
Poll Everywhere
      PollEv.com/2110fa25                text 2110fa25  to 22333

What are the contents of list after these operations?

public static void main(String[] args) {
      CS2110List<String> list = new DynamicArrayList<>();
      list.add("apple");
      list.add("grape");
      list.insert(1, "banana");
      list.insert(0, "grape");
      list.set(2, "orange");
      list.remove(1);
      list.delete("grape");
}

see lecture demo code that
visualizes all operations

orange grape
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Today's Learning Outcomes
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53. Implement a generic class or method with one or more generic 
type parameters. Use generic classes in client code.

57. Compare the performance of a List implemented with a dynamic 
array and a List implemented with a linked chain. Determine which is 
preferable for a given use case.

58. Draw object (or node) diagrams to visualize linked data structures. 
Implement methods on linked data structures.

Lecture 13: Linked Data October 7, 2025
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DynamicArrayList Performance
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N memory usage

1 get and set operations

Random access guarantee of backing storage array

Amortized 011 addl at end of list

N memory copies shifts to support insert removel

at arbitrary indices e.g at beginning of list

Dense centralized storage Iffy
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Decentralized Storage
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Arrays are single collection objects that know about all of
their contents

Benefits random access drawbonks expensive modifications

Alternate approach split storage across multiple objects that each

have a local view of the collection

Need a way to navigate between these objects to

interest with all data

Analogy Large Textbook vs Research Articles

with Citations
centralized De Centralized
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Nodes and Linked Chains
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class Node<T> { 
    /** The element in this node. */
    T data;

    /** The next node in the chain. */
    Node<T> next;
}

smaller objects Nodes

Each node
Carries small amount 1 element
of data

Holds a reference i.e links to
another Node the next node

Linking multiple nodes together forms a chain
First Node in chain is called the herd

starting from the head we can access any element by
following enough links



CS 2110 7

Visualizing a Linked Chain
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of strings

bject Diagram

NodeString Nodestring Nodestringyhead O i i i ii iNode String

Node Diagram Retain linkstructure abstract away other details

herd i ie
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Linked Lists
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we can use a linked chain to implement the 52110List
interfere
Nodes are linked in index order with head at index 0

head p yp p
empty node signifies

efflist
SinglyLinked List class simle eath Node links to a single other

Node
us DoublyLinkedList with backward pointers

f Focus of AG
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(A)

(B)

(C)

(D)

4

6

7

8

How many heap objects are required to represent a 
SinglyLinkedList<Integer> object with size = 3? 

surtitegers node node node Node
3

1 2 4 6 8
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SinglyLinkedList State
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Nested Classes
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sometimes an auxiliary class is needed to help model the
state of an object

The client doesn't need
to know worry about this class so

If I eny.es
it from their view by nesting it inside

Two Flavors

FFitii si iit ti
outer objectof outer object

everything in inner class is visible to outer class
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Coding Demo: 
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Constructor / assertInv()
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nodeAtIndex() Helper Method
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Working with your neighbor, complete the definition of this method.

/** Returns a reference to the node at the given `index` (counting from 0) in
 *   this linked list. Requires that `0 <= index <= size`.  */
private Node<T> nodeAtIndex(int index) {
    assert 0 <= index && index <= size;  // defensive programming

}

Node T current head int i o

while is index 11 loop inv current ith node in list

current current next itt data next data next

001
return current current
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Coding Demo: 
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Using nodeAtIndex()
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Complexity Analysis
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nodeAt Index i runs in Oci time 011 per link traversal

OCI space complexity Oli if recursive

get sett are i worst case N operations

for linked lists

than dynamic arrays de centralization makes
Yffgation trickier sinie we lose random access guarantee
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Other "Scanning" Methods
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contains Telem

Idea Ti well SE 1rt tf e i undstfisefie.tt

eechnodendexofTelem

Idea Follow links from head comparing data field of each node

with elem Keep track of indices during traversal

Both OCN operations same as DynamicArrayList linear search

Exercise code these up
on your own write loop invariants
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Adding Nodes:  spliceIn()
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/** Adds the given `elem` just before this existing list `node`. */
private void spliceIn(Node<T> node, T elem) { ... }

Modifying adding removing elements from a linked chain

amounts to rewiring its links

To improve upon performanie of DynamicArrayList we

want these re wiring to be load operations once we

tonate node where they take place
011 runtime of splice Inl
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Strategy: Before/After Node Diagrams
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efore node
fail 1 make new Node

copying node
head l 2 update nodedata

to elem

noyde
tail

3 update nodenext
to newNode

head l 4 increment size

After newn.de

5
fix

tail

head 1s 1s s
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(A)

(B)

(C)

(D)
19

Beginning: 𝑂 1  End: 𝑂(1)

What are the time complexities of adding elements 
to the beginning / end of a SinglyLinkedList?

Beginning: 𝑂 1 End: 𝑂(𝑁)

Beginning: 𝑂 𝑁 End: 𝑂(1)

Beginning: 𝑂 𝑁 End: 𝑂(𝑁)
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Coding Demo: 
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add() / insert()
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Removing Nodes: spliceOut()
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/** Removes the given `node` from this list and returns its `data` field.
 *    Requires that `node != tail`.*/
private T spliceOut(Node<T> node) { ... }

Before hyde fail 1 Store return value

removed Any
head

2 update
nodedata nodenextdata

tail 3 Update
After nodenext nodenext nex

head 4 Update size tail
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(A)

(B)

(C)

(D)
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Beginning: 𝑂 1  End: 𝑂(1)

What are the time complexities of removing elements 
from the beginning / end of a SinglyLinkedList?

Beginning: 𝑂 1 End: 𝑂(𝑁)

Beginning: 𝑂 𝑁 End: 𝑂(1)

Beginning: 𝑂 𝑁 End: 𝑂(𝑁)
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Coding Demo: 
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remove() / delete()
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SinglyLinkedList Summary
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DCN memory usage
all space actively used

pointers take up extra space

011 re wiring operations given reference to location for addition removal

011 worst case addl removel at beginning add at end

No global resizing memory shifting

DCN linear searching

N element acless by index gett sett

Linked Lists good for frequent updates at ends bad for queries in middle


