
CS/ENGRD 2110
SUMMER 2018
Lecture 3: OO Principles - Modularity, Encapsulation

http://courses.cs.cornell.edu/cs2110/2018su

Object-oriented programming
and data-structures

1

◻ Objects: Classes, References, Instances

◻ Null and static keywords.

◻ Constructors

◻ Pass-by-value vs Pass-by-reference

Lecture 2 Recap
2

◻ Object-oriented programming introduces a number of important
concepts
⬜ Modularity
⬜ Encapsulation
⬜ Inheritance
⬜ Abstraction
⬜ Polymorphism

◻ This lecture: Modularity & Encapsulation & Inheritance

◻ Next lecture: abstraction and polymorphism

Lecture 3
3

◻ Classes represent grouping of related state and behaviour

◻ Goal of OOP is to break down program into small, well-defined
components with clear functionality.
⬜ Each class represents a sub-unit of code that can be developed,

tested and updated independently

◻ Identifying classes comes with experience. Rule of thumb:
■ Nouns = Classes
■ Verbs = methods
■ A student registers for a course.

Modularity
4

◻ Modularity encourages code-reuse

◻ Group all related state/methods in a class (ex: Date) that can simply drop
in to other classes when need that functionality
⬜ Ex: Defined a class Person with a date of birth Date.

◻ Define helper functions once, as part of the class.
⬜ Ex: Parameter checking can be written once in constructor, not every

place create object
■ Date(int day, int month, int year) {

if (day > 31) …

if (month > 12) ..

}

Code Reuse
5

Encapsulation
6

◻ Encapsulation: the ability of a class to hide its data and methods from
other entities.
⬜ Variables of a class will be hidden from other classes, and can be

accessed only through the methods of their current class.

◻ Classes should expose functionality/services not implementation
◻ Good practice to hide the internals of a class

⬜ Implementation hiding

◻ Encapsulation maximises cohesion and minimises coupling
⬜ Coupling: how much one class depends on another
⬜ Cohesion: how related everything in a class is

◻ Java uses access modifiers to encapsulate fields and methods

◻ Definition Access modifiers restrict the scope of a class, constructor ,
variable , method or data member
⬜ private int day;
⬜ private static convertToString(int month)

◻ 4 access modifiers:
⬜ Public: can be accessed by everyone
⬜ Private: can only be accessed in this class
⬜ Protected: can be accessed by this class and subclasses (def later)
⬜ Default: can be accessed by thisclass, and classes in package (def later)

Access Modifiers
7

Getters and Setters

◻ Hide fields from external classes by declaring them private (or protected)

◻ Use getters and setters instead
⬜ Getter: method that returns the contents of a field
⬜ Setter: method that updates a field

◻ Benefits of getters/setters
⬜ Can change/remove fields without modifying other objects
⬜ Can write parameter-checking code in one place

Why is it useful? Refactoring Date

Why is it useful? Refactoring Date

class Date {
int day;
String month;
int year;
static String usStringFormat;

String getMonth() {
return month;

}
}

class Date {
int day;
int month;
int year;
static String usStringFormat;

String getMonth() {
return convertToString(month);

}
}

Encapsulation
allows us to
change internals
of class without
changing
external methods

◻ Use private unless there is a really good reason not to

◻ Classes should be immutable unless good reason to make them mutable

◻ Comment of method should refer to functionality, not to the internal fields.

Programming Tips
11

/** Returns the string field month **/
public String getMonth() {

return month ;
}

/** Returns month of the year **/
public String getMonth() {

return month ;
}
/** Returns month of the year **/
public String getMonth() {

return convertToString(month);
}

Bad! If change inside implementation, also
need to change the comments.

Good!
Implementation
can change

◻ Introducing perhaps the most important OO concept: inheritance

Inheritance - Why?
12

◻ Introducing perhaps the most important OO concept: inheritance

◻ Consider the following classes:

Inheritance - Why?
13

class Instructor {
private String name;
private Date dob;
private int salary;

}

class Student {
private String name;
private Date dob;
private int grade;

}

◻ Introducing perhaps the most important OO concept: inheritance

◻ Consider the following classes:

Inheritance - Why?
14

class Instructor {
private String name;
private Date dob;
private int salary;

}

class Student {
private String name;
private Date dob;
private int grade;

}

Lots of code duplication

◻ Instructor and Student share features, differ in others
⬜ Implicitly, both are a specialisation of a type Person

◻ Inheritance allows developers to express these relationships

Inheritance - Why?
15

class Instructor {
int salary;
int getSalary();

}

class Student {
int grade;
int getGrade();

}

class Person {
String name;
final Date dob;
String getName();
Date getDob();

}

◻ Definition Inheritance allows a class to be derived from another class to
create a hierarchy of classes that share a set of attributes and methods.

◻ Inheritance introduces an is-a relationship: class B is-a instance of class C
⬜ The inheritance hierarchy should reflect modeling semantics, not

implementation shortcuts

Inheritance Tree
16

◻ Definition Inheritance allows a class to be derived from another class to
create a hierarchy of classes that share a set of attributes and methods.

◻ Inheritance introduces an is-a relationship: class B is-an instance of class C
⬜ The inheritance hierarchy should reflect modeling semantics, not

implementation shortcuts

◻ Examples
⬜ Instructor is a Person, Student is a Person
⬜ Triangle is a Shape?
⬜ BankAccount is a CheckingAccount?
⬜ Animal is a Person?

Inheritance Tree
17

◻ Person is a base class
◻ Instructor is a derived class. It inherits both state

and functionality from the base class.

