Poll Everywhere

PollEv.com/2110fa25

text 2110fa25 to 22333

What is the **space** complexity of maxVal()?

```
static int maxVal(int[] nums, int b, int e) {
                                                         O(1)
                                                                            (A)
if (e - b == 1) {
  return nums[b];
                                                                            (B)
                                                        O(\log N)
 int m = b + (e - b)/2;
 int IMax = maxVal(nums, b, m);
                                                                            (C)
                                                          O(N)
 int rMax = maxVal(nums, m, e);
 return Math.max(IMax, rMax);
                                                      O(N \log N)
```

1

Poll Everywhere

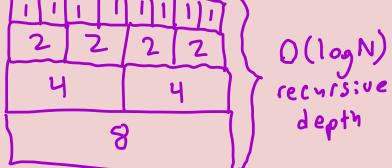
PollEv.com/2110fa25

text 2110fa25 to 22333

What is the **space** complexity of maxVal()?

```
Each call frame allocates O(1) memory
static int maxVal(int[] nums, int b, int e) {
if (e - b == 1) {
  return nums[b];
 int m = b + (e - b)/2;
 int IMax = maxVal(nums, b, m);
 int rMax = maxVal(nums, m, e);
 return Math.max(IMax, rMax);
```

```
"Call stack diagram" when N = nums. length = 8
```



Lecture 7: Sorting Algorithms

CS 2110September 16, 2025

Today's Learning Outcomes

- 30. Compare and contrast the *insertion sort*, *merge sort*, and *quicksort* algorithms, discussing aspects such as time/space complexity and stability.
- 20. Describe the loop invariant of an iterative method involving an array and visualize it using a diagram.
- 26. Determine the asymptotic time and space complexity of a piece of code involving one or more loops and/or method calls.
- 29. Determine the number of recursive calls and the maximum depth of the call stack of a recursive method and use these to compute its time and space complexities.

The Importance of Sorting

```
Having sorted data can greatly improve code efficiency
 O(N) linear search us. O(logN) binary search
Sorting is an important subroutine for:
- Statistics / data analysis (analyze medians, quantiles)
- Optimization (prioritize search results, naugation, cendering order in graphics applications)
- Designing "greedy" algorithms
```

Different Sorting Algorithms

Different sorting procedures trade off different desirable properties:

- Runtime (best-case, worst-case, expected case, adaptivity)
 Space complexity
- Memory Iscality, parallelizability
- Stability

Being familiar with a varied toolbox of sorting algorithms will help you choose the best for a particular scenario.

Insertion Sort

Coding Demo: Insertion Sort


```
/** Sorts `a` using the insertion sort algorithm. */
static void insertionSort(int[] a) {
/* Loop invariant: a[..i) sorted, a[i..] unchanged. */
 for (int i = 0; i < a.length; i++) {
   insert(a,i);
/** Inserts `a[i]` into its sorted position in `a[..i)`
  * so `a[..i]` becomes sorted. Requires that
  * `0 <= i < a.length` and `a[..i)` is sorted. */
static void insert(int[] a, int i) { ... }
```

```
achieve
this behavior
```

Insertion Sort (Worst-Case) Complexity

```
static void insertionSort(int[] a) {
  for (int i = 0; i < a.length; i++) {
     insert(a,i);
static void insert(int[] a, int i) {
  int j = i;
  while (j > 0 \&\& a[j - 1] > a[j]) {
     swap(a, j - 1, j); j--;
```

```
O(N) iterations, each does
O(1) + complexity of insert() work
runtime of insertion Sort = O(N^2)
both methods use O(1) space, so
   space complexity = (0(1)
 O(i) = O(N) iterations, each does
  runtime of insert() = O(N)
```

Poll Everywhere

PollEv.com/2110fa25

text 2110fa25 to 22333

If the array a is already sorted, what is the runtime of insertionSort(a) in terms of N = a.length?

```
static void insertionSort(int[] a) {
  for (int i = 0; i < a.length; i++) {
     insert(a,i);
static void insert(int[] a, int i) {
  int j = i; for sorted inputs, this immediately false
  while (j > 0 \&\& a[j - 1] > a[j]) {
     swap(a, j - 1, j); j--;
```

```
O(1)
                  (A)
O(\log N)
                  (B)
 O(N)
 O(N^2)
```

Adaptivity and Stability

A sorting algorithm is <u>adaptive</u> if it performs fever operations when the input starts closer to sorted.

