
CS 2110 1

Exam Reminders

Lecture 14: Iterating over Data Structures October 9, 2025

Prelim 1 is Tonight!

Early Exam: 5:30-7:00, Olin Hall 155
Main Exam: 7:30-9:00, Olin Hall 255 (Last Names A-J) and 155 (Last Names K-Z)

Bring your Cornell ID Card and a couple writing utensils (pencils, erasers, pens)
Exam is closed-book

More information and review materials linked on website / Ed

No OHs tomorrow because of exam grading.

You've learned a lot so far! Time to show it off!

CS 2110
October 9, 2025

Lecture 14: Iterating over Data Structures

Today's Learning Outcomes

CS 2110 3

59. Describe the use cases for the Iterable and Iterator interfaces.

60. Implement Iterators for a given data structure class and use
iterators as a client.

61. Describe the iteratee pattern and how it differs from using an
iterator.

62. Identify and define functional interfaces and implement them
using lambda expressions.

Lecture 14: Iterating over Data Structures October 9, 2025

CS 2110 4

frequencyOf() on Lists

Lecture 14: Iterating over Data Structures October 9, 2025

/** Returns the # of occurrences of `key` in `list`. */
static <T> int frequencyOf(T key, CS2110List<T> list) {
 int i = 0; // next index of `list` to check
 int count = 0;
 /* Loop inv: `count` = # of occurrences of `key` in
 * the first `i` elements of `list`. */
 while (i < list.size()) {
 if (list.get(i).equals(key)) {
 count++;
 }
 i++;
 }
 return count;
}

Modifies our earlier

frequentyof definition in

two ways

Support generic collection
new syntax to introduce

generic type in signature
of a method

2 Takes in 52110List
instead of array

interfere type

Poll Everywhere
 PollEv.com/2110fa25 text 2110fa25 to 22333

(A)

(B)

(C)

(D)
5

DAL: 𝑂(𝑁) SLL: 𝑂(𝑁)

What is the runtime complexity of frequencyOf()
for our CS2110List implementations?

while (i < list.size()) {
 if (list.get(i).equals(key)) { count++; }
 i++;
}

DAL = DynamicArrayList
SLL = SinglyLinkedList

DAL: 𝑂(𝑁) SLL: 𝑂(𝑁2)

DAL: 𝑂(𝑁2) SLL: 𝑂(𝑁)

DAL: 𝑂(𝑁2) SLL: 𝑂(𝑁2)

N list sized
DIN iterations

OT for DAL OCN forSLL Of

CS 2110 6

Motivating Iterators

Lecture 14: Iterating over Data Structures October 9, 2025

For data structures that don't offer a random access

guarantee looping over their elements can be expensive

SLL On the client size we lose our place after each

get call need to resian from head eath time

we'd like to provide a client an easy fist way

to visit all elements of a collection

Iterators help to oversee this iteration by

keeping track of next element to visit

CS 2110 7

The Iterator Interface

Lecture 14: Iterating over Data Structures October 9, 2025

An Iterator models a separate obv from a collection

hat yields returns each
objectinth.ec iolleation are during

ts lifetime

Two Required Methods

1 boolean hasNext Is there an element that hasn't yet
been yielded

2 T next Return the next unyielded element

getricelement type

Often modeled as inner classes of collection class
offers good access and encapsulation

CS 2110

Coding Demo:

8

List Iterators

Lecture 14: Iterating over Data Structures October 9, 2025

CS 2110 9

The Iterable Interface

Lecture 14: Iterating over Data Structures October 9, 2025

The collection class itself implements the Iterable

interface to report that it can return an Iterator

over its elements

One Method

Iterator LTS iterator Returns a new iterator

over this collection

typinally body just returns a constructor call
to its inner iterator class

CS 2110

Coding Demo:

10

Making Lists Iterable

Lecture 14: Iterating over Data Structures October 9, 2025

CS 2110 11

Iterators from the Client Side

Lecture 14: Iterating over Data Structures October 9, 2025

/** Returns the # of occurrences of `key` in `list`. */
static <T> int frequencyOf(T key, CS2110List<T> list)
{

}

For both DAL and SLL
iterators hasNextl and

IE.at it5 t list.iteratores
next's methods run in

Loop inv count of key's that it
0 l time

while it hasNext his yielded

T elem it next frequency off always
if elem equals key count has O N runtime

return count

CS 2110 12

Enhanced For-Loops

Lecture 14: Iterating over Data Structures October 9, 2025

Loops using Iterator T almost always follow some

sattern any Iterable
Iterator sty it iteritor for elem
while it has Next 7 11 do somethingTelem it next with elem
11 do something with elem

for each elem in

Java offers special enhanced for loop syntax
that automatrially does this behind the stenes

