
CS/ENGRD 2110
SUMMER 2018
Lecture 9: Trees

http://courses.cs.cornell.edu/cs2110/2018su

Object-oriented programming
and data-structures

1

Data Structures
◻ There are different ways of storing data, called data structures

◻ Each data structure has operations that it is good at and operations that it
is bad at

◻ For any application, you want to choose a data structure that is good at the
things you do often

2

Recall: ArrayList/LinkedList

Data Structure add(val x) lookup(int i)
Array

Linked List

3

2 1 3 0

2 1 3 0

The Problem of Search
4

Search is the problem
of finding an element in
a datastructure when
you don’t know where
it is stored

ex: does this array
contain element x?

Is Wally enrolled in this
class?

Introducing Trees
5

We have already seen
linked lists

But linked lists have O(n)
complexity for searching
elements

2 1 1 0

Node object
pointer

int value

Introducing Trees
6

We have already seen
linked lists

But linked lists have O(n)
complexity for searching
elements

2 1 1 0

Node object
pointer

int value

0

4 1 1 0

2

1

1Today, we look at trees.
(Specific) trees have O(lg n)
complexity for searching
elements

Botanic lesson: what is a tree?
7

Tree: data structure with nodes,
similar to linked list

⬜ Each node may have zero or
more successors (children)

⬜ Each node has exactly one
predecessor (parent) except
the root, which has none

⬜ All nodes are reachable from
root

5
4

7 8 9

2

5
4

7 8

5
6

8

5
4

7 8 9

2

A
tree

Not a tree

Not a tree A
tree

Tree Terminology
8

M

G W

PJD

NHB S

the root of the tree
(no parents)

the leaves of the tree
(no children)

child of M
child of M

Tree Terminology
9

M

G W

PJD

NHB S

ancestors of B

descendants of W

Tree Terminology
10

M

G W

PJD

NHB S

subtree of M

Tree Terminology
11

M

G W

PJD

NHB S

A node’s depth is the length of the path to the root.

A tree’s (or subtree’s) height is the length of the longest path from the root to a leaf.

Depth 1, height 2.

Depth 3, height 0.

Tree Terminology
12

G W

PJD

NHB S

Multiple trees: a forest.

Class for general tree nodes

Class for general tree nodes

14

class GTreeNode<T> {
 private T value;
 private Set<GTreeNode<T>> children;
 //appropriate constructors, getters,
 //setters, etc.
}

5

4

7 8 9

2

7 8 3 1

General
tree

Parent contains a list of its
children

Binary Trees
15

A binary tree is a particularly
important kind of tree where every
node has at most two children.

In a binary tree, the two children are
called the left and right children.

5

4

7 8 9

2

Not a binary tree
(a general tree)

5

4

7 8

2

Binary tree

Class for binary tree node
16

Class for binary tree node
17

class TreeNode<T> {
 private T value;
 private TreeNode<T> left, right;

 /** Constructor: one-node tree with datum x */
 public TreeNode (T v) { value= v; left= null; right= null;}

 /** Constr: Tree with root value x, left tree l, right tree r */
 public TreeNode (T v, TreeNode<T> l, TreeNode<T> r) {
 value= v; left= l; right= r;
 }
}

Either might be null if the
subtree is empty.

Binary versus general tree

In a binary tree, each node has up to two pointers: to the left subtree and to the
right subtree:

⬜ One or both could be null, meaning the subtree is empty
(remember, a tree is a set of nodes)

⬜ Binary trees are used for searching

In a general tree, a node can have any number of child nodes (and they need
not be ordered)

⬜ Very useful in some situations ...

⬜ ... one of which may be in an assignment!

18

Useful facts about binary trees
19

Max # of nodes at depth d: 2d

If height of tree is h
⬜ min # of nodes: h + 1
⬜ max #of nodes in tree:
⬜ 20 + … + 2h = 2h+1 – 1

Complete binary tree
⬜ All levels of tree down to a certain

depth are completely filled

5

4

7 8

2

0 4

depth
0

1

2

5

2

4
Height 2,
minimum number of nodes

Height 2,
maximum number of nodes

A Tree is a Recursive Concept
20

A binary tree is either null or an object consisting of a value, a left binary
tree, and a right binary tree.

