
Poll Everywhere
 PollEv.com/2110fa25 text 2110fa25 to 22333

(A)

(B)

(C)

(D)

3

4

5

6

How many loop iterations does binarySearch(a,7) run?

static int binarySearch(int[] a, int v) {
 int l = 0; int r = a.length;
 /* Loop invariant: `a[..l) < v`, `a[r..] >= v` */
 while (l < r) {
 int m = l + (r - l) / 2;
 if (a[m] < v) { l = m + 1;
 } else { r = m; }
 }
 return r;
}

0a: 1 2 3 4 5 6 7 8 9i iiii

6 10 8
6 8 7

87
6

CS 2110 2

Runtime Analysis

Lecture 5: Analyzing Complexity September 9, 2025

static int binarySearch(int[] a, int v) {
 int l = 0; int r = a.length;
 /* Loop invariant: `a[..l) < v`, `a[r..] >= v` */
 while (l < r) {
 int m = l + (r - l) / 2;
 if (a[m] < v) { l = m + 1;
 } else { r = m; }
 }
 return r;
}

In every loop iteration

the window l r shrinks
3011

to at most half its old size

Stop when r eat

3011 work
µ 2

iterations

I 011 so iterations log N

O logN
ollo.grruntimef

CS 2110 3

Space Complexity

Lecture 5: Analyzing Complexity September 9, 2025

Measures the total amount of memory allotated at
during the execution of a method beyond the

foce f r its parameters

scratch space fortcomputational
these are the
caller's responsibility

can reuse space later unlike time

all methods we saw last leiture had 011 space
complexity

gets more subtle when
we analyze recursive methods

CS 2110
September 11, 2025

Lecture 6: Recursion

Today's Learning Outcomes

CS 2110 5

10. Develop recursive methods in Java given their specifications.

29. Determine the number of recursive calls and the maximum depth
of the call stack of a recursive method and use these to compute its
time and space complexities.

Lecture 6: Recursion September 11, 2025

CS 2110 6

Recursive Methods

Lecture 6: Recursion September 11, 2025

A method is relurs
within its own effis.int

it can be invoked from

Another way in addition to loops to achieve

conditional repetition of code
simplest inputs whoseResion

Loop vars parameters f its
computed

Loop Body Method Body when we write a

Loop Guard Bose Case s recursive method we're

Loop Invariant method spec both its implementer
and its client

CS 2110 7

Computing Factorials

Lecture 6: Recursion September 11, 2025

/** Returns `n!`. Requires `0 <= n <= 12` */
static int factorial(int n) {
 int product = 1;
 /* loop invariant: */
 for (int i = 1; i <= n; i++) {
 product *= i;
}
 return product;
}

intthen.pt ri9hesf

product of all positive
ints n product i 1

Ex 4 1 2 3 4 24

6 1 2 3.4 5 6 720

11 1

0 mult identity

CS 2110 8

A Recursive Implementation

Lecture 6: Recursion September 11, 2025

Base case 01 1 also 11 1 so

factorial n can return if n

Resursive Case

Ask How can calling factorial on a smaller

input help compute it for a larger input

5 1 74
5 resursive cell

More generally n n 1 n

CS 2110

Coding Demo:

9

Recursive factorial()

Lecture 6: Recursion September 11, 2025

CS 2110 10

Visualizing Recursion

Lecture 6: Recursion September 11, 2025

/** Returns `n!`
 * Requires `0 <= n <= 12` */
static int factorial(int n) {
 assert 0 <= n && n <= 12;
 if (n <= 1) {
 return 1;
 }
 int f = factorial(n - 1);
 return n * f;
}

Suppose we call factorial 4

fritorial 1
Ordinarily
we don't draw

cell frames after

fortialls
me

featorially f int
returns
24

CS 2110 11

Time Complexity of Recursive Code

Lecture 6: Recursion September 11, 2025

we must account for the operitions performed alross
all of the recursive calls

Determine 2 things

Non Resursive work done in each cell

as a function of the parameters pippin
For factorial this was 011 M

Resursive call structure

to know how many of the above to add up

CS 2110 12

Space Complexity of Recursive Code

Lecture 6: Recursion September 11, 2025

Again we account for two things
1 Additional space of objects constructed by
any calls none for factorial

2 Space taken up by call fromes

Typicilly OCD maximum of call

EI.it
nt i itii

tutorials otoaan oci.fi1 i

CS 2110 13

Recursion on Arrays
/** Returns the maximum value in array `nums`. Requires that `nums` is non-empty. */
static double maxValue(double[] nums) { ... }

Lecture 6: Recursion September 11, 2025

Base Case If nums length is I then the only
value is the max value

Relursive Case
Recursive call

maxtfl.nl onsmftay0 I 2

Max numslo max famish
O I N 2

CS 2110

Coding Demo:

14

Recursive maxValue()

Lecture 6: Recursion September 11, 2025

Poll Everywhere
 PollEv.com/2110fa25 text 2110fa25 to 22333

(A)

(B)

(C)

(D)
15

Time Complexity: O(𝑵) Space Complexity: O(𝑵)

Time Complexity: O(𝑵) Space Complexity: O(𝑵𝟐)

Time Complexity: O(𝑵𝟐) Space Complexity: O(𝑵)

Time Complexity: O(𝑵𝟐) Space Complexity: O(𝑵𝟐)

What are the time and space complexities of our
recursive maxValue() implementation?
Each of OIN recursive cells used OIN space and did OCN work

CS 2110 16

Array Views

Lecture 6: Recursion September 11, 2025

Constructing new smaller array to pass into
recursive call is expensive

Instead we'd like to use only one array pass
an alias reference and tell the recursive call

only look at these entries

solution use additional parameters to define array
view

maxvalue Retursive double nums int begin

CS 2110

Coding Demo:

17

maxValue(), Take 2

Lecture 6: Recursion September 11, 2025

Poll Everywhere
 PollEv.com/2110fa25 text 2110fa25 to 22333

(A)

(B)

(C)

(D)
18

Time Complexity: O(𝑵) Space Complexity: O(𝑵)

Time Complexity: O(𝑵) Space Complexity: O(𝑵𝟐)

Time Complexity: O(𝑵𝟐) Space Complexity: O(𝑵)

Time Complexity: O(𝑵𝟐) Space Complexity: O(𝑵𝟐)

What are the time and space complexities of our new
maxValue() implementation?
Each of OIN recursive cells used 011 space and did 0 1 work

CS 2110 19

Another Recursive Method on Arrays

/**
 * Returns true if there is a subset of entries from `coins` whose sum
 * is equal to `total`, otherwise returns `false`.
 */
static boolean canMakeChange(int total, int[] coins) { … }

Lecture 6: Recursion September 11, 2025

Ex can makeChinge 16 1115 10 25 true

can Make change 8 fpi025 false
Think about base cases recursive calls

CS 2110

Coding Demo:

20

canMakeChange()

Lecture 6: Recursion September 11, 2025

CS 2110 21

Visualizing the Call Structure

Lecture 6: Recursion September 11, 2025

total 2 1 0 2n
cells

8 10115

iiii
O N ing 7 tells

excly 110

CS 2110 22

Time and Space Complexity

Lecture 6: Recursion September 11, 2025

Each execution of can Make change Recursive does 0,1

non recursive work and allocates 011 memory

time complexity O 1 cells 0 2n
exponentia
time

space complexity OCI resursive O N
depth