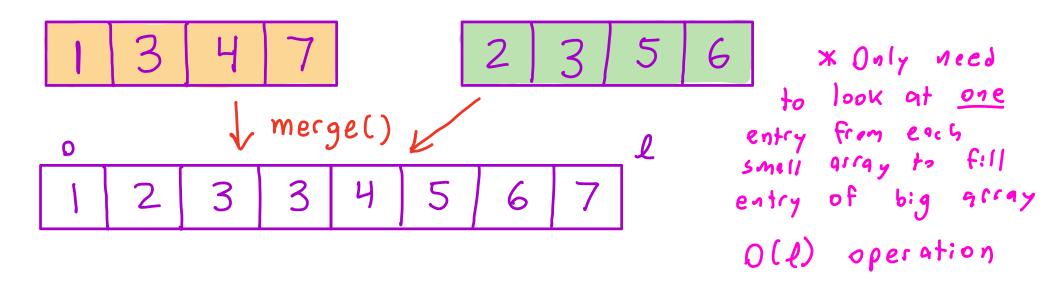
- Insertion Sort is an adaptive sorting algorithm.

A sorting algorithm is stable if it preserves the relative order of equivalent elements.

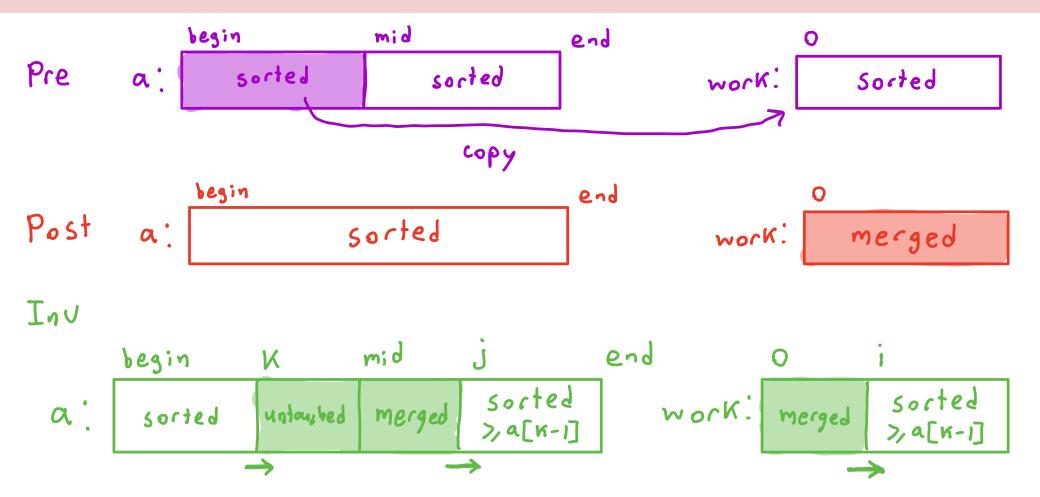
-Insection sort is stable because it never swaps equal elements in insert() method.

Merge Sort

Big Idea: If we have two smaller sorted arrays, it's fairly easy to combine them into a single sorted array.



