
CS 2110
September 24, 2025

Lecture 10: Inheritance
CS 2110, Matt Eichhorn and Leah Perlmutter

CS 2110 2

Announcements

Lecture 10: Inheritance September 25, 2025

• A5 released, due Wednesday
• Prelim 1 on October 9 (in 2 weeks)

• Fill out conflict survey
• Practice exam coming next week
• Make sure you’re on top of studying!

• DIS 5 this week
• Fun topic, prep for A5
• Importance of think-before-you-code activities (coding

ability & exam prep)

Today's Learning Outcomes

CS 2110 3

1. Compare and contrast interfaces, abstract classes, and
(concrete) classes.

2. Compare and contrast static types and dynamic types.
3. Explain the benefits of leveraging polymorphism in object-

oriented code.
4. Describe the principle of dynamic dispatch and the compile-

time reference rule.
5. Explain inheritance relationships and their benefits/drawbacks

over interfaces.
6. Given a parent class, use inheritance to develop one or more

child subclasses.
7. Determine the correct visibility modifier (public, protected, or

private) for a given field or method and justify your choice.
8. Trace through the execution of a code sample that includes one

or more of the following: inheritance, overridden methods, and
super calls.

Lecture 10: Inheritance September 25, 2025

CS 2110 4

Recall: Checking and Savings Accounts

Lecture 10: Inheritance September 25, 2025

• Both
• Name, balance, deposit, transfer, transactionReport

• Savings only
• Earning interest

• Checking only
• Monthly fee if balance too low

CS 2110 5

Recall: Substitutability

Lecture 10: Inheritance September 25, 2025

• Also known as: Liskov Substitution Principle (LSP)
• next slide

Let P(x) be a property provable about

objects x of type T. Then P(y) should be

true for objects y of type S where S is a

subtype of T.

-- Barbara Liskov

The Liskov Substitution Principle

This means B is a subtype of

A if anywhere you can use an

A, you could also use a B.

CS 2110 7

Subclassing

Lecture 10: Inheritance September 25, 2025

• Lets us reuse code in a subtype
• Account has lots of code that Savings and Checking could

reuse!

CS 2110 8

Subclassing with extends

Lecture 10: Inheritance September 25, 2025

/** Models an account in our personal finance app. */

public class Account {

}

/** Models a savings account in our personal finance app. */

public class SavingsAccount extends Account {

}

CS 2110 9

Subclassing and fields

Lecture 10: Inheritance September 25, 2025

public class Account {

 private String name;

 private int balance;

 StringBuilder transactions;

...}

public class SavingsAccount extends Account {

 private double rate;

 // name, balance, and transactions are inherited!

...}

CS 2110 10

Subclassing and methods

Lecture 10: Inheritance September 25, 2025

/** Models an account in our personal finance app. */

public class Account {

 // which visibility modifier?

 void resetTransactionLog() {...}

 String name() {...}

 int balance() {...}

 boolean transferFunds(Account receiving, int amount) {...}

 String transactionReport() {...}

 static String centsToString(int cents) {...}

}

private

public

public

public

public

protected

CS 2110 11

Specialization Interfaces

Lecture 10: Inheritance September 25, 2025

• specialization interface
• fields and methods that are visible to child classes but not clients
• contrast with client interface, which is public members of a class visible to

client code

• protected
• grants access to subclasses and not (usually) to the client

• Caution: avoid exposing representation to subclass
• super class is responsible for managing rep invariant

CS 2110 12

Specialization Interfaces

Lecture 10: Inheritance September 25, 2025

/** Models an account in our personal finance app. */

public class Account {

 // which visibility modifier?

 void resetTransactionLog() {...}

 String name() {...}

 int balance() {...}

 boolean transferFunds(Account receiving, int amount) {...}

 String transactionReport() {...}

 static String centsToString(int cents) {...}

}

private

public

public

public

public

protected

CS 2110 13

Object diagrams revisited

Lecture 10: Inheritance September 25, 2025

CS 2110 14

Reading fields with observer method

Lecture 10: Inheritance September 25, 2025

public class Account {

 private int balance;

 ...

}

public class SavingsAccount extends Account {

 private void accrueMonthlyInterest() {

 int interestAmount =

 (int)(this.balance() * this.rate / (12 * 100));

 this.depositFunds(interestAmount, "Monthly interest @"

 + this.rate + "%");

 }

}

CS 2110 15

Overriding methods

Lecture 10: Inheritance September 25, 2025

// Account

public String transactionReport() {

 this.transactions.append("Final Balance: ");

 this.transactions.append(centsToString(this.balance));

 this.transactions.append("\n");

 String report = this.transactions.toString();

 this.resetTransactionLog();

 return report;

}

// SavingsAccount

@Override

public String transactionReport() {

this.processMonthlyFee();

 this.transactions.append("Final Balance: ");

 this.transactions.append(centsToString(this.balance));

 this.transactions.append("\n");