A Tree is a Recursive Concept
21

A binary tree is either null or an object consisting of a value, a left binary
tree, and a right binary tree.

9

8 3

Binary tree

5 7

2

0

Left subtree,
which is a binary tree too

Right subtree
(also a binary tree)

Looking at trees recursively

a binary tree

Looking at trees recursively

value

left
subtree

right
subtree

Looking at trees recursively

value

Recall: recursive functions
25

Base case:
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.

Recursive Functions on Binary Trees
26

Base case:
empty tree (null)
or, possibly, a leaf

Recursive case:
Call the function on each subtree.
Use the recursive result to build a solution for the full input.

Go through the tutorial
http://www.cs.cornell.edu/courses/JavaAndDS/recursion/recursionTree.ht
ml

http://www.cs.cornell.edu/courses/JavaAndDS/recursion/recursionTree.html
http://www.cs.cornell.edu/courses/JavaAndDS/recursion/recursionTree.html

Tree traversals

◻ “Walking” over the whole tree is a tree traversal

⬜ Done often enough that there are standard names

◻ In-order traversal

⬜ Process left subtree / Process root / Process right subtree

◻ Pre-order traversal

⬜ Process root / Process left subtree / Process right subtree

◻ Post-order traversal
⬜ Process left subtree / Process right subtree / Process root

◻ Level-order traversal
⬜ Not recursive: uses a queue (we’ll cover this later)

Note: Can do other processing besides printing

27

Searching in a Binary Tree
28

9

8 3 5 7

2

0
Analog of linear search in lists: given tree and an
object, find out if object is stored in tree

Easy to write recursively, harder to write
iteratively

Searching in a Binary Tree
29

/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(T x, TreeNode<T> t) {

 if (t == null) return false;

 if (x.equals(t.value)) return true;

 return treeSearch(x, t.left) || treeSearch(x, t.right);

}

9

8 3 5 7

2

0
Analog of linear search in lists: given tree and an
object, find out if object is stored in tree

Easy to write recursively, harder to write
iteratively

Have we made search faster?
30

◻ What is the complexity of search on a tree?

Have we made search faster?
31

◻ What is the complexity of search on a tree?

◻ Bad news: it’s still O(n) in the worst-case

◻ There is no constraints on the positions of the elements in the tree, so have
to go through the whole tree

◻ To improve the complexity of search, we want to impose some kind of
structure on the positions of elements in the tree

> 5< 5

Binary Search Tree (BST)
32

2

0 3 7 9

5

8

A BST is the key to making search way faster.

◻ A Binary Search Tree is a binary tree that is ordered and has no duplicate
values

⬜ All nodes in the left subtree have values that are less than the value in
that node

⬜ All values in the right subtree are greater

Building a BST
33

◻ To insert a new item:

⬜ Pretend to look for the item

⬜ Put the new node in the place where you fall off the tree

34

Building a BST

15

35

Building a BST

15

18

36

Building a BST

15

186

37

Building a BST

15

18

17

6

38

Building a BST

15

18

17 20

6

39

Building a BST

15

18

17 20

6

3

40

Building a BST

15

18

17 20

6

3 7

2 4 13

9

41

Because of ordering rules for
a BST, it’s easy to print the
items in alphabetical order

⬜ Recursively print
left subtree

⬜ Print the node

⬜ Recursively print
right subtree

Sorting

42

Because of ordering rules for
a BST, it’s easy to print the
items in alphabetical order

⬜ Recursively print
left subtree

⬜ Print the node

⬜ Recursively print
right subtree

/** Print BST t in alpha order */
private static void print(TreeNode<T> t) {
 if (t== null) return;
 print(t.left);
 System.out.print(t.value);
 print(t.right);
}

Sorting

Searching in a Binary Tree
43

9

8 3 5 7

2

0
Analog of linear search in lists: given tree and an
object, find out if object is stored in tree

Easy to write recursively, harder to write
iteratively

Searching in a Binary Tree
44

/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(T x, TreeNode<T> t) {
 if (t == null) return false;
 if (x.equals(t.value)) return true;
 if (x < t.value) return treeSearch(x,t.left)
 else return treeSearch(x, t.right);
}

