: Comparators and Binary Search Trees October 23, 2025
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• This is a high interaction day! I’ll ask you to discuss several 
questions with a partner or trio. 

•  

Sit near a few people
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PollEv.com/leahp        
text leahp  to 22333

Write an in-order 
traversal of this tree.

(answer on next slide)

Review: In-order Tree Traversal
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PollEv.com/leahp        
text leahp  to 22333

Write an in-order 
traversal of this tree.
1, 3, 4, 7, 9 , 10, 12, 12, 15, 
17, 20

Review: In-order Tree Traversal
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• BST Order Invariant: the nodes of the 
tree appear in sorted order from least 
to most in an in-order traversal

• It is easy to perform binary search on 
the tree (see animation in lecture 
notes)

• How can we maintain a tree with the 
BST Order Invariant when adding new 
nodes? 

Binary Search Trees (BSTs)
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int compareTo(T other);

• Return positive if this > other
• Return negative if this < other
• Return 0 if this is equal to other

Comparable Interface
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• Switching order flips sign
• positive x.compareTo(y)  negative  y.compareTo(x) 

• Transitivity
•  x.compareTo(y)>0 AND y.compareTo(z)>0 → x.compareTo(z)>0 

• Equivalent object behavior (required)
• if   x.compareTo(y)== 0 

• then sign of x.compareTo(z) equals sign of y.compareTo(z)

• Consistency with equals (desirable)
• x.compareTo(y) == 0 exactly when x.equals(y)

Properties of compareTo()
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Comparable Point
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/** An immutable point in the 2D coordinate plane with `double` coordinates. */

public record Point(double x, double y) implements Comparable<Point> {

  /** 

   * Compares `this` and `other` based on their distance from the origin, returning

   * a positive integer when `this` is farther from the origin, a negative integer

   * when `this` is closer to the origin, and 0 when `this` and `other` are 

   * equidistant from the origin. 

   */

  @Override

  public int compareTo(Point other) {

    double thisDistSquared = this.x * this.x + this.y * this.y;

    double otherDistSquared = other.x * other.x + other.y * other.y;

    return (int) Math.signum(thisDistSquared - otherDistSquared);

  }

  // ... additional methods

}
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int compare(T o1, T o2);

• Return positive if o1 > o2
• Return negative if o1 < o2
• Return 0 if o1 is equal to o2

Requires same consistency properties as compareTo() 

Comparator Interface
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Comparator for Point
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/** A `Comparator` that models a lexicographic ordering of `Point`s. */

public class PointLex implements Comparator<Point> {

  /**

   * Compares `o1` and `o2` lexicographically, returning a negative integer 

   * when `o1` is lexicographically earlier, a positive integer when

   * `o2` is lexicographically earlier, and 0 when `o1` and `o2` are equal.

   */

  @Override

  public int compare(Point o1, Point o2) {

      int dx = (int) Math.signum(o1.x() - o2.x());

      return dx == 0 ? (int) Math.signum(o1.y() - o2.y()) : dx;

  }

}
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Comparable
• Class makes its own 

instances comparable to 
each other

• ...

Comparable vs. Comparator

Comparator
• External class with a 

method that can compare 
objects

• ...
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Comparable
• Class makes its own 

instances comparable to 
each other

• Can use when you are the 
implementer

Comparable vs. Comparator

Comparator
• External class with a 

method that can compare 
objects

• Can use when you are not 
the implementer

• Supports multiple kinds 
of comparison for the 
same type
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Possible Book fields
• Author(s)
• Title
• Dewey Decimal (DDC) 

Number
• Library of Congress(LDC) 

Number
• Korean Decimal 

Classification (KDC) 
Number

Multiple ways of comparing

Book class might have fields
• AuthorComarator
• TitleComparator
• DDCComparator
• LCCComparator
• KDCComparator
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Generic Methods and Type Bounds
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/** Sorts the entries of `a` using the insertion sort algorithm. */

static <T extends Comparable<T>> void insertionSort(T[] a) {...}

/** Inserts entry `a[i]` into its sorted position in `a[..i)` such that `a[..i]` contains the 