The merge() Invariant

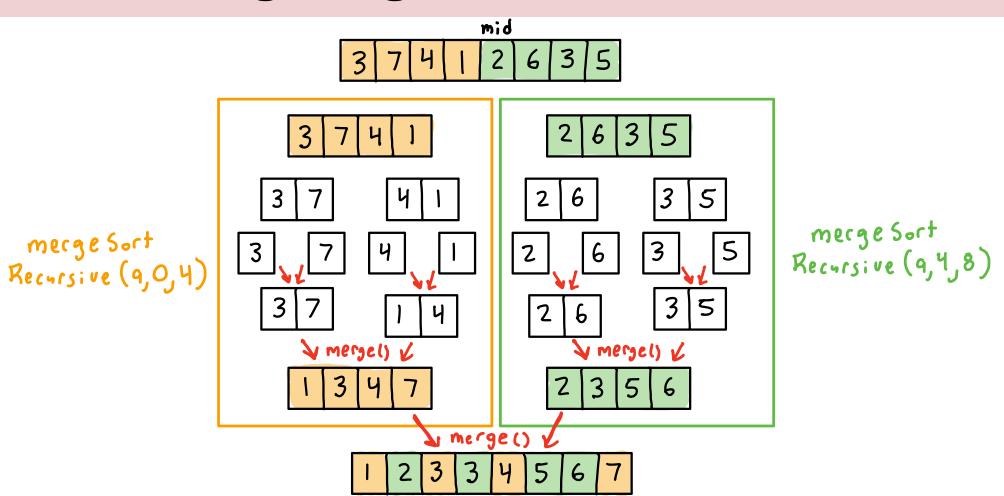


Coding Demo: The merge() Method

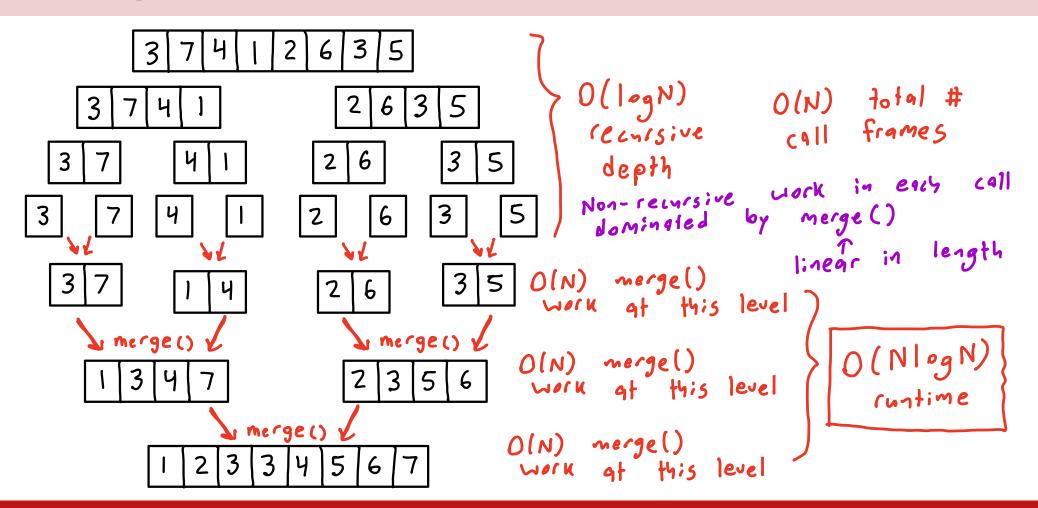
Merge Sort

```
/** Sorts the entries of `a` using the merge sort algorithm. */
static void mergeSort(int[] a) {
 mergeSortRecursive(a, 0, a.length);
/** Recursively sorts `a[begin..end)` using the merge sort algorithm. */
static void mergeSortRecursive(int[] a, int begin, int end) {
  if (end-begin < 1) { return; }
                                                     C95e
   int mid = begin + (end -begin)/2;
  merge Sort Recursive (a, begin, mid);
                                             11 sort left half
                                                                        divide
  merge Sort Recursive (a, mid, end);
                                               11 sort right half
  merge (a, begin, mid, end);
                                                 merge
                                                                     algorithm
```

