
CS 2110
October 23, 2025

CS 2110, Matt Eichhorn and Leah Perlmutter

Lecture 17: Comparable, Comparator,
 and Binary Search Trees

CS 2110 2Lecture 17: Comparators and Binary Search Trees October 23, 2025

• TA evaluations due Friday at 5pm
• https://apps.engineering.cornell.edu/TAEval/survey.cfm ---→
• if you’re not sure your TA’s name for the eval, check the staff roster

for their photo

• A8 released
• long, hard, lots of reading (both code and English)
• start early! go to office hours!

• Know your support resources
• course website → About → Tips for Success

Announcements

https://apps.engineering.cornell.edu/TAEval/survey.cfm
https://apps.engineering.cornell.edu/TAEval/survey.cfm
https://courses.cis.cornell.edu/courses/cs2110/2025fa/about/staff/
https://courses.cis.cornell.edu/courses/cs2110/2025fa/about/success/
https://courses.cis.cornell.edu/courses/cs2110/2025fa/about/success/

Today's Learning Outcomes

CS 2110 3

Tree Data Structures
1. Describe the binary search tree invariant and determine whether it is

satisfied by a given tree.

2. Write modifying methods on a binary search tree that preserve its invariant.

3. Analyze the time/space complexities of a given method on a binary search
tree.

Comparator
1. Describe the use cases for the Comparable and Comparator interfaces.

2. Explain the semantics of generic type bounds and write code that
incorporates them.

Lecture 17: Comparators and Binary Search Trees October 23, 2025

CS 2110 4Lecture 17: Comparators and Binary Search Trees October 23, 2025

• This is a high interaction day! I’ll ask you to discuss several
questions with a partner or trio.

•

Sit near a few people

CS 2110Binary Search Trees

CS 2110 6Lecture 17: Comparators and Binary Search Trees October 23, 2025

PollEv.com/leahp
text leahp to 22333

Write an in-order
traversal of this tree.

(answer on next slide)

Review: In-order Tree Traversal

CS 2110 7Lecture 17: Comparators and Binary Search Trees October 23, 2025

PollEv.com/leahp
text leahp to 22333

Write an in-order
traversal of this tree.
1, 3, 4, 7, 9 , 10, 12, 12, 15,
17, 20

Review: In-order Tree Traversal

CS 2110 8Lecture 17: Comparators and Binary Search Trees October 23, 2025

• BST Order Invariant: the nodes of the
tree appear in sorted order from least
to most in an in-order traversal

• It is easy to perform binary search on
the tree (see animation in lecture
notes)

• How can we maintain a tree with the
BST Order Invariant when adding new
nodes?

Binary Search Trees (BSTs)

CS 2110
Interlude:

Comparing Objects

CS 2110 10Lecture 17: Comparators and Binary Search Trees October 23, 2025

int compareTo(T other);

• Return positive if this > other
• Return negative if this < other
• Return 0 if this is equal to other

Comparable Interface

CS 2110 11Lecture 17: Comparators and Binary Search Trees October 23, 2025

• Switching order flips sign
• positive x.compareTo(y)  negative y.compareTo(x)

• Transitivity
• x.compareTo(y)>0 AND y.compareTo(z)>0 → x.compareTo(z)>0

• Equivalent object behavior (required)
• if x.compareTo(y)== 0

• then sign of x.compareTo(z) equals sign of y.compareTo(z)

• Consistency with equals (desirable)
• x.compareTo(y) == 0 exactly when x.equals(y)

Properties of compareTo()

CS 2110 12

Comparable Point

Lecture 17: Comparators and Binary Search Trees October 23, 2025

/** An immutable point in the 2D coordinate plane with `double` coordinates. */

public record Point(double x, double y) implements Comparable<Point> {

 /**

 * Compares `this` and `other` based on their distance from the origin, returning

 * a positive integer when `this` is farther from the origin, a negative integer

 * when `this` is closer to the origin, and 0 when `this` and `other` are

 * equidistant from the origin.

 */

 @Override

 public int compareTo(Point other) {

 double thisDistSquared = this.x * this.x + this.y * this.y;

 double otherDistSquared = other.x * other.x + other.y * other.y;

 return (int) Math.signum(thisDistSquared - otherDistSquared);

 }

 // ... additional methods

}

CS 2110 13Lecture 17: Comparators and Binary Search Trees October 23, 2025

int compare(T o1, T o2);

• Return positive if o1 > o2
• Return negative if o1 < o2
• Return 0 if o1 is equal to o2

Requires same consistency properties as compareTo()

Comparator Interface

CS 2110 14

Comparator for Point

Lecture 17: Comparators and Binary Search Trees October 23, 2025

/** A `Comparator` that models a lexicographic ordering of `Point`s. */

public class PointLex implements Comparator<Point> {

 /**

 * Compares `o1` and `o2` lexicographically, returning a negative integer

 * when `o1` is lexicographically earlier, a positive integer when

 * `o2` is lexicographically earlier, and 0 when `o1` and `o2` are equal.