 * same entries in sorted order. Requires that `0 <= i < a.length` and `a[..i)` is sorted. */

static <T extends Comparable<T>> void insert(T[] a, int i) {...}

/** Swaps entries `a[i]` and `a[j]`. Requires that `0 <= i < a.length` and `0 <= j < 

a.length`.*/
static <T> void swap(T[] a, int i, int j) {...}
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Generic Insertion Sort with Comparable
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/** Sorts the entries of `a` using the insertion sort algorithm. */

static <T extends Comparable<T>> void insertionSort(T[] a) {

  /* Loop invariant: a[..i) is sorted, a[i..] are unchanged. */

  for (int i = 0; i < a.length; i++) {
    insert(a, i);

  }

}

/** Inserts entry `a[i]` into its sorted position in `a[..i)` such that `a[..i]` contains the 

 * same entries in sorted order. Requires that `0 <= i < a.length` and `a[..i)` is sorted. */
static <T extends Comparable<T>> void insert(T[] a, int i) {

  assert 0 <= i && i < a.length; // defensive programming

  int j = i;

  while (j > 0 && a[j - 1].compareTo(a[j]) > 0) {
    swap(a, j - 1, j);

    j--;

  }

}
/** Swaps entries `a[i]` and `a[j]`. Requires that `0 <= i < a.length` and `0 <= j < 

a.length`.*/

static <T> void swap(T[] a, int i, int j) {

    T temp = a[i];
    a[i] = a[j];

    a[j] = temp;

}
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Back to...

Binary Search Trees
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BST structure: Subtrees for everybody!

• Dotted circle is a 
subtree with null 
data and two null 
subtrees

• Enables us to 
represent empty 
trees 

• Simplifies definition 
of BST methods
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Code demo: BST

• fields: root (data), left, right
• constructor
• left() and right()
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BST: find

Recursion review – What does every recursive method have?
• Base Case
• Recursive Case

private BST<T> find(T elem) { ... }
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BST: find

Every recursive method has:
• Base Case(s)

• Solve the smallest version of the 
problem

• Recursive Case(s)
• solve a little increment of the 

problem
• recur (call itself) on a smaller 

version of the problem

What do you think will be 
the base case(s) and 
recursive case(s) for find()?

private BST<T> find(T elem) { ... }
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Code demo: BST.find()

Base case: root
Recursive cases
- Recur on left subtree
- Recur on right subtree 
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BST.add() -- intuition

private void add(T elem) { ... }

Use find() to figure out 
where it goes!
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BST.remove() -- intuition

private void remove(T elem) { ... }

Use find() to get to the 
node to remove!

... then what?
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BST.remove() -- intuition

private void remove(T elem) { ... }

If right subtree is empty, we can supplant
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BST.remove() -- intuition

private void remove(T elem) { ... }

what if has two non-
empty subtrees?
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Binary Search Trees:

Complexity
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BST.find(): complexity

Base case: root
Recursive cases
- Recur on left subtree
- Recur on right subtree 
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BST.add(): complexity

private void add(T elem) { ... }

Use find() to figure out 
where it goes!
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BST.remove() : complexity

private void remove(T elem) { ... }

If right subtree is empty, we can supplant
Otherwise, copy elements up until we can supplant
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Metacognition

• Take 1 minute to write down a brief summary of what 
you have learned today

closing announcements to follow...

Lecture 17: Comparators and Binary Search Trees October 23, 2025
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• TA evaluations due Friday at 5pm
• https://apps.engineering.cornell.edu/TAEval/survey.cfm  ---→
• if you’re not sure your TA’s name for the eval, check the staff roster 

for their photo

• A8 released
• long, hard, lots of reading (both code and English)
• start early! go to office hours!

• Know your support resources 
• course website → About → Tips for Success

Announcements

https://apps.engineering.cornell.edu/TAEval/survey.cfm
https://apps.engineering.cornell.edu/TAEval/survey.cfm
https://courses.cis.cornell.edu/courses/cs2110/2025fa/about/staff/
https://courses.cis.cornell.edu/courses/cs2110/2025fa/about/success/
https://courses.cis.cornell.edu/courses/cs2110/2025fa/about/success/
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