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Announcements

Lecture 10: Inheritance September 25, 2025

• A5 released, due Wednesday
• Prelim 1 on October 9 (in 2 weeks)

• Fill out conflict survey
• Practice exam coming next week
• Make sure you’re on top of studying!

• DIS 5 this week
• Fun topic, prep for A5
• Importance of think-before-you-code activities (coding 

ability & exam prep)



Today's Learning Outcomes
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1. Compare and contrast interfaces, abstract classes, and 
(concrete) classes.

2. Compare and contrast static types and dynamic types.
3. Explain the benefits of leveraging polymorphism in object-

oriented code.
4. Describe the principle of dynamic dispatch and the compile-

time reference rule.
5. Explain inheritance relationships and their benefits/drawbacks 

over interfaces.
6. Given a parent class, use inheritance to develop one or more 

child subclasses.
7. Determine the correct visibility modifier (public, protected, or 

private) for a given field or method and justify your choice.
8. Trace through the execution of a code sample that includes one 

or more of the following: inheritance, overridden methods, and 
super calls.
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Recall: Checking and Savings Accounts
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• Both
• Name, balance, deposit, transfer, transactionReport

• Savings only
• Earning interest

• Checking only
• Monthly fee if balance too low
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Recall: Substitutability
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• Also known as: Liskov Substitution Principle (LSP)
• next slide



Let P(x) be a property provable about 

objects x of type T. Then  P(y) should be 

true for objects y of type S where S is a 

subtype of T.

-- Barbara Liskov

The Liskov Substitution Principle

This means B is a subtype of 

A if anywhere you can use an 

A, you could also use a B.
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Subclassing
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• Lets us reuse code in a subtype
• Account has lots of code that Savings and Checking could 

reuse!



CS 2110 8

Subclassing with extends
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/** Models an account in our personal finance app. */

public class Account { 

}

/** Models a savings account in our personal finance app. */

public class SavingsAccount extends Account { 

}
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Subclassing and fields
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public class Account {

  private String name;

  private int balance;

  StringBuilder transactions;

...}

public class SavingsAccount extends Account {

  private double rate;

  // name, balance, and transactions are inherited!

...}
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Subclassing and methods
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/** Models an account in our personal finance app. */

public class Account { 

   // which visibility modifier?

            void resetTransactionLog() {...}

            String name() {...}

            int balance() {...}

            boolean transferFunds(Account receiving, int amount) {...}

            String transactionReport() {...}         

            static String centsToString(int cents) {...}

}

private

public

public

public

public

protected
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Specialization Interfaces
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• specialization interface
• fields and methods that are visible to child classes but not clients
• contrast with client interface, which is public members of a class visible to 

client code

• protected 
• grants access to subclasses and not (usually) to the client

• Caution: avoid exposing representation to subclass
• super class is responsible for managing rep invariant
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Specialization Interfaces
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/** Models an account in our personal finance app. */

public class Account { 

   // which visibility modifier?

            void resetTransactionLog() {...}

            String name() {...}

            int balance() {...}

            boolean transferFunds(Account receiving, int amount) {...}

            String transactionReport() {...}         

            static String centsToString(int cents) {...}

}

private

public

public

public

public

protected
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Object diagrams revisited
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Reading fields with observer method
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public class Account {

  private int balance;

  ...

}

public class SavingsAccount extends Account { 

 private void accrueMonthlyInterest() {

    int interestAmount = 

                (int)(this.balance() * this.rate / (12 * 100));

    this.depositFunds(interestAmount, "Monthly interest @" 

                      + this.rate + "%");

  }

}
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Overriding methods
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// Account

public String transactionReport() {

    this.transactions.append("Final Balance: ");

    this.transactions.append(centsToString(this.balance));

    this.transactions.append("\n");

    String report = this.transactions.toString();

    this.resetTransactionLog();

    return report;