◻ Person is a superclass of Instructor. Instructor is a
subclass of Person.

◻ SummerInstructor is a subclass of Instructor.
Instructor a superclass of Summer Instructor

◻ Other phrasing
⬜ Instructor inherits/derives/extends Person

Inheritance - Terminology
18

class Instructor {
int salary;
int getSalary();

}

class Person {
String name;
final Date dob;
String getName();
Date getDob();

}

class SummerInstructor {
int summerSessId;

}

◻ Class hierarchies and
dependencies are often
represented using UML
diagrams

◻ Won’t go through it in
detail, but you should look
it up

Inheritance - Graphically
19

Person

- name;
- dob;
- getName();
- getDob();

Instructor

- salary
- getSalary()

Sudent

- grade
- getGrade()

SummerInstructor

- int summerSessId

◻ Derived classes in Java use the extends.
⬜ class Instructor extends Person { … }

◻ Inherit all fields from the base class, except fields marked as private
⬜ No need to redeclare them in the derived class!

◻ To allow subclasses to access fields, but prevent all other classes from
accessing them, must mark them as protected

Defining a subclass in Java
20

◻ Possible to type cast between numeric types
⬜ int i = 5 ; float f = (float) i;

◻ Inheritance tree allows us to typecast objects to any of the types above it
in the inheritance tree

◻ Two types of casts
⬜ Widening conversions
⬜ Narrowing conversions

Casting
21

◻ Definition: cast an object to its parent in the inheritance tree

⬜ Person p = (Instructor) natacha;
⬜ Person p = (Student) jack;

◻ It is always possible to upcast an object
⬜ an Instructor instance is always a Person instance
⬜ But, when cast to a superclass, cannot access methods of the

subclass

◻ Allows you to use an Instructor/Student instance every time you want a
Person object.

Widening conversions
22

◻ Definition: cast an object to a child in the inheritance tree

⬜ Person natacha = new … ;
⬜ Instructor i = (Instructor) natacha;

◻ Narrowing conversions are dangerous. It is not always possible to
downcast an object
⬜ a Person instance is not always an Instructor
⬜ Remember the typing error in Python? Downcasting in Java may

generate a runtime exception.

Narrowing conversions
23

◻ Where did we see this term before?

◻ Shadowing in subclasses follows similar rules
⬜ Can redefine variables in child classes
⬜ Use bottom-up rule to figure out which variable will be accessing

Shadowing (Also called Hiding)
24

class Instructor {
int salary = 500;
int getSalary();

}

class SummerInstructor {
int salary = 700;

}

What will print?
SummerInstructor si = new SummerInstructor()
System.out.println(si.salary);Variable salary is shadowed

◻ Where did we see this term before?

◻ Shadowing in subclasses follows similar rules
⬜ Can redefine variables in child classes
⬜ Use bottom-up rule to figure out which variable will be accessing

25

class Instructor {
int salary = 500;
int getSalary();

}

class SummerInstructor {
int salary = 700;

}

I personally dislike shadowing. Risks causing errors and confusion, and can (should)
usually be implemented differently.

Shadowing (Also called Hiding)

◻ Definition A method that is inherited from the superclass can be
overridden by redeclaring it in the subclass.

◻ Java makes overriding explicit by using the @Override annotation
⬜ Use it like your life depends on it!

Overriding
26

class Instructor {
int salary = 500;
int getSalary() {

return salary;
}

}

class SummerInstructor {
int summerBonus = 700;

@Override
int getSalary() {

return salary + summerBonus;
}

}

◻ Java provides two keywords to move up and down the tree hierarchy

⬜ this keyword returns a reference to the current instance of the object
⬜ super keyword enables direct access to the parent of the object

◻ Homework will let you play with those in more detail.

Moving up and down the tree
27

◻ Recall that every class has either:
⬜ an implicit default constructor that is called during initialisation.
⬜ one or more constructors

◻ A subclass implicitly (or explicitly) calls the constructors of all its
Constructors are chained in an inheritance tree

Constructor Chaining
28

Class SummerInstructor {

SummerInstructor() {

}

}

Class Instructor {

Instructor() {

}

}

◻ Constructor chaining can be used to minimise code duplication
⬜ No need to rewrite initialisation logic of base class in every derived

class
⬜ In Java, can use super keyword to call the inherited constructor

Constructor Chaining
29

class Instructor {
Instructor(String name, Date dob, int salary) {

super(name, dob, salary)
this.salary = salary;

}
}

class Student {
Student(String name, Date dob, int grade) {

super(name, dob);
this.grade = grade;

}
}

class Person {
Person(String name, Date dob) {

this.name = name;
this.dob = dob;

}
}

◻ Class Object is the root of the class hierarchy.
⬜ Every class has Object as a superclass.

■ All objects implement the methods of this class

◻ Class provides a number of interesting methods that every class inherits
and can override
⬜ equals(), toString(), clone() and hashCode()
⬜ We’ll see these later.

◻ Look up the Javadoc!
⬜ https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

Java Inheritance
30

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

◻ Definition An object or field is considered immutable if its state cannot change after it
is constructed

◻ To make a field immutable, use access modifier final
⬜ static final ukDateFormat;
⬜ Why is it not enough to mark field private and not provide a setter method?

◻ Benefits of immutability
⬜ Easier to write clean, reliable code
⬜ Easier to maintain invariants in the presence of concurrent modifications

◻ A class is immutable if its marked as final and all its fields are also final

Immutability
31

immutable

final

access modifier

modularity

encapsulation

 inheritance

constructor

shadowing

overriding

casting

References in JavaHyperText