9

8 3 5 7

2

0
Analog of linear search in lists: given tree and an
object, find out if object is stored in tree

Easy to write recursively, harder to write
iteratively

Binary Search Tree (BST)
45

2

0 3 7 9

5

8

boolean searchBST(n, v):

 if n==null, return false

 if n.v == v, return true

 if v < n.v

 return searchBST(n.left, v)

 else

 return searchBST(n.right, v)

boolean searchBT(n, v):

 if n==null, return false

 if n.v == v, return true

 return searchBST(n.left, v)

 || searchBST(n.right, v)

Compare binary tree to binary search tree:

2 recursive calls 1 recursive call

Binary Search Tree (BST)
46

◻ What is the complexity of search in a binary search tree?

Binary Search Tree (BST)
47

◻ What is the complexity of search in a binary search tree?

◻ Unlike binary tree, structure allows you to explore a single branch in the tree

◻ Becomes O(depth)

Binary Search Tree (BST)
48

◻ What is the complexity of a binary search tree?

◻ Unlike binary tree, structure allows you to explore a single branch in the tree

◻ Becomes O(depth)

Binary Tree

BST

Data Structure add(val x) lookup(int i)
Array

Linked List

search(val x)

Other operations

◻ Binary Search Trees aren’t just useful for search operations

◻ They support efficient implements of

⬜ Finding the minimum/maximum of a collection of elements

⬜ Given an element, finding its predecessor/successor

49

Finding the Minimum

◻ Recall that elements that are smaller than the root node are to the left side
of the tree.

◻ Where do you think the smallest element of the binary tree is going to be?

50

Finding the Minimum

◻ Recall that elements that are smaller than the root node are to the left side
of the tree.

◻ Where do you think the smallest element of the binary tree is going to be?

◻ It will be the left-most element of the tree

51

15

18

17 20

6

3 7

2 4 13

9

Finding the Maximum

◻ Recall that elements that are larger than the root node are to the left side of
the tree.

◻ Where do you think the largest element of the binary tree is going to be?

52

Finding the Maximum

◻ Recall that elements that are larger than the root node are to the left side of
the tree.

◻ Where do you think the largest element of the binary tree is going to be?

◻ It will be the right-most element of the tree

53

15

18

17 20

6

3 7

2 4 13

9

Finding the Successor

◻ Where is the successor of an
element going to be in a BST?

⬜ Successor = successor of x
is the node with the
smallest key greater than x.

◻ Successor of 15 is:

⬜ 17

◻ Successor of 13 :

⬜ 15

54

15

18

17 20

6

3 7

2 4 13

9

Finding the Successor

◻ To find the successor of x:

⬜ Two cases:

■ x has a right subtree: the
minimum of the right
subtree is x’s successor

■ x has no right subtree:
successor is the lowest
ancestor of x whose left
child is also an ancestor
of x.

55

15

18

17 20

6

3 7

2 4 13

9

Finding the Successor

◻ To find the successor of x:

⬜ Two cases:

■ 15 has a right subtree
and 17 is the minimum of
that subtree

■ 13 has no right subtree,
and the first element
whose left child (6) is an
ancestor of 13, is 15.

56

15

18

17 20

6

3 7

2 4 13

9

Finding the Predecessor

◻ Where is the predecessor of
an element going to be in a
BST?

⬜ Predecessor = predecessor
of x is the node with the
greatest key smaller than x.

◻ Predecessor of 15 is:

⬜ 13

◻ Predecessor of 7 :

⬜ 6

57

15

18

17 20

6

3 7

2 4 13

9

Finding the Predecessor

◻ To find the predecessor of x:

⬜ Two cases:

■ x has a left subtree:the
maximum of the left
subtree is x’s
predecessor

■ x has no right subtree:
predecessor is the
lowest ancestor of x
whose rightchild is also
an ancestor of x.

58

15

18

17 20

6

3 7

2 4 13

9

Finding the Predecessor

◻ To find the predecessor of x:

⬜ Two cases:

■ 15 has a left subtree and
13 is the maximum of
that subtree

■ 7 has no left subtree,
and the first element
whose right child is an
ancestor of 7, is 6.