}

// SavingsAccount

@Override

public String transactionReport() {

this.processMonthlyFee();

    this.transactions.append("Final Balance: ");      

    this.transactions.append(centsToString(this.balance));

    this.transactions.append("\n");

    String report = this.transactions.toString();

    this.resetTransactionLog();

    return report;

}
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Overriding methods
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// Account

public String transactionReport() {

    this.transactions.append("Final Balance: ");

    this.transactions.append(centsToString(this.balance));

    this.transactions.append("\n");

    String report = this.transactions.toString();

    this.resetTransactionLog();

    return report;

}

// SavingsAccount

@Override

public String transactionReport() {

this.processMonthlyFee();

    return super.transactionsReport();

}

invoke the parent class’s method!

we can do this with constructors too, but 
the call to super MUST be on the first line
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Type hierarchies
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Single Inheritance in Java
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• In Java, each class can extend only one superclass
• Use implementation inheritance sparingly!
• Prefer interface implementation
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Abstract Classes
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• middle ground between implementation inheritance and implementing 
an interface

• inheritance -- superclass has methods that we override
• interface -- super has method declarations that we implement
• abstract -- abstract super has both (!!)
• why?

• super might want to leave space for the subclass to do something, but super 
doesn't know what that might be, it's up to the subclass

• you might hear this called a "hook"
• super makes a hook so that subclass can hang something on it
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transactionReport(), revisited
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public class Account { 

  /**

   * Called once at the end of each month to return a `String` summarizing the 

   *   account's initial balance that month, all transactions made during that 

   *   month, and its final balance.

* To maintain class invariant, subclasses that override transactionReport()

* must call super.transactionReport() within the body of the

* overriding method

   */

  public String transactionReport() {

      this.transactions.append("Final Balance: ");

      this.transactions.append(centsToString(this.balance));

      this.transactions.append("\n");

      String report = this.transactions.toString();

      this.resetTransactionLog();

      return report;

  }

...

}

Too much responsibility for 
subclass!

Superclass should be 
responsible for its own 
invariants!
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transactionReport(), revisited
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public abstract class Account { 

  /**

   * Called once at the end of each month to return a `String` summarizing the 

   *   account's initial balance that month, all transactions made during that 

   *   month, and its final balance.

   */

  public String transactionReport() {

this.closeOutMonth();

      this.transactions.append("Final Balance: ");

      this.transactions.append(centsToString(this.balance));

      this.transactions.append("\n");

      String report = this.transactions.toString();

      this.resetTransactionLog();

      return report;

  }

protected abstract void closeOutMonth();

...

}

abstract class!

abstract method!
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Dynamic Dispatch with subclassing

Lecture 10: Inheritance September 25, 2025

public abstract class Account { 

  public String transactionReport() {

    this.closeOutMonth();

    ...

  }

  protected abstract void closeOutMonth();

  ...

}

public class CheckingAccount extends Account { 

  @Override

  protected void closeOutMonth() {

    ...

  }

...

}

// Client code

Account checking = 

  new CheckingAccount("Checking", 13000);

Account savings = 

  new SavingsAccount("Savings", 230000, 3.0);

checking.transferFunds(savings, 10000);

System.out.println(checking.transactionReport());
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Dynamic Dispatch with subclassing

Lecture 10: Inheritance September 25, 2025

public abstract class Account { 

 public String transactionReport() {

 this.closeOutMonth();

  ...

 }

 protected abstract void closeOutMonth();

 ...

}

public class CheckingAccount extends Account { 

 @Override

 protected void closeOutMonth() {

  ...

 }

...

}

// Client code

Account checking = 

 new CheckingAccount("Checking", 13000);

Account savings = 

 new SavingsAccount("Savings", 230000, 3.0);

checking.transferFunds(savings, 10000);

System.out.println(checking.transactionReport());

PollEv.com/leahp        
text leahp  to 22333

What happens when we try to call checking.transactionReport() in 
the client code above and checkingTransactionReport() tries to call 
closeOutMonth()?

