
CS 2110
September 23, 2025

Lecture 9: Interfaces and Polymorphism

Today's Learning Outcomes

CS 2110 2

39. Implement an interface using a given state representation
 according to its specifications.

40. Compare and contrast static types and dynamic types.

41. Identify three scenarios where subtype substitution is permitted.

42. Explain the benefits of leveraging polymorphism in object-oriented
 code.

43. Describe the principle of dynamic dispatch and the compile-time
 reference rule.

Lecture 9: Interfaces and Polymorphism September 23, 2025

CS 2110 3

Real-World Interfaces

Lecture 9: Interfaces and Polymorphism September 23, 2025

2014 Toyota Prius C 2023 Volkswagen ID.4

These cars are built and run

very differently

Should Matt have been worried

Matt's car Matt's Rental Car

No The way the driver interacts with the cars is nearly
the same they offer drivers the same interferer set of

exposed features

other real world
interfaces

power grid just plug into outlet of right shape

Data cables file formats etc

CS 2110 4

Abstraction Barriers

Lecture 9: Interfaces and Polymorphism September 23, 2025

Interferes resent

and client Pof a syspe.LY bairer between implemente

go.siEffi
tt

API applination programming
source code view of class

interface view state representation
invariants

metgpetif.sifbtn's'es
and

method bodies

CS 2110 5

Interfaces in Java

Lecture 9: Interfaces and Polymorphism September 23, 2025

New Java construct that is an alternative to

a class

Assigns a new type name to a lollection of

E1 da.be EeneiiIt
committing to how these

contains only public method signatures and specs

no fields details
no method bodies

behind the scenes

models a contract between clients implementers

CS 2110

Coding Demo:

6

Account interface

Lecture 9: Interfaces and Polymorphism September 23, 2025

CS 2110 7

Implementing an Interface

Lecture 9: Interfaces and Polymorphism September 23, 2025

Interferes don't have state no fields so can't be construited

Losses provide blueprints for objects that can be construited

we link a class to an interface using the implements

keyword
public class CheckingAccount implements Account

1
To fulfill its end of the Account contract CheckingAicosat

must provide method bodies for all Asionst methods
that meet their spec

CS 2110

Coding Demo:

8

CheckingAccount class

Lecture 9: Interfaces and Polymorphism September 23, 2025

CS 2110 9

Specifications and @Override

Lecture 9: Interfaces and Polymorphism September 23, 2025

The Override annotation signifies that a class

method definition is based on declaration from higher

up e.g in an interface it implements

must match signature exactly
must conform to the specifications

contract

If the higher specs match exactly no need for

new JavaDoc Override pulls down spec

If the class definition refines spec adds new post conditions

then new complete documentation is needed

CS 2110

Coding Demo:

10

Client Code with Interfaces

Lecture 9: Interfaces and Polymorphism September 23, 2025

CS 2110 11

Dynamic vs. Static Types

Lecture 9: Interfaces and Polymorphism September 23, 2025

Account checking new ChelkingAccount Checking 13000

CheckingAccount String

e
i t i

transitionsstringBuilder fjider
static type dynamic type
Account CherkingA count

describes Iable fi Tepr s used attelling air how it 5h
runtime to build this objectview object ref'dby checking

CS 2110 12

The Compile Time Reference Rule

Lecture 9: Interfaces and Polymorphism September 23, 2025

A variable's static type diitates the compiler's
view of the object it references

Compiler isn't see dynamic types

he compiler is responsible for enforcing type safety
of our programs

We can only call methods that exist for the

CTRR static type of a variable

MOST IMPORTANT RULE OF THE COURSE

CS 2110 13

Subtype Relationships

Lecture 9: Interfaces and Polymorphism September 23, 2025

We say checkingAlcount is a subtype of Account since

it's a more specific descriptor

TYI.Y.FIaiizedAll Checking Accounts are Accounts

Not all Accounts are CheckingAccounts
checking't

net savingsAccount

Notation CheckingAllount 8 Account

Implementing in interfere establishes a subtype relationship

In type mismatihed
variable assignments

dynamic type static type

CS 2110 14

Subtype Substitution

Lecture 9: Interfaces and Polymorphism September 23, 2025

often we can use a subtype in place of its
EgyptHint real world example If

Assignment If 5 T we ion assign an S object reference
to a variable with static type T

