
CS 2110
September 30, 2025

Lecture 11: Exceptions, Immutability, and Object

CS 2110, Matt Eichhorn and Leah Perlmutter

CS 2110 2Lecture 11: Exceptions, Immutability, and Object September 30, 2025

•A4 grades published
•Prelim 1 on October 9 (in 2 weeks)

• Practice exam coming soon
• Make sure you’re on top of studying!

Announcements

Today's Learning Outcomes

CS 2110 3

Exceptions & Exception Handling
1. Explain exceptions and their relationship to specifications and defensive

programming.

2. Write code that throws, propagates, and handles exceptions.

Mutability and Immutability
1. Determine whether a class is mutable or immutable.

2. Explain the semantics of the final keyword.

Object Class and its Methods
1. Describe the semantic differences between the == operator and the equals()

method and determine the appropriate one for a given scenario.

2. Identify the requirements of the equals() method specified in the Object
class and override this method in user-defined classes.

Lecture 11: Exceptions, Immutability, and Object September 30, 2025

CS 2110
Exceptions and

Exception Handling

Sometimes things go wrong

• ...

Sometimes things go wrong

• Negative array indices
• Invoking methods on null
• Lost WiFi connection
• Optional feature not supported
• File didn’t contain a valid image
• User typed their email when asked for their age

• Can’t just give up or claim “undefined behavior” all the time

Demo: mean

Expecting the unexpected

Specifications should define what
happens in “exceptional”
situations
• Possible responses:

• Disallow in preconditions
• Assumes client can predict the

problem
• Return a “special value” (-1, null)

• Examples: String.indexOf(),
BufferedReader.readLine()

• Client might not check value before
using it

• How to get more info?

• Return a type that can represent
success or failure
• Example: Optional
• Client must confront possibility of

failure
• Throw an exception

Signaling a problem – Throwing exceptions

• Use the throw keyword,
followed by a Throwable
object

• Method execution immediately
ends (like return)

• Method will not yield a value,
so no need to fake an answer
• Example: TODOs in assignments

if (cmd.equals(
 "open the pod bay doors") {

 throw new
 UnsupportedOperationException(
 "I’m afraid I can’t do that");

} else {

 return true;

}

Exception classes
• Throwables come in two

varieties: checked &
unchecked (by the compiler)

• Error: Serious problem;
program should probably just
crash

• RuntimeException: Usually a
bug the client could have
prevented

• Exception: All other exceptional
circumstances

FileNotFoundException

Throwable

ErrorException

RuntimeException

NullPointerExceptionUnsupportedOperationException

ArrayIndexOutOfBoundsException

NoSuchElementException

IOException

Demo: findLocalMax()

Handling exceptions

Catch
• Use a try block paired with an

appropriate catch block
• Client execution resumes after
catch block

• Use when you know how to
handle the situation

Propagate
• Do nothing (need a throws

clause in declaration if exception
type is “checked”)

• Method exits if exception is
thrown; control passes to caller

• Use when you needed success in
order to proceed; let supervisor
figure out what to do now

Catching exceptions

try {

 f1();

 // Code that assumes
 // successful f1...

} catch (Exception e) {

 // Code that handles
 // unsuccessful f1...

}

// Code that continues
// either way...

• Wrap operations that might throw
an exception in a try block

• If an exception is thrown, control
will exit the try block and jump to
the appropriate catch block
• At most one catch block is

executed; control then jumps to
end of entire try/catch statement

• If no matching catch block,
exception propagates (exits blocks
and methods until caught)

Demo: reduceMax()

Propagation
public static void f1() {

 System.out.println("A");

 f2();

 System.out.println("B");

}

public static void f2() {

 f3(true);

 System.out.println("C");

}

public static void f3(boolean x) {

 if (x) {

 throw new RuntimeException();

 }

 System.out.println("D");

}

What would be printed by
running f1();? (ignoring any
exception backtrace)

A. A
B. AB
C. ACB
D. ADCB
E. other

PollEv.com/leahp
text leahp to 22333

Backtraces

• Uncaught exceptions will print
a backtrace (aka stack trace)
• Show’s the exception’s message
• Shows which line of code threw

the exception
• Shows which method called

which method … called the
method that threw the exception

• Very helpful for debugging!
• Know which lines of code were

run and which were not

Exception in thread "main"
java.lang.RuntimeException: x
should have been false

 at Demo1.f3(Demo1.java:12)

 at Demo1.f2(Demo1.java:8)

 at Demo1.f1(Demo1.java:4)

 at Demo1.main(Demo1.java:17)

Matching exception types

try {

 riskyCall();

} catch
 (FileNotFoundException e) {

 // Handle missing file

} catch (IOException e) {
 // Handle other R/W issue
} catch (Exception e) {

 // Handle other issue
}
// Keep going...