Poll Everywhere
 PollEv.com/2110fa25 text 2110fa25 to 22333

(A)

(B)

(C)

(D)

2

3

4

5

Suppose list contains [1,-2,-3,4,-5] at the start
of this code block. What will be its size at the end?
for (Integer i : list) {
 if (i < 0) { list.delete(i); }
}

Poll Everywhere
 PollEv.com/2110fa25 text 2110fa25 to 22333

(A)

(B)

(C)

(D)

2

3

4

5

Suppose list contains [1,-2,-3,4,-5] at the start
of this code block. What will be its size at the end?
for (Integer i : list) {
 if (i < 0) { list.delete(i); }
}

list 5m
ArasListsIntegers Integer

talitI
behind the sienes

Daliterator
g Eit i

CS 2110 14

Concurrent Modification

Lecture 14: Iterating over Data Structures October 9, 2025

An iterator only guarantees to yield each element
of a collection exactly once as long as the collection

is not modified during its lifetime

Conturrent modifinations can mess with iterator's state

representation invariants and cause unexpected behaviors

Don't modify a collection within an enhonied for loop

over its elements

super common source of bugs

CS 2110 15

Iteration with Modification

Lecture 14: Iterating over Data Structures October 9, 2025

/** Adds 1 to each Integer in `list`. */
public static void incrementAll(CS2110List<Integer> list) {
 for (int i = 0; i < list.size(); i++) {
 list.set(i, list.get(i) + 1);
 }
}

DIN work per iteration
for SLL 0 N2 runtime

will iterators help here

No Iterators yield the elements themselves whith doesn't

provide a way to modify the collection

we'd need a reference to the Node obient to re assign
its data field but that would break encapsulation

New idea Ask colleition to do modifications for us

CS 2110 16

The Iteratee Pattern

Lecture 14: Iterating over Data Structures October 9, 2025

the client specifies someIn the
section will performbehaviors

of of its elements behind the stenes during
an iteration

Ex Hey list can you please add I to eath

of your elements

How do we pass this behavior

CS 2110 17

Functional Interfaces

Lecture 14: Iterating over Data Structures October 9, 2025

1neftqI.inefce
is any interface with exactly

Good practise to annotate with Functional Interface

Idea Lets us create objects that represent
behaviors call the one method I've promised

to define

In the iteratee pattern we typically parameterize
the method that will perform the iteration on a

functional interface type

CS 2110

Coding Demo:

18

Iteratee Pattern

Lecture 14: Iterating over Data Structures October 9, 2025

Big Ideas

1 Declare a functional interface

2 write collention method that iterates over elements

and calls functional interface method on each

3 Write a class implementing the funitional interface

that encapsulates the desired behavior

CS 2110 19

Lambda Expressions

Lecture 14: Iterating over Data Structures October 9, 2025

A more convenient syntax for instantiating a functional

interface

parameters
method body p

is s

list transform All Integer return 1

Even simpler syntax
Parameter types can be inferred

list transform All x return 1

Return can be inferred

list transform All X 8 1

CS 2110 20

Lambda Expressions: Behind the Scenes

Lecture 14: Iterating over Data Structures October 9, 2025

list transform All X 8 1 How does this work

Java looks at transformal signature and sees

Transformation T is parameter type
Generic type T was Integer from list deilaration

Since Transformation is a functional interfile a class

implementing it is created behind the scenes

The class must contain a transform method that tokes

in an Integer parameter x

We can auto unbox add and auto box the sum into

an Integer to return from transform

Java calls constructor of new class and passes reference into transformal

CS 2110 21

Exercise: Re-write censor()

Lecture 14: Iterating over Data Structures October 9, 2025

/** Replaces all instances of the given `word` with "****" in these `lyrics`. */
static void censor(CS2110List<String> lyrics, String word) {

}

Our previous censor() implementation had an 𝑂 𝑁2 runtime.

/** Replaces all instances of the given `word` with "****" in these `lyrics`. */
static void censor(CS2110List<String> lyrics, String word) {
 while(lyrics.contains(word)) {
 lyrics.set(lyrics.indexOf(word), "****");
 }
}

Use a call to transformAll() with a lambda expression to achieve an 𝑂(𝑁) runtime.

transformAll s 5equals word xxxx s

CS 2110 22

Main Takeaway: The Power of Interfaces

Lecture 14: Iterating over Data Structures October 9, 2025

Today we saw two plates where interfries enabled

powerful new Java language features

1 Enhanced For Loops
Iterable objects can always provide Iterators with

hisNextl and nextl methods that let us loop over

a collection

2 Lambda Expressions
Since funitional interfaces

include one method using these

interfere types as parameters lets clients describe

actions with simpler syntax Java infers the rest

