
Discussion 6:
Iterators for linked
lists

CS 2110, FA23

Warmup: circular linked lists

Node<T> {

 T value;

 Node<T> next;

}

next might never be null – could
point back to beginning of list

(could also point to middle; assume it
doesn't)

• Write a loop to call
process(v) for every String
value v in a circular linked list
whose first node is head.

Generalized iteration

• Traditional for-loops iterate over indices, but that only makes sense
for Lists (and even then, may be inefficient)

• Want a way to iterate over all elements, even if they don't have an
associated index (or even a defined ordering)

• Iterator pattern: yield each element exactly once
• Operations: get next element, ask whether there are any elements left

Java Iterator

• Generic interface expressing
Iterator ADT

• Methods:
• boolean hasNext();

• T next();

Usage:

Iterator<String> it = …;

while (it.hasNext()) {

 String s = it.next();

 // Do something with s

}

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Iterator.html

Enhanced for-loops

List<String> names = …;

for (int i=0; i<names.size(); ++i)
{

 String name = names.get(i);

 …

}

List<String> names = …;

for (String name : names) {

 …

}

… are translated into while loops
("syntactic sugar")
List<String> names = …;

for (String name : names) {

 …

}

List<String> names = …;

Iterator<String> it =
 names.iterator();

while (it.hasNext()) {

 String name = it.next();

 …

}

Iteration interfaces

Iterable<T>

• "Something that can be iterated
over"

• Can use in an enhanced for-loop

• Yields Iterators

• Iterator<T> iterator();

Iterator<T>

• Helper class for actually doing
the iteration

• Mutable (one-time use) - need a
new one for each loop

• Yields values

• boolean hasNext();

• T next();

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Iterable.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Iterator.html

Implementing Iterators

1. Move loop guard logic to hasNext()

2. Move advancement logic to next()

3. Remember important context in fields

Task: implement CNodeIterator<T> to yield every value in a circular
list exactly once

1. Identify appropriate fields

2. Define class

3. Implement hasNext() and next()

Bonus: Nested classes

• Classes declared inside other classes (usually a "helper" of some kind)

• Static: Outer class acts as a namespace, can hide class from other
potential clients

• Non-static ("inner classes"): Inner class objects are attached to an
outer class instance
• Can only be created from an instance of the outer class

• Can access outer object's fields and methods

• Common choice for Iterators
• Enables more encapsulation (private fields)

	Slide 1: Discussion 6: Iterators for linked lists
	Slide 2: Warmup: circular linked lists
	Slide 4: Generalized iteration
	Slide 5: Java Iterator
	Slide 6: Enhanced for-loops
	Slide 7: … are translated into while loops ("syntactic sugar")
	Slide 8: Iteration interfaces
	Slide 9: Implementing Iterators
	Slide 10: Bonus: Nested classes