• The first catch block that
catches a supertype of the
dynamic type of the thrown
object will be executed

• When a supertype and subtype
are included among types to
catch, put the subtype first!

Recall:
FileNotFoundException <:
IOException <:
Exception

Checked vs. unchecked exceptions

Checked
• If you might throw one yourself

or might allow one to
propagate, must add throws
clause to method declaration

• Consequence: cannot throw
new checked exceptions if
overriding...why?

Unchecked
• May throw or allow to

propagate without warning
• Every integer division
• Every array access
• Every method call

Substitutatiliby!
Principle of Least Surprise!

Reminder: Checked means
checked by the compiler, and

depends on the exception’s
compile-time type

Demo
• parseBookList() in starter code from BookSorter

Testing Exceptions
• ExceptionTest

Exceptions: Summarize what you learned
• ...

CS 2110Mutability and Immutability

CS 2110 20

Mutability and Immutability

Lecture 11: Exceptions, Immutability, and Object September 30, 2025

•mutable – can be modified
• immutable – cannot be modified

Account mutable (can change its balance)

String immutable (a new one gets created
for every operation!)

CS 2110 21

Why immutable?

Lecture 11: Exceptions, Immutability, and Object September 30, 2025

•avoid representation exposure to maintain
representation invariant
• simplicity
• less space for bugs to creep in

CS 2110 22

Point
/** An immutable class representing a point in the 2D coordinate plane with `double`
coordinates. */

public class Point {
 /** The x-coordinate of this point. */
 private double x;

 /** The y-coordinate of this point. */
 private double y;

 /** Constructs a `Point` object with the given `x`- and `y`-coordinates. */
 public Point(double x, double y) {
 this.x = x;
 this.y = y;
 }

 /** Returns the x-coordinate of this point. */
 public double x() {
 return x;
 }

 /** Returns the y-coordinate of this point. */
 public double y() {
 return y;
 }
}

Lecture 11: Exceptions, Immutability, and Object September 30, 2025

CS 2110 23

reflectOver()
/** MUTATOR (doesn’t work with immutability)

 * Reflects this point over the line y = `m`x + `b` for the given slope `m`

 * and y-intercept `b`.

 */

public Point reflectOver(double m, double b) {

 this.x = this.x - 2 * b * m + 2 * m * this.y - this.x * m * m;

 this.y = 2 * this.x * m + 2 * b + m * m * this.y - this.y;

 double d = 1 + m * m;

 this.x /= d;

 this.y /= d;

}

/** CREATOR (works with immutability)

 * Returns a new `Point` object that is obtained by reflecting this point about

 * the line y = `m`x + `b` for the given slope `m` and y-intercept `b`.

 */

public Point reflectOver(double m, double b) {

 double xp = this.x - 2 * b * m + 2 * m * this.y - this.x * m * m;

 double yp = 2 * this.x * m + 2 * b + m * m * this.y - this.y;

 double d = 1 + m * m;

return new Point(xp / d, yp / d);

}

Lecture 11: Exceptions, Immutability, and Object September 30, 2025

CS 2110 24

Enforcing immutability

Lecture 11: Exceptions, Immutability, and Object September 30, 2025

/** An immutable class representing a point in the 2D coordinate plane with

`double` coordinates. */

public class Point {

 /** The x-coordinate of this point. */

 private final double x;

 /** The y-coordinate of this point. */

 private final double y;

 /** Constructs a `Point` object with the given `x`- and `y`-coordinates. */

 public Point(double x, double y) {

 this.x = x;

 this.y = y;

 }

 /** Returns a new `Point` obtained by reflecting this point about

 * the line y = `m`x + `b` for the given slope `m` and y-intercept `b`. */

 public Point reflectOver(double m, double b) {...}

 ...

}

CS 2110 25

Immutability: summarize what you learned

Lecture 11: Exceptions, Immutability, and Object September 30, 2025

...

