1

Obiject-oriented programming
and data-structures

o

Data Structures

There are different ways of storing dataq, called data structures

Each data structure has operations that it is good at and operations that it
is bad at

For any application, you want to choose a data structure that is good at the
things you do often

Recall: ArrayList/LinkedList

FISIRIN o™ 0(1)
Linked List O (1) O (,n)

The Problem of Search

4|
Search is the problem o B { ,
of finding an element in SRR e |

y ERE.
KNIGHT IN ARMOUR EVERYWH
INSIDE! FANT ASTIC!

a datastructure when
you dont know where
it is stored

Yo 4 TR

o=y

%

ex: does this array
contain element x?

Is Wally enrolled in this
class?

Infroducing Trees

We have already seen < > ‘ ‘ .
linked lists 2 ’ » @

Node object :
But linked lists have O(n) pointer

complexity for searching
elements

int value

Infroducing Trees

We have already seen

linked lists 2 » » @
Node object :

But linked lists have O(n) pointer

complexity for searching
elements

int value

Today, we look at trees.
(Specific) trees have O(lg n)
complexity for searching
elements

Botanic lesson: what is a tree?

Tree: data structure with nodes,

similar to linked list @
Each node may have zero or é :é
more successors (children)

Each node has exactly one Not a tree
predecessor (parent) except tre o
the roof, which has none
All nodes are reachable from
rooft >
Not a tree

tree

Tree Terminology

the root of the tree
(no parents)

child of M child of M

the leaves of the tree
(no children)

Tree Terminology

ancestors of B

descendants of W

Tree Terminology

subtfree of M

Tree Terminology

A node’s depthis the length of the path to the root.

A tree's (or subtree’s) heightis the length of the longest path from the root to a leaf.

Depth 3, height 0.

Tree Terminology

Multiple tfrees: a forest.

Class for general free nodes
T

Class for general tree nodes

class GTreeNode<T> {
private T value;
private Set<GTreeNode<T>> children;
//appropriate constructors, getters,
//setters, etc.

Parent contains a list of its e’ @
children General
D ® Q) o
@{ ®» @ D

Binary Trees

A binary treeis a particularly
important kind of free where every
node has at most two children.

In a binary tree, the two children are
called the leff and right children.

@@

Not a binary tree
(a general tree)

A

Binary tree

Class for binary tree node
-6

Class for binary tree node

class TreeNode<T> {

private T value; —

private TreeNode<T> left, right;

Either might be null if the
subtree is empty.

/** Constructor: one-node tree with datum x */
public TreeNode (T v) { value= v; left= null; right= null;}

/** Constr: Tree with root value x, left tree 1, right tree r */
public TreeNode (T v, TreeNode<T> 1, TreeNode<T> r) {
value= v; left=1; right=r;
b
)

Binary versus general free

In a binary tree, each node has up to two pointers: to the left subtree and to the
right subtree:

One or both could be null, meaning the subtree is empty
(remember, a free is a set of nodes)

Binary trees are used for searching

In a general tree, a node can have any number of child nodes (and they need
not be ordered)

Very useful in some situations