 */

 @Override

 public int compare(Point o1, Point o2) {

 int dx = (int) Math.signum(o1.x() - o2.x());

 return dx == 0 ? (int) Math.signum(o1.y() - o2.y()) : dx;

 }

}

CS 2110 15Lecture 17: Comparators and Binary Search Trees October 23, 2025

Comparable
• Class makes its own

instances comparable to
each other

• ...

Comparable vs. Comparator

Comparator
• External class with a

method that can compare
objects

• ...

CS 2110 16Lecture 17: Comparators and Binary Search Trees October 23, 2025

Comparable
• Class makes its own

instances comparable to
each other

• Can use when you are the
implementer

Comparable vs. Comparator

Comparator
• External class with a

method that can compare
objects

• Can use when you are not
the implementer

• Supports multiple kinds
of comparison for the
same type

CS 2110 17Lecture 17: Comparators and Binary Search Trees October 23, 2025

Possible Book fields
• Author(s)
• Title
• Dewey Decimal (DDC)

Number
• Library of Congress(LDC)

Number
• Korean Decimal

Classification (KDC)
Number

Multiple ways of comparing

Book class might have fields
• AuthorComarator
• TitleComparator
• DDCComparator
• LCCComparator
• KDCComparator

CS 2110 18

Generic Methods and Type Bounds

Lecture 17: Comparators and Binary Search Trees October 23, 2025

/** Sorts the entries of `a` using the insertion sort algorithm. */

static <T extends Comparable<T>> void insertionSort(T[] a) {...}

/** Inserts entry `a[i]` into its sorted position in `a[..i)` such that `a[..i]` contains the

 * same entries in sorted order. Requires that `0 <= i < a.length` and `a[..i)` is sorted. */

static <T extends Comparable<T>> void insert(T[] a, int i) {...}

/** Swaps entries `a[i]` and `a[j]`. Requires that `0 <= i < a.length` and `0 <= j <

a.length`.*/
static <T> void swap(T[] a, int i, int j) {...}

CS 2110 19

Generic Insertion Sort with Comparable

Lecture 17: Comparators and Binary Search Trees October 23, 2025

/** Sorts the entries of `a` using the insertion sort algorithm. */

static <T extends Comparable<T>> void insertionSort(T[] a) {

 /* Loop invariant: a[..i) is sorted, a[i..] are unchanged. */

 for (int i = 0; i < a.length; i++) {
 insert(a, i);

 }

}

/** Inserts entry `a[i]` into its sorted position in `a[..i)` such that `a[..i]` contains the

 * same entries in sorted order. Requires that `0 <= i < a.length` and `a[..i)` is sorted. */
static <T extends Comparable<T>> void insert(T[] a, int i) {

 assert 0 <= i && i < a.length; // defensive programming

 int j = i;

 while (j > 0 && a[j - 1].compareTo(a[j]) > 0) {
 swap(a, j - 1, j);

 j--;

 }

}
/** Swaps entries `a[i]` and `a[j]`. Requires that `0 <= i < a.length` and `0 <= j <

a.length`.*/

static <T> void swap(T[] a, int i, int j) {

 T temp = a[i];
 a[i] = a[j];

 a[j] = temp;

}

CS 2110
Back to...

Binary Search Trees

CS 2110 21Lecture 17: Comparators and Binary Search Trees October 23, 2025

BST structure: Subtrees for everybody!

• Dotted circle is a
subtree with null
data and two null
subtrees

• Enables us to
represent empty
trees

• Simplifies definition
of BST methods

CS 2110 22Lecture 17: Comparators and Binary Search Trees October 23, 2025

Code demo: BST

• fields: root (data), left, right
• constructor
• left() and right()

CS 2110 23Lecture 17: Comparators and Binary Search Trees October 23, 2025

BST: find

Recursion review – What does every recursive method have?
• Base Case
• Recursive Case

private BST<T> find(T elem) { ... }

CS 2110 24Lecture 17: Comparators and Binary Search Trees October 23, 2025

BST: find

Every recursive method has:
• Base Case(s)

• Solve the smallest version of the
problem

• Recursive Case(s)
• solve a little increment of the

problem
• recur (call itself) on a smaller

version of the problem

What do you think will be
the base case(s) and
recursive case(s) for find()?

private BST<T> find(T elem) { ... }

CS 2110 25Lecture 17: Comparators and Binary Search Trees October 23, 2025

Code demo: BST.find()

Base case: root
Recursive cases
- Recur on left subtree
- Recur on right subtree

CS 2110 26Lecture 17: Comparators and Binary Search Trees October 23, 2025

BST.add() -- intuition

private void add(T elem) { ... }

Use find() to figure out
where it goes!

CS 2110 27Lecture 17: Comparators and Binary Search Trees October 23, 2025

BST.remove() -- intuition

private void remove(T elem) { ... }

Use find() to get to the
node to remove!

... then what?

CS 2110 28Lecture 17: Comparators and Binary Search Trees October 23, 2025

BST.remove() -- intuition

private void remove(T elem) { ... }

If right subtree is empty, we can supplant

CS 2110 29Lecture 17: Comparators and Binary Search Trees October 23, 2025

BST.remove() -- intuition

private void remove(T elem) { ... }

what if has two non-
empty subtrees?

CS 2110
Binary Search Trees:

Complexity

CS 2110 31Lecture 17: Comparators and Binary Search Trees October 23, 2025

BST.find(): complexity

Base case: root
Recursive cases
- Recur on left subtree
- Recur on right subtree

CS 2110 32Lecture 17: Comparators and Binary Search Trees October 23, 2025

BST.add(): complexity

private void add(T elem) { ... }

Use find() to figure out
where it goes!

CS 2110 33Lecture 17: Comparators and Binary Search Trees October 23, 2025

BST.remove() : complexity

private void remove(T elem) { ... }

If right subtree is empty, we can supplant
Otherwise, copy elements up until we can supplant

CS 2110 34

Metacognition

• Take 1 minute to write down a brief summary of what
you have learned today

closing announcements to follow...

Lecture 17: Comparators and Binary Search Trees October 23, 2025

CS 2110 35Lecture 17: Comparators and Binary Search Trees October 23, 2025

• TA evaluations due Friday at 5pm
• https://apps.engineering.cornell.edu/TAEval/survey.cfm ---→
• if you’re not sure your TA’s name for the eval, check the staff roster

for their photo

• A8 released
• long, hard, lots of reading (both code and English)
• start early! go to office hours!

• Know your support resources
• course website → About → Tips for Success

Announcements

https://apps.engineering.cornell.edu/TAEval/survey.cfm
https://apps.engineering.cornell.edu/TAEval/survey.cfm
https://courses.cis.cornell.edu/courses/cs2110/2025fa/about/staff/
https://courses.cis.cornell.edu/courses/cs2110/2025fa/about/success/
https://courses.cis.cornell.edu/courses/cs2110/2025fa/about/success/

	Slide 1: Lecture 17: Comparable, Comparator, and Binary Search Trees
	Slide 2:  Announcements
	Slide 3
	Slide 4:  Sit near a few people
	Slide 5: Binary Search Trees
	Slide 6:  Review: In-order Tree Traversal
	Slide 7:  Review: In-order Tree Traversal
	Slide 8:  Binary Search Trees (BSTs)
	Slide 9: Interlude: Comparing Objects
	Slide 10:  Comparable Interface
	Slide 11:  Properties of compareTo()
	Slide 12:  Comparable Point
	Slide 13:  Comparator Interface
	Slide 14:  Comparator for Point
	Slide 15:  Comparable vs. Comparator
	Slide 16:  Comparable vs. Comparator
	Slide 17:  Multiple ways of comparing
	Slide 18:  Generic Methods and Type Bounds
	Slide 19:  Generic Insertion Sort with Comparable
	Slide 20: Back to... Binary Search Trees
	Slide 21:  BST structure: Subtrees for everybody!
	Slide 22:  Code demo: BST
	Slide 23:  BST: find
	Slide 24:  BST: find
	Slide 25:  Code demo: BST.find()
	Slide 26:  BST.add() -- intuition
	Slide 27:  BST.remove() -- intuition
	Slide 28:  BST.remove() -- intuition
	Slide 29:  BST.remove() -- intuition
	Slide 30: Binary Search Trees: Complexity
	Slide 31:  BST.find(): complexity
	Slide 32:  BST.add(): complexity
	Slide 33:  BST.remove() : complexity
	Slide 34:  Metacognition
	Slide 35:  Announcements