59

15

18

17 20

6

3 7

2 4 13

9

Deleting

◻ To delete a node in a BST,
distinguish between three cases:

⬜ Case 1: The node has no
children

⬜ Case 2: The node has one child

⬜ Case 3: The node has two
children

60

10

9 20

19

15

16

17

21

22

12

18

13

14

Deleting

◻ To delete a node in a BST,
distinguish between three cases:

⬜ Case 1: The node has no
children

Consider deleting node 18

61

10

9 20

19

15

16

17

21

22

12

18

13

14

Deleting

◻ To delete a node in a BST,
distinguish between three cases:

⬜ Case 1: The node has no
children

Consider deleting node 18

Simply remove 18 from the tree,
setting the right (or left) pointer of
its parent to null

62

10

9 20

19

15

16

17

21

22

12

18

13

14

Deleting

◻ To delete a node in a BST,
distinguish between three cases:

⬜ Case 2: The node has one child

Consider deleting node 16

63

10

9 20

19

15

16

17

21

22

12

13

14

Deleting

◻ To delete a node in a BST,
distinguish between three cases:

⬜ Case 2: The node has one child

Remove node from tree and set
the right (/left) pointer of its parent
to the child subtree of the node
being deleted

64

10

9 20

19

15

16

17

21

22

12

13

14

Deleting

◻ To delete a node in a BST,
distinguish between three cases:

⬜ Case 2: The node has one child

Remove node from tree and set
the right (/left) pointer of its parent
to the child subtree of the node
being deleted

65

10

9 20

19

15

17

21

22

12

13

14

Deleting

◻ To delete a node in a BST,
distinguish between three cases:

⬜ Case 3: The node has two
children

More complicated. Proceed in
several steps.

66

10

9 20

19

15

17

21

22

12

13

14

Deleting

◻ To delete a node in a BST,
distinguish between three cases:

⬜ Case 3: The node has two
children

Step 1: find the successor of 10 in
the tree.

67

10

9 20

19

15

17

21

22

12

13

14

Deleting

◻ To delete a node in a BST,
distinguish between three cases:

⬜ Case 3: The node has two
children

Step 1: find the successor of 10 in
the tree. Smallest value that’s
greater than 10.

68

10

9 20

19

15

17

21

22

12

13

14

Deleting

◻ To delete a node in a BST,
distinguish between three cases:

⬜ Case 3: The node has two
children

Step 1: find the successor of 10 in
the tree. Smallest value that’s
greater than 10.

Step 2: replace the value to be
deleted by its successor

69

10

9 20

19

15

17

21

22

12

13

14

Deleting

◻ To delete a node in a BST,
distinguish between three cases:

⬜ Case 3: The node has two
children

Step 1: find the successor of 10 in
the tree. Smallest value that’s
greater than 10.

Step 2: replace the value to be
deleted by its successor

70

12

9 20

19

15

17

21

22

12

13

14

Deleting

◻ To delete a node in a BST,
distinguish between three cases:

⬜ Case 3: The node has two
children

Step 1: find the successor of 10 in
the tree. Smallest value that’s
greater than 10.

Step 2: replace the value to be
deleted by its successor

Step 3: delete the successor by
applying Case 2

71

12

9 20

19

15

17

21

22

12

13

14

Deleting

◻ To delete a node in a BST,
distinguish between three cases:

⬜ Case 3: The node has two
children

Step 1: find the successor of 10 in
the tree. Smallest value that’s
greater than 10.

Step 2: replace the value to be
deleted by its successor

Step 3: delete the successor by
applying Case 2

72

12

9 20

19

15

17

21

22

13

14

Are we done?
73

◻ We wanted an efficient way to do search.

◻ We know that Binary Search Tree Search has complexity O(height).

◻ Is that good enough?

Inserting in Sorted Order
74

2

Inserting in Sorted Order
75

3

2

Inserting in Sorted Order
76

3

2

4

Inserting in Sorted Order
77

6

3

2

4

Inserting in Sorted Order
78

6

3

7

2

4

Inserting in Sorted Order
79

6

3

7

2

4

9

Insertion Order Matters
◻ A balanced binary tree is one where the two subtrees of any node are

about the same size.

◻ Searching a binary search tree takes O(depth) time, where h is the height of
the tree.

