
Discussion 5:
Java Collections
library

CS 2110, FA23

ADTs, data structures, interfaces, classes

• ADT operations can be declared and specified in a Java interface

Java's List<E> interface

• Interfaces for many ADTs in java.util package
• Known as Java Collections Framework

• Generic interfaces – type parameter E for type of elements

• List operations:
• size() // not "length"

• get(i) // returns an E

• set(i, e) // e has type E

• add(i, e)

• remove(i)

• contains(e)

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/package-summary.html

Example: List<Course>

• Can replace A2’s arrays of Students and Courses with Lists

ADTs, data structures, interfaces, classes

• ADT operations can be declared and specified in a Java interface

• A Java class implementing such an interface will use data structures
to implement that functionality

• Multiple classes can implement the same interface using different
data structures

List implementations

• JavaDoc: All Known Implementing Classes
• ArrayList<E>: Uses a resizable array

• LinkedList<E>: Uses a (doubly) linked list

• All support the same core operations

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html

Other collection ADTs

• Collection<E>
• Keeps track of objects that have been added, but does not remember order

• Set<E>
• A collection with no duplicates. Common operation: contains(e)

• SortedSet<E>
• Iteration order is guaranteed to be sorted (according to value comparisons)

Data structures for these (binary search trees, hash tables) will be
taught later, but as a client, you can use them now (HashSet, TreeSet)

Example: Set<Student>

• Can replace A2's StudentSet by leveraging standard class with a
custom parametric type
• Or could implement StudentSet using a field of type Set<Student> -

composition

Iterating over collections

• Common operation for all collections: ability to enumerate all
elements (order may be unspecified)

• Most convenient: "enhanced for-loop"

Collection<String> c = …;
for (String s : c) {
 // Use s
}

• Uses Iterators under the hood: hasNext() & next()

Enhanced for-loops are translated into while
loops
List<String> names = …;

for (String name : names) {

 …

}

List<String> names = …;

Iterator<String> it =
 names.iterator();

while (it.hasNext()) {

 String name = it.next();

 …

}

	Slide 1: Discussion 5: Java Collections library
	Slide 2: ADTs, data structures, interfaces, classes
	Slide 3: Java's List<E> interface
	Slide 4: Example: List<Course>
	Slide 5: ADTs, data structures, interfaces, classes
	Slide 6: List implementations
	Slide 7: Other collection ADTs
	Slide 8: Example: Set<Student>
	Slide 9: Iterating over collections
	Slide 10: Enhanced for-loops are translated into while loops

