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Object-oriented programming 
and data-structures
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◻ Objects: Classes, References, Instances

◻ Null and static keywords.

◻ Constructors

◻ Pass-by-value vs Pass-by-reference

Lecture 2 Recap
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◻ Object-oriented programming introduces a number of important 
concepts
⬜ Modularity
⬜ Encapsulation
⬜ Inheritance
⬜ Abstraction
⬜ Polymorphism

◻ This lecture: Modularity  & Encapsulation & Inheritance

◻ Next lecture: abstraction and polymorphism

Lecture 3 
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◻ Classes represent grouping of related state and behaviour

◻ Goal of OOP is to break down program into small, well-defined 
components with clear functionality.
⬜ Each class represents a sub-unit of code that can be developed, 

tested and updated independently

◻ Identifying classes comes with experience. Rule of thumb:
■ Nouns = Classes
■ Verbs = methods
■ A student registers for a course. 

Modularity
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◻ Modularity encourages code-reuse

◻ Group all related state/methods in a class (ex: Date) that can simply drop 
in to other classes when need that functionality
⬜ Ex: Defined a class Person with a date of birth Date.

◻ Define helper functions once, as part of the class.
⬜ Ex: Parameter checking can be written once in constructor, not every 

place create object
■ Date(int day, int month, int year) {

if (day > 31)  …

if (month > 12) ..

} 

Code Reuse
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Encapsulation
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◻ Encapsulation:  the ability of a class to hide its data and methods from 
other entities. 
⬜ Variables of a class will be hidden from other classes, and can be 

accessed only through the methods of their current class.

◻ Classes should expose functionality/services not implementation
◻ Good practice to hide the internals of a class

⬜ Implementation hiding

◻ Encapsulation maximises cohesion and minimises coupling
⬜ Coupling: how much one class depends on another
⬜ Cohesion: how related everything in a class is



◻ Java uses access modifiers to encapsulate fields and methods

◻  Definition Access modifiers restrict the scope of a class, constructor , 
variable , method or data member
⬜ private int day;
⬜ private static convertToString(int month)

◻ 4 access modifiers:
⬜ Public: can be accessed by everyone
⬜ Private: can only be accessed in this class
⬜ Protected: can be accessed by this class and subclasses (def later)
⬜ Default: can be accessed by thisclass, and classes in package (def later)

Access Modifiers
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Getters and Setters

◻ Hide fields from  external classes by declaring them private (or protected)

◻ Use getters and setters instead
⬜ Getter: method that returns the contents of a field
⬜ Setter: method that updates a field

◻ Benefits of getters/setters
⬜ Can change/remove fields without modifying other objects
⬜ Can write parameter-checking code in one place



Why is it useful? Refactoring Date



Why is it useful? Refactoring Date

class Date {
int day;
String  month;
int year;
static  String  usStringFormat;

String getMonth() { 
return month;

}
}

class Date {
int day;
int  month;
int year;
static String usStringFormat;

String getMonth() { 
return convertToString(month);

}
}

Encapsulation 
allows us to 
change internals 
of class without 
changing 
external methods



◻ Use private unless there is a really good reason not to

◻ Classes should be immutable unless good reason to make them mutable

◻ Comment of method should refer to functionality, not to the internal fields.

Programming Tips
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/** Returns the string field month **/
public String getMonth() {

return month ; 
}

/** Returns month of the year **/
public String getMonth() {

return month ; 
}
/** Returns month of the year **/
public String getMonth() {

return convertToString(month);
}

Bad! If change inside implementation, also 
need to change the comments.

Good! 
Implementation 
can change



◻ Introducing perhaps the most important OO concept: inheritance

Inheritance - Why?
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◻ Introducing perhaps the most important OO concept: inheritance

◻ Consider the following classes:

Inheritance - Why?
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class Instructor {
private String name;
private Date dob;
private int salary;

}

class Student {
private String name;
private Date dob;
private int grade;

}



◻ Introducing perhaps the most important OO concept: inheritance

◻ Consider the following classes:

Inheritance - Why?
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class Instructor {
private String name;
private Date dob;
private int salary;

}

class Student {
private String name;
private Date dob;
private int grade;

}

Lots of code duplication



◻ Instructor and Student share features, differ in others
⬜ Implicitly, both are a specialisation of a type Person

◻ Inheritance allows developers to express these relationships

Inheritance - Why?
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class Instructor {
int salary;
int getSalary();

}

class Student {
int grade;
int getGrade();

}

class Person {
String name;
final Date dob;
String getName();
Date getDob();

}



◻ Definition Inheritance allows a class to be derived from another class to 
create a hierarchy of classes that share a set of attributes and methods.

◻ Inheritance introduces an is-a relationship: class B is-a instance of class C
⬜ The inheritance hierarchy should reflect modeling semantics, not 

implementation shortcuts

Inheritance Tree
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◻ Definition Inheritance allows a class to be derived from another class to 
create a hierarchy of classes that share a set of attributes and methods.

◻ Inheritance introduces an is-a relationship: class B is-an instance of class C
⬜ The inheritance hierarchy should reflect modeling semantics, not 

implementation shortcuts

◻ Examples
⬜ Instructor is a Person, Student is a Person
⬜ Triangle is a Shape?
⬜ BankAccount is a CheckingAccount?
⬜ Animal is a Person?

Inheritance Tree
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◻ Person is a base class
◻ Instructor is a derived class. It inherits both state 

and functionality from the base class.

  

◻ Person is a superclass of Instructor. Instructor is a 
subclass of Person.