A) It calls Account’s closeOutMonth() which does nothing
B) It tries to call Account’s closeOutMonth() which results in an error
C) It calls CheckingAccount’s closeOutMonth()
D) Compile time error
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Dynamic Dispatch with subclassing
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public abstract class Account { 

 public String transactionReport() {

  this.closeOutMonth();

  ...

 }

 protected abstract void closeOutMonth();

 ...

}

public class CheckingAccount extends Account { 

  @Override

  protected void closeOutMonth() {

    ...

  }

...

}

// Client code

Account checking = 

   new CheckingAccount("Checking", 13000);

Account savings = 

   new SavingsAccount("Savings", 230000, 3.0);

checking.transferFunds(savings, 10000);

System.out.println(checking.transactionReport());

Bottom Up Rule!
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Dynamic Dispatch with subclassing
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public abstract class Account { 

  public String transactionReport() {

    this.closeOutMonth();

    ...

  }

  protected abstract void closeOutMonth();

...

}

public class CheckingAccount extends Account { 

  @Override

  protected void closeOutMonth() {

    ...

  }

...

}

// Client code

Account checking = 

  new CheckingAccount("Checking", 13000);

Account savings = 

  new SavingsAccount("Savings", 230000, 3.0);

checking.transferFunds(savings, 10000);

System.out.println(checking.transactionReport());

PollEv.com/leahp        
text leahp  to 22333

What happens when we try to call checking.transactionReport() in 
the client code above and checkingTransactionReport() tries to call 
closeOutMonth()?

A) It calls Account’s closeOutMonth() which does nothing
B) It tries to call Account’s closeOutMonth() which results in an error
C) It calls CheckingAccount’s closeOutMonth()

D) Compile time error



Class Design Case Study: 
Storing Names as Data

27



Storing People's Names as Data (Social Implications)

● There are social implications of using data to represent reality!

● Names are a kind of data commonly stored in many different data structures

● Caution: potentially more questions than answers here!

28



Use Case: Storing Names in a Hospital Patient Database

As a patient experience specialist, I want to make sure that patients are treated in a respectful way. This 

includes having hospital staff address patients respectfully. The hospital database will store patient names in 

3 parts: 

● Honorific (Ms, Mr, etc.) -- dropdown

● First Name -- free text

● Last Name -- free text

Then hospital staff will be instructed to address patients using [Honorific] [Last Name], for example "Ms. 

Perlmutter," because that is more respectful than simply using their first name, for example, "Leah."

What assumptions are made in this use case?

29



Storing Names as Data

1. People have exactly one canonical full name.

...

12. People’s names are case sensitive.

13. People’s names are case insensitive.

...

20. People have last names, family names, or 
anything else which is shared by folks recognized 

as their relatives.

“
”

Just one name 

= Mononym

Source: https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/ 30



Perhaps the cure to all these 

"issues" is applying to the district 

court for a last name, ... But what 

last name should I pick? My 

ancestors' familial name, Huang? 

My parents' chosen name, 
Wijaya?

“
”

After vetting and interviews, he received a 
visa at the U.S. embassy in Kabul identifying 
him as “FNU Naqibullah.” ... he also became 
FNU Naqibullah on his driver’s license, Social 
Security card and other identification. 
“Everywhere I go, they are calling me FNU," 
says Naqibullah.

“
”

FNU = First 

Name Unknown

31



Almost all data is an 

approximation of reality

32
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Metacognition
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• Take 1 minute to write down a brief summary of what 
you have learned today

closing announcements to follow...
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Announcements

Lecture 10: Inheritance September 25, 2025

• A5 released, due Wednesday
• Prelim 1 on October 9 (in 2 weeks)

• Fill out conflict survey
• Practice exam coming next week
• Make sure you’re on top of studying!

• DIS 5 this week
• Fun topic, prep for A5
• Importance of think-before-you-code activities (coding 

ability & exam prep)
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