An Animal variable can store a cat

2 Parameters If 5 T we can pass an S object reference
as an argument to serve as a T parameter

If a method expected to get an Animal it's happy to get a cot

Return value
If gsgjjatandef.fr n eh

s return typeT it can return

If a method promises to return an Animal it's allowed to return a Cat

Poll Everywhere
 PollEv.com/2110fa25 text 2110fa25 to 22333

(A)

(B)

(C)

(D)
15

A x = foo(a);

B x = foo(b);

A x = bar(b);

Suppose that B <: A. Which line of code will
compile if it is inserted "// HERE" ?

static A foo(B b) { ... }

static B bar(A a) { ... }

public static void main(…) {
 A a = new A();
 B b = new B();
 // HERE
} None of Them

no foo needs
a B

ii
supertipe t
Éne

CS 2110 16

Polymorphism

Lecture 9: Interfaces and Polymorphism September 23, 2025

When we write code we'd like it to handle

as many use cases as possible

Avoids code duplication
Improves readibility maintainability

code is able to naturally handle

m Y multiple types of data with the some

code lines

Interfaces enable subtype polymorphism
other varieties coming soon

CS 2110

Coding Demo:

17

Many Accounts

Lecture 9: Interfaces and Polymorphism September 23, 2025

CS 2110 18

Dynamic Dispatch

Lecture 9: Interfaces and Polymorphism September 23, 2025

Account[] accounts;

// initialize and interact with accounts

for (int i = 0; i < accounts.length; i++) {
 accounts[i].transactionReport();
}

The dynamic type of an object determines which

version of a method gets invoked on it

more to say about this next lecture

its
to

it tnEiii itn

e.at fftienoviors

Poll Everywhere
 PollEv.com/2110fa25 text 2110fa25 to 22333

(A)

(B)

(C)

(D)
19

Compiler Error (Line 1)

Compiler Error (Line 2)

Runtime Error

Runs OK (Dynamic Dispatch)

Given these type declarations (top), what happens
when we try to run the following client code (bottom)?

interface Phone {
 void makeCall();
 void sendText(); }

class Pixel implements Phone {
 void makeCall() { … }
 void sendText() { … }
 void takePicture() { … } }

Phone myPixel = new Pixel();
myPixel.takePicture();

Compile Time Reference Rule

CS 2110 20

Dynamic vs Static Types: Big Ideas

Lecture 9: Interfaces and Polymorphism September 23, 2025

The static type of a variable determines which

behaviors can be called on that variable

Compile Time Reference Rule

The dynamic type of an object determines how

that behavior is actually carried out

Dynamic Dispatch

CS 2110 21

Reference Type Coercion

Lecture 9: Interfaces and Polymorphism September 23, 2025

sometimes the CTRR gets in the way and we need

to adjust the compiler's view to access a behavior

Account savings new SavingsAccount savings 230000 3.0

System out_print n SavingsAlcount savings interestRate

we can use
testing to adjust the compiler's view

love in type hierarchy

Compile Time Compiler trusts cost if it can possibly sucreed

Runtime Dynamic type determines if cost actually works
or if

exception is thrown

Poll Everywhere
 PollEv.com/2110fa25 text 2110fa25 to 22333

(A)

(B)

(C)

(D)
22

d = (CSDeptMember) s;

e = (Employee) d;

f = (CSFaculty) s;

Given the following type hierarchy and variable
declarations, which cast will not compile?

CSFaculty

CSDeptMember

CSStudent

Employee

Cornellian

Cornellian c; Employee e; CSFaculty f;
CSStudent s; CSDeptMember d;

f = (CSFaculty) c;

up list not needed but ok

works if c CSFointty

works if d SFaintty

no student ion't be Faculty