◻ SummerInstructor is a subclass of Instructor. 
Instructor a superclass of Summer Instructor

◻ Other phrasing
⬜ Instructor inherits/derives/extends Person

Inheritance - Terminology
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class Instructor {
int salary;
int getSalary();

}

class Person {
String name;
final Date dob;
String getName();
Date getDob();

}

class SummerInstructor {
int summerSessId;

}



◻ Class hierarchies and 
dependencies are often 
represented using UML 
diagrams

◻ Won’t go through it in 
detail, but you should look 
it up

Inheritance - Graphically
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Person

- name;
- dob;
- getName();
- getDob();

Instructor

- salary
- getSalary()

Sudent

- grade
- getGrade()

SummerInstructor

- int summerSessId



◻ Derived classes in Java use the extends.
⬜ class Instructor extends Person { … }

◻ Inherit all fields from the base class, except fields marked as private
⬜ No need to redeclare them in the derived class!

◻ To allow subclasses to access fields, but prevent all other classes from 
accessing them, must mark them as protected

Defining a subclass in Java
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◻ Possible to type cast between numeric types
⬜ int i = 5 ; float f = (float) i;

◻ Inheritance tree allows us to typecast objects to any of the types above it 
in the inheritance tree

◻ Two types of casts
⬜ Widening conversions
⬜ Narrowing conversions

Casting
21



◻ Definition: cast an object to its parent in the inheritance tree

⬜ Person p = (Instructor) natacha;
⬜ Person p  = (Student) jack;

◻ It is always possible to upcast an object
⬜ an Instructor instance is always a Person instance
⬜ But, when cast to a superclass, cannot access methods of the 

subclass

◻ Allows you to use an Instructor/Student instance every time you want a 
Person object.

Widening conversions
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◻ Definition: cast an object to a child in the inheritance tree

⬜ Person natacha = new … ;
⬜ Instructor i = (Instructor) natacha;

◻ Narrowing conversions are dangerous. It is not always possible to 
downcast  an object
⬜ a Person instance is not always an Instructor
⬜ Remember the typing error in Python? Downcasting in Java may 

generate a runtime exception. 

Narrowing conversions
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◻ Where did we see this term before?

◻ Shadowing in subclasses follows similar rules
⬜ Can redefine variables in child classes
⬜ Use bottom-up rule to figure out which variable will be accessing

Shadowing (Also called Hiding)
24

class Instructor {
int salary = 500;
int getSalary();

}

class SummerInstructor {
int salary = 700;

}

What will print?
SummerInstructor si = new SummerInstructor()
System.out.println(si.salary);Variable salary is shadowed



◻ Where did we see this term before?

◻ Shadowing in subclasses follows similar rules
⬜ Can redefine variables in child classes
⬜ Use bottom-up rule to figure out which variable will be accessing
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class Instructor {
int salary = 500;
int getSalary();

}

class SummerInstructor {
int salary = 700;

}

I personally dislike shadowing. Risks causing errors and confusion, and can (should) 
usually be implemented differently.

Shadowing (Also called Hiding)



◻ Definition A method that is inherited from the superclass can be 
overridden by redeclaring it in the subclass. 

◻ Java makes overriding explicit by using the @Override annotation
⬜ Use it like your life depends on it!

Overriding
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class Instructor {
int salary = 500;
int getSalary() {

return salary;
}

}

class SummerInstructor {
int summerBonus = 700;

@Override
int getSalary() {

return salary + summerBonus;
}

}



◻ Java provides two keywords to move up and down the tree hierarchy

⬜ this keyword returns a reference to the current instance of the object
⬜ super keyword enables direct access to the parent of the object

◻ Homework will let you play with those in more detail.

Moving up and down the tree
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◻ Recall that every class has either:
⬜ an implicit default constructor that is called during initialisation. 
⬜ one or more constructors

◻ A subclass implicitly (or explicitly) calls the constructors of all its 
Constructors are  chained in an inheritance tree

Constructor Chaining
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Class SummerInstructor {

SummerInstructor() {

}

}

Class Instructor {

Instructor() {

}

}



◻ Constructor chaining can be used to minimise code duplication
⬜ No need to rewrite initialisation logic of base class in every derived 

class
⬜ In Java, can use super keyword to call the inherited  constructor

Constructor Chaining
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class Instructor {
Instructor(String name, Date dob, int salary) {

super(name, dob, salary)
this.salary = salary;

}
}

class Student {
Student(String name, Date dob, int grade) {

super(name, dob);
this.grade = grade;

}
}

class Person {
Person(String name, Date dob) {

this.name = name;
this.dob = dob;

}
}



◻ Class Object is the root of the class hierarchy. 
⬜ Every class has Object as a superclass. 

■  All objects  implement the methods of this class

◻ Class provides a number of interesting methods that every class inherits 
and can override
⬜ equals(), toString(), clone() and hashCode()
⬜ We’ll see these later.

◻ Look up the Javadoc!
⬜ https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

Java Inheritance
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https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html


◻ Definition An object or field is considered immutable if its state cannot change after it 
is constructed

◻ To make a field immutable, use access modifier final
⬜ static final ukDateFormat;
⬜ Why is it not enough to mark  field private and not provide a setter method?

◻ Benefits of immutability
⬜ Easier to write  clean, reliable code
⬜ Easier to maintain invariants in the presence of concurrent modifications

◻ A class is immutable if its marked as final and all its fields are also final

Immutability
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immutable 

final

access modifier

modularity

encapsulation

 inheritance

constructor

shadowing

overriding

casting
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