Visualizing Merge Sort



Merge Sort Runtime Analysis



Merge Sort Space Complexity

```
Merge Sort has OllogN) recarsive depth
The space complexity of each call is dominated by
 merge(), which allocates an O(N) work array.
Insight: At most one mergel) happens at a time,
       50 ve can reuse one shared work array
       (that is passed as argoment to recursive calls)
  This grasantees |O(N) | space complexity.
```

Merge Sort: Other Considerations

```
Merge Sort is <u>stable</u> (we prioritized copying from work during mergel)) but <u>not adaptive</u>.
```

```
O(NlogN) runtime is best possible, so Merge Sort is default stable sort in many languages (including Java).
```

```
Merge Sort parallelizes well and is good for really large datasets since only small ranges of data are accessed at a time.
```

Poll Everywhere

PollEv.com/2110fa25

text 2110fa25 to 22333

Motivating Quicksort:

After sorting the following array, at which index will 17 be?

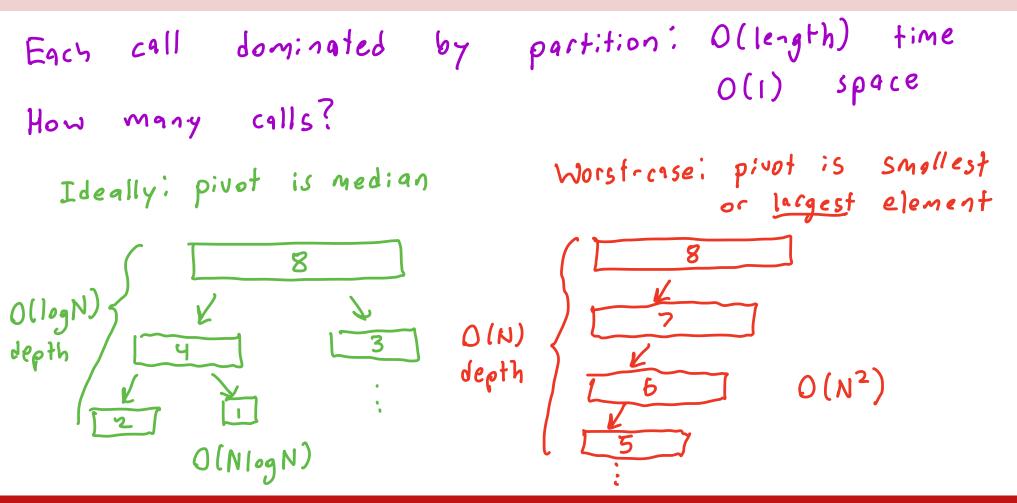
17	6	2	25	13	8	31	24	14	62	3	51
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

Quicksort

Coding Demo: quicksort()


```
partition ():
            begin
                                             end
            begin
                                             end
                                  > pivot
            begin
                                             end
                                   > pivot
```

Quicksort Complexity Analysis



Quicksort: Other Considerations

```
Being more clever when choosing pivot leads to better
performance (see lec notes for ideas)
 - Expected (topical) runtime is O(NlogN), often
     outperforming merge sort in practice
- Not adaptive and not stable
- Default unstable sort in many languages
 (including Java)
```

Sorting Summary

No obvious "best approach", many trade-offs

Algorithm	Worst-Case Time Complexity	Expected Time Complexity	Best-Case Time Complexity	Space Complexity	Stable?	Adaptive?
Insertion Sort	$O(N^2)$	$O(N^2)$	O(N)	O(1)	Yes	Yes
Merge Sort	$O(N \log N)$	$O(N \log N)$	$O(N \log N)$	O(N)	Yes	No
Quicksort	$O(N^2)$	$O(N \log N)$	$O(N \log N)$	O(log N)*	No	No