◻ But if you insert data in sorted order, the tree becomes imbalanced, so
searching is O(n) again

◻ So we haven’t found a way to improve our worst-case complexity!

◻ Need a way to ensure tree remains balanced

80

Balancing a BST

◻ Balancing a BST is necessary to achieve good performance.

◻ To balance a tree, we will either:

⬜ Left-rotate a tree

⬜ Right-rotate a tree

◻ Left-rotation

⬜ Shortens right-subtree by 1, lengthens left subtree by 1

◻ Right rotation does the opposite

81

Left Rotation

◻ Left-rotation rotates the right
subtree of a BST to the left.

82

A

X B

Y Z

Left Rotation

◻ Left-rotation rotates the right
subtree of a BST to the left.

Place the root of the right subtree as
the new root of the tree.

83

A

X B

Y Z

Left Rotation

◻ Left-rotation rotates the right
subtree of a BST to the left.

Place the root of the right subtree as
the new root of the tree.

84

A

X

B

Y Z

Left Rotation

◻ Left-rotation rotates the right
subtree of a BST to the left.

Place the root of the right subtree as
the new root of the tree.

Move the left subtree of the new root as
the right subtree of the old root.

To help you understand why that
works, remember the ordering
relationships on subtrees!

85

A

X

B

Y Z

Left Rotation
86

1

2

3

4

6

7

Left Rotation
87

1

2

3

4

6

7

1

2

3

4

6

7

Right Rotation

◻ Right-rotation rotates the left
subtree of a BST to the right.

88

B

A Z

X Y

Right Rotation

◻ Right-rotation rotates the left
subtree of a BST to the right.

Inverse of left: make left subtree the
root, placing B as the right subtree
of A, and placing the right subtree of
A as the new left subtree of B

89

B

A Z

X Y

Right Rotation

◻ Right-rotation rotates the left
subtree of a BST to the right.

Inverse of left: make left subtree the
root, placing B as the right subtree
of A, and placing the right subtree of
A as the new left subtree of B

90

B

A

Z

X

Y

Next Class
91

A BST works great as long as it’s balanced.

There are kinds of trees that can
automatically keep themselves balanced as
you insert things!

We’ll be looking at Red-Black trees, which is
the datastructure that TreeSet in Java uses.

15

18

17 20

6

3 7

Balanced Search Trees
92

◻ Goal is to ensure that the height of the tree is always O(log n)
⬜ This enables search/insert/delete/min/max/pred/succ to also be

O(log n)

◻ Note: O(log n) is the best you can do for binary trees
⬜ all operations must at least go down one full branch
⬜ you need at least O(log n) levels to store n elements

Red-Black Trees
◻ Self-balancing BST

◻ Each node has one extra bit of information "colour"

◻ Constraints on how nodes can be coloured enforces approximate balance

93

1

3

52

0

Why red-black?

◻ Different explanations:

⬜ Option 1: they only had red and black pens at the time

⬜ Option 2: red was the nicest colour that the Xerox Parc printer could
print

94

1

3

52

0

Red-Black Trees
1) A red-black tree is a binary search tree.

2) Every node is either red or black.

3) The root is black.

4) If a node is red, then its (non-null) children are black.

5) For each node, every path to a descendant null node contains the same
number of black nodes.

95

RB Tree Quiz
◻ Which of the following are red-black trees?

96

1

30

1

3

52

0

6

A) B) C)1

3

2

0

D)1

3

52

0

6 4

RB Tree Quiz
◻ Which of the following are red-black trees?

97

1

30

1

3

52

0

6

A) B) C)1

3

2

0

D)

YES NO YES

1

3

52

0

6
NO

4

Warning
◻ You will sometimes see this invariant:

⬜ All leaves (nil) of a Red-Black tree are black

◻ And see red-black trees drawn like this:
⬜ With NIL leaves
⬜ It makes implementing the functionality easier

◻ For simplicity, we don’t represent them in this class

98

1

3

2

0

Is this magic?
◻ Red-Black tree invariants can appear quite random
⬜ But they are key to guaranteeing that the tree is “mostly” balanced

◻ Intuitively:
⬜ Property 5: (each branch contains the same number of black nodes)

ensures that the tree is perfectly balanced if it does not contain red
nodes

⬜ Property 4 ensures that there can never be two consecutive red nodes
in a branch. This guarantees that, for a tree with k black nodes, there
can be at most k red nodes. So adding the red nodes only increases the
height by a factor of two.