 String report = this.transactions.toString();

 this.resetTransactionLog();

 return report;

}

CS 2110 16

Overriding methods

Lecture 10: Inheritance September 25, 2025

// Account

public String transactionReport() {

 this.transactions.append("Final Balance: ");

 this.transactions.append(centsToString(this.balance));

 this.transactions.append("\n");

 String report = this.transactions.toString();

 this.resetTransactionLog();

 return report;

}

// SavingsAccount

@Override

public String transactionReport() {

this.processMonthlyFee();

 return super.transactionsReport();

}

invoke the parent class’s method!

we can do this with constructors too, but
the call to super MUST be on the first line

CS 2110 18

Type hierarchies

Lecture 10: Inheritance September 25, 2025

CS 2110 19

Single Inheritance in Java

Lecture 10: Inheritance September 25, 2025

• In Java, each class can extend only one superclass
• Use implementation inheritance sparingly!
• Prefer interface implementation

CS 2110 20

Abstract Classes

Lecture 10: Inheritance September 25, 2025

• middle ground between implementation inheritance and implementing
an interface

• inheritance -- superclass has methods that we override
• interface -- super has method declarations that we implement
• abstract -- abstract super has both (!!)
• why?

• super might want to leave space for the subclass to do something, but super
doesn't know what that might be, it's up to the subclass

• you might hear this called a "hook"
• super makes a hook so that subclass can hang something on it

CS 2110 21

transactionReport(), revisited

Lecture 10: Inheritance September 25, 2025

public class Account {

 /**

 * Called once at the end of each month to return a `String` summarizing the

 * account's initial balance that month, all transactions made during that

 * month, and its final balance.

* To maintain class invariant, subclasses that override transactionReport()

* must call super.transactionReport() within the body of the

* overriding method

 */

 public String transactionReport() {

 this.transactions.append("Final Balance: ");

 this.transactions.append(centsToString(this.balance));

 this.transactions.append("\n");

 String report = this.transactions.toString();

 this.resetTransactionLog();

 return report;

 }

...

}

Too much responsibility for
subclass!

Superclass should be
responsible for its own
invariants!

CS 2110 22

transactionReport(), revisited

Lecture 10: Inheritance September 25, 2025

public abstract class Account {

 /**

 * Called once at the end of each month to return a `String` summarizing the

 * account's initial balance that month, all transactions made during that

 * month, and its final balance.

 */

 public String transactionReport() {

this.closeOutMonth();

 this.transactions.append("Final Balance: ");

 this.transactions.append(centsToString(this.balance));

 this.transactions.append("\n");

 String report = this.transactions.toString();

 this.resetTransactionLog();

 return report;

 }

protected abstract void closeOutMonth();

...

}

abstract class!

abstract method!

CS 2110 23

Dynamic Dispatch with subclassing

Lecture 10: Inheritance September 25, 2025

public abstract class Account {

 public String transactionReport() {

 this.closeOutMonth();

 ...

 }

 protected abstract void closeOutMonth();

 ...

}

public class CheckingAccount extends Account {

 @Override

 protected void closeOutMonth() {

 ...

 }

...

}

// Client code

Account checking =

 new CheckingAccount("Checking", 13000);

Account savings =

 new SavingsAccount("Savings", 230000, 3.0);

checking.transferFunds(savings, 10000);

System.out.println(checking.transactionReport());

CS 2110 24

Dynamic Dispatch with subclassing

Lecture 10: Inheritance September 25, 2025

public abstract class Account {

 public String transactionReport() {

 this.closeOutMonth();

 ...

 }

 protected abstract void closeOutMonth();

 ...

}

public class CheckingAccount extends Account {

 @Override

 protected void closeOutMonth() {

 ...

 }

...

}

// Client code

Account checking =

 new CheckingAccount("Checking", 13000);

Account savings =

 new SavingsAccount("Savings", 230000, 3.0);

checking.transferFunds(savings, 10000);

System.out.println(checking.transactionReport());

PollEv.com/leahp
text leahp to 22333

What happens when we try to call checking.transactionReport() in
the client code above and checkingTransactionReport() tries to call
closeOutMonth()?

A) It calls Account’s closeOutMonth() which does nothing
B) It tries to call Account’s closeOutMonth() which results in an error
C) It calls CheckingAccount’s closeOutMonth()
D) Compile time error

CS 2110 25

Dynamic Dispatch with subclassing

Lecture 10: Inheritance September 25, 2025

public abstract class Account {

 public String transactionReport() {

 this.closeOutMonth();

 ...

 }

 protected abstract void closeOutMonth();

 ...

}

public class CheckingAccount extends Account {

 @Override

 protected void closeOutMonth() {

 ...

 }

...