CS 2110Object and its Methods

Relationships

• Java only supports single inheritance
• Only one superclass
• Reserve for “is-a” relationship

• Classes may implement multiple
interfaces
• “Can-do” relationship

Student

Person

Named

Graded

ObjectAged

Object

• All classes are a subtype of
Object
• If no extends clause, then Object

is the superclass
• Interfaces implicitly must be

implemented by an Object

• Object provides useful
universal methods that you
may want to override
• toString()

• equals()

• hashCode()

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html

toString() example: Point

public class Point {

 private final double x;

 private final double y;

 @Override

 public String toString() {

 return "(" + x + "," + y + ")";

 }

}
What would print out if point didn’t
override toString()? (demo)

Equality

Referential equality (identity)
• Are two objects the same

object?
• Test using ==
• Usually not desired

Logical equality (state)
• Should two objects be

considered equivalent
(substitutable)?

• Override equals() to define
separately from identity

• Danger if class is mutable

Equivalence relations

• Reflexive
• You equal yourself
• x = x

• Symmetric
• If you equal someone, they equal you
• x = y if and only if y = x

• Transitive
• If you equal someone and they equal someone else,

you also equal that someone else
• if x = y and y = z, then x = z Note: Expressions on this

slide such as “x=x” are math
expressions, not code

Demo: Point equality

Overriding .equals()

@Override

public boolean equals(Object other) {

 if (!(other instanceof Point)) {

 return false;

 }

 Point p = (Point) other;

 return x == p.x && y == p.y;

}

Object and its methods:
summarize what you learned
...

CS 2110record classes

CS 2110 36

Record classes

Lecture 11: Exceptions, Immutability, and Object September 30, 2025

public class Point {

 private final double x;

 private final double y;

 public Point(double x, double y) {

 this.x = x;

 this.y = y;

 }

 public double x() { return this.x; }

 public double y() { return this.y; }

 public String toString() { ... }

 public boolean equals ...

 public boolean hashCode...

}

Simple, standard code
patterns like this are known

as boilerplate code. How
can we avoid writing

boilerplate?

https://docs.oracle.com/en/java/javase/17/language/records.html

CS 2110 37

Record classes

Lecture 11: Exceptions, Immutability, and Object September 30, 2025

public class Point {

private final double x;

private final double y;

public Point(double x, double y) {

this.x = x;

this.y = y;

}

public double x() { return this.x; }

public double y() { return this.y; }

public String toString() { ... }

public boolean equals ...

public boolean hashCode...

}

public record Point(double x, double y) { }

Demo: Point record.
We can add methods to

the Point record and
override the defaults.

Highlighted code is
equivalent to crossed out

code. Yay for conciseness!

https://docs.oracle.com/en/java/javase/17/language/records.html

CS 2110 38

Metacognition

• Take 1 minute to write down a brief summary of what
you have learned today

closing announcements to follow...

Lecture 11: Exceptions, Immutability, and Object September 30, 2025

CS 2110 39Lecture 11: Exceptions, Immutability, and Object September 30, 2025

•A4 grades published
•Prelim 1 on October 9 (in 2 weeks)

• Practice exam coming soon
• Make sure you’re on top of studying!

Announcements

	Slide 1: Lecture 11: Exceptions, Immutability, and Object
	Slide 2:  Announcements
	Slide 3
	Slide 4: Exceptions and Exception Handling
	Slide 5: Sometimes things go wrong
	Slide 6: Sometimes things go wrong
	Slide 7: Expecting the unexpected
	Slide 8: Signaling a problem – Throwing exceptions
	Slide 9: Exception classes
	Slide 10: Handling exceptions
	Slide 11: Catching exceptions
	Slide 12: Propagation
	Slide 13: Backtraces
	Slide 14: Matching exception types
	Slide 15: Checked vs. unchecked exceptions
	Slide 16: Demo
	Slide 17: Testing Exceptions
	Slide 18: Exceptions: Summarize what you learned
	Slide 19: Mutability and Immutability
	Slide 20:  Mutability and Immutability
	Slide 21:  Why immutable?
	Slide 22:  Point
	Slide 23:  reflectOver()
	Slide 24:  Enforcing immutability
	Slide 25:  Immutability: summarize what you learned
	Slide 26: Object and its Methods
	Slide 27: Relationships
	Slide 28: Object
	Slide 29: toString() example: Point
	Slide 30: Equality
	Slide 31: Equivalence relations
	Slide 32: Demo: Point equality
	Slide 33: Overriding .equals()
	Slide 34: Object and its methods: summarize what you learned
	Slide 35: record classes
	Slide 36:  Record classes
	Slide 37:  Record classes
	Slide 38:  Metacognition
	Slide 39:  Announcements