◻ A subtree can therefore have, at most, a height twice greater than the other
subtrees.

99

Proving that height is O(log n)
◻ Let BH(x) be the number of black nodes on every x-to-leaf path.

◻ Lemma 1: A subtree rooted at x has at least 2^BH(x) - 1 nodes

100

BH(x) = 2

Proving that height is O(log n)
◻ Let BH(x) be the number of black nodes on every x-to-leaf path.

◻ Lemma 1: A subtree rooted at x has at least 2^BH(x) - 1 nodes
⬜ Suppose that x’s subtree has only black nodes. By Property 5, the tree is

complete

101

BH(x) = 2

Proving that height is O(log n)
◻ Let BH(x) be the number of black nodes on every x-to-leaf path.

◻ Lemma 1: A subtree rooted at x has at least 2^BH(x) - 1 nodes
⬜ Suppose that x’s subtree has only black nodes. By Property 5, the tree is

complete
⬜ A complete tree has 2^(height + 1) - 1 nodes

(recall the formula). So 2^BH(x) -1 nodes
If red nodes are included, BH(x) doesn’t change
So the number of nodes is still at least 2^BH(x) -1

102

BH(x) = 2

Proving that height is O(log n)

1) If a node is red, then its (non-null) children are black.

2) For each node, every path to a descendant null node contains the same
number of black nodes.

◻ Lemma 2: Let h be the height of the tree. Then BH(root) >= h/2

103

Proving that height is O(log n)

1) If a node is red, then its (non-null) children are black.

2) For each node, every path to a descendant null node contains the same
number of black nodes.

◻ Lemma 2: Let h be the height of the tree. Then BH(root) >= h/2
⬜ By property 4, a red node cannot be the parent of another red node.

So red and black nodes must be interleaved. Because red nodes can’t
be consecutive, each root-to-leaf path can never have more than h/2
red nodes. So BH(root) >= h/2

104

Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜

105

Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)

106

Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜ n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)

107

Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜ n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)
⬜ n + 1 >= 2^(h/2)

108

Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜ n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)
⬜ n + 1 >= 2^(h/2)
⬜ log(n+1) >= log(2^(h/2))

109

Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜ n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)
⬜ n + 1 >= 2^(h/2)
⬜ log(n+1) >= log(2^(h/2))
⬜ log(n+1) >= h/2

110

Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜ n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)
⬜ n + 1 >= 2^(h/2)
⬜ log(n+1) >= log(2^(h/2))
⬜ log(n+1) >= h/2
⬜ 2log(n+1) >= h
⬜

111

Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜ n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)
⬜ n + 1 >= 2^(h/2)
⬜ log(n+1) >= log(2^(h/2))
⬜ log(n+1) >= h/2
⬜ 2log(n+1) >= h
⬜ 2log(2n) > 2log(n+1) >= h

112

Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜ n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)
⬜ n + 1 >= 2^(h/2)
⬜ log(n+1) >= log(2^(h/2))
⬜ log(n+1) >= h/2
⬜ 2log(n+1) >= h
⬜ 2log(2n) > 2log(n+1) >= h
⬜ 2log(2) + 2log(n) > 2log(n+1) >= h

113

Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜ n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)
⬜ n + 1 >= 2^(h/2)
⬜ log(n+1) >= log(2^(h/2))
⬜ log(n+1) >= h/2
⬜ 2log(n+1) >= h
⬜ 2log(2n) > 2log(n+1) >= h
⬜ 2log(2) + 2log(n) > 2log(n+1) >= h
⬜ O(1) + c*log(n) > h

h is log(n)

114

Red-Black Trees are popular

◻ They underpin the datastructure in Java Treeset

◻ The C++ STL library uses them internally to implement Set and Map

◻ They are used to schedule processes in the Linux Kernel
⬜ Specifically in the Completely Fair Scheduler (CFS)

◻ They are used to manage memory allocated to processes in the Linux
Kernel

115

116

Class for a RBNode

117

class RBNode<T> {
 private T value;
 private Colour colour;
 private RBNode<T> parent;
 private RBNode<T> left, right;

 /** Constructor: one-node tree with value x */
 public RBNode (T v, Colour c) { value= d; colour= c; }

 ...
}

Class for a RBNode

118

Insertion

◻ High-level idea

⬜ Insert a node in the tree as you would in a BST and mark it as red

⬜ This may violate the RB-tree invariants
■ There may be two consecutive red nodes, causing the tree to be

unbalanced.