}

// Client code

Account checking =

 new CheckingAccount("Checking", 13000);

Account savings =

 new SavingsAccount("Savings", 230000, 3.0);

checking.transferFunds(savings, 10000);

System.out.println(checking.transactionReport());

Bottom Up Rule!

CS 2110 26

Dynamic Dispatch with subclassing

Lecture 10: Inheritance September 25, 2025

public abstract class Account {

 public String transactionReport() {

 this.closeOutMonth();

 ...

 }

 protected abstract void closeOutMonth();

...

}

public class CheckingAccount extends Account {

 @Override

 protected void closeOutMonth() {

 ...

 }

...

}

// Client code

Account checking =

 new CheckingAccount("Checking", 13000);

Account savings =

 new SavingsAccount("Savings", 230000, 3.0);

checking.transferFunds(savings, 10000);

System.out.println(checking.transactionReport());

PollEv.com/leahp
text leahp to 22333

What happens when we try to call checking.transactionReport() in
the client code above and checkingTransactionReport() tries to call
closeOutMonth()?

A) It calls Account’s closeOutMonth() which does nothing
B) It tries to call Account’s closeOutMonth() which results in an error
C) It calls CheckingAccount’s closeOutMonth()

D) Compile time error

Class Design Case Study:
Storing Names as Data

27

Storing People's Names as Data (Social Implications)

● There are social implications of using data to represent reality!

● Names are a kind of data commonly stored in many different data structures

● Caution: potentially more questions than answers here!

28

Use Case: Storing Names in a Hospital Patient Database

As a patient experience specialist, I want to make sure that patients are treated in a respectful way. This

includes having hospital staff address patients respectfully. The hospital database will store patient names in

3 parts:

● Honorific (Ms, Mr, etc.) -- dropdown

● First Name -- free text

● Last Name -- free text

Then hospital staff will be instructed to address patients using [Honorific] [Last Name], for example "Ms.

Perlmutter," because that is more respectful than simply using their first name, for example, "Leah."

What assumptions are made in this use case?

29

Storing Names as Data

1. People have exactly one canonical full name.

...

12. People’s names are case sensitive.

13. People’s names are case insensitive.

...

20. People have last names, family names, or
anything else which is shared by folks recognized

as their relatives.

“
”

Just one name

= Mononym

Source: https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/ 30

Perhaps the cure to all these

"issues" is applying to the district

court for a last name, ... But what

last name should I pick? My

ancestors' familial name, Huang?

My parents' chosen name,
Wijaya?

“
”

After vetting and interviews, he received a
visa at the U.S. embassy in Kabul identifying
him as “FNU Naqibullah.” ... he also became
FNU Naqibullah on his driver’s license, Social
Security card and other identification.
“Everywhere I go, they are calling me FNU,"
says Naqibullah.

“
”

FNU = First

Name Unknown

31

Almost all data is an

approximation of reality

32

CS 2110 33

Metacognition

Lecture 10: Inheritance September 25, 2025

• Take 1 minute to write down a brief summary of what
you have learned today

closing announcements to follow...

CS 2110 34

Announcements

Lecture 10: Inheritance September 25, 2025

• A5 released, due Wednesday
• Prelim 1 on October 9 (in 2 weeks)

• Fill out conflict survey
• Practice exam coming next week
• Make sure you’re on top of studying!

• DIS 5 this week
• Fun topic, prep for A5
• Importance of think-before-you-code activities (coding

ability & exam prep)

	Slide 1: Lecture 10: Inheritance
	Slide 2:  Announcements
	Slide 3
	Slide 4:  Recall: Checking and Savings Accounts
	Slide 5:  Recall: Substitutability
	Slide 6
	Slide 7:  Subclassing
	Slide 8:  Subclassing with extends
	Slide 9:  Subclassing and fields
	Slide 10:  Subclassing and methods
	Slide 11:  Specialization Interfaces
	Slide 12:  Specialization Interfaces
	Slide 13:  Object diagrams revisited
	Slide 14:  Reading fields with observer method
	Slide 15:  Overriding methods
	Slide 16:  Overriding methods
	Slide 18:  Type hierarchies
	Slide 19:  Single Inheritance in Java
	Slide 20:  Abstract Classes
	Slide 21:  transactionReport(), revisited
	Slide 22:  transactionReport(), revisited
	Slide 23:  Dynamic Dispatch with subclassing
	Slide 24:  Dynamic Dispatch with subclassing
	Slide 25:  Dynamic Dispatch with subclassing
	Slide 26:  Dynamic Dispatch with subclassing
	Slide 27: Class Design Case Study: Storing Names as Data
	Slide 28: Storing People's Names as Data (Social Implications)
	Slide 29: Use Case: Storing Names in a Hospital Patient Database
	Slide 30: Storing Names as Data
	Slide 31
	Slide 32: Almost all data is an approximation of reality
	Slide 33:  Metacognition
	Slide 34:  Announcements