⬜ Must “fix” the tree by rotating the subtrees appropriately

⬜ Rotating the subtrees may create new violations. Continue recursively
until invariant has been restored.

119

Insertion

◻ Let’s define the notion of an uncle node:
⬜ An uncle node for x is the sibling of the

parent of x

◻ Let’s write a subtree consisting of black root as

◻ Insertion can only violate Property 4. Once node
has been inserted into appropriate position,
must fix the tree

R

P

x

U

120

Case 1

◻ Parent of x is red, uncle is red

C

A D

B
x

121

Case 1

◻ Parent of x is red, uncle is red

C

A D

B
x

C

A D

B

Push C’s black onto A/D
and recurse, since C’s
parent may be red

Recolour

122

Case 1

C

A D

B
x

C

A D

B

Recolour

Intuitively: A and D are both new inserted nodes inserted on both sides of the
subtrees, so it’s “safe” to mark them black without rotating. However, the
subtree rooted at the parent of C, may still be unbalanced by the insertion of
B, hence why we mark C red.

123

Case 2

◻ Parent of x is red, uncle is black

C

A

B
x

124

Case 2

◻ Parent of x is red, uncle is black

C

A

B
x

C

B

A

Transform to Case 3

Left-rotate(A)

Case 3

C

B

A

Right-rotate(C)
and recolour

B

A C

Done! No more violations
are possible

◻ Parent of x is red, uncle is black

An example

11

14

15

2

1 7

5

4

8

z

y

An example

11

14

15

2

1 7

5

4

8

z

y

Parent of z is red, and
uncle y is red.
Case 1

An example

11

14

15

2

1 7

5

4

8

z

y

An example

11

14

15

2

1 7

5

4

8

z

y

The parent of z is red, and
the uncle y is black. x is
the right child of its parent
so we left rotate the
subtree at root 2.
Case 2

An example

11

14

152

1

7

5

4

8

z

y

An example

11

14

152

1

7

5

4

8

z

y

The parent of z is red, and
the uncle y is black. x is
the right child of its parent
so we right rotate the
subtree at root 7 and
Case 3

An example

11

14

15

2

1

7

5

4

8

z
y

The parent of z is red, and
the uncle y is black. x is
the right child of its parent
so we right rotate the
subtree at root 7

Pseudocode
Fix-Tree(T, z)
While z.p.colour == Red
 If z.p == z.p.p.left

y = z.p.p.right
If y.colour == red

z.p.colour = black // Case 1
y.colour = black; // Case 1
z.p.p.colour = red // Case 1
z = z.p.p // Case 1

Else if z == z.p.right // Case 2
z = z.p // Case 2
LEFT-ROTATE(T,z) // Case 2

 Z.p.colour = black // Case 3
 Z.p.p.colour = red // Case 3
 RIGHT-ROTATE(T,z, p.p) // Case 3

 else (same as then clause but with “right and
 “Left” exchanged)

134

Plenty of other trees in the forest

◻ Balanced Trees are a huge part of computer science
⬜ 2-3 Trees, AVL Trees, AA Trees
⬜ Tango Trees, Scapegoat Trees, Weight-Balanced Trees
⬜ B-Trees, B+Trees, Splay Trees

◻ Have slightly different properties but follow the core logic of RB trees
⬜ Splay Trees allow “recently” accessed items to be retrieved more

efficiently at the cost of doing rotations on search/succ/pred
⬜ B-Trees are very shallow but wide, and can store multiple values per

node
■ This is node to better align with the memory hierarchy in databases

⬜ AVL trees have slightly cheaper search but more expensive inserts

135

Next Class

◻ We’ll move on to another useful abstraction:
⬜ Priority Queues
⬜ Heaps

◻ These datastructures can also be implemented with trees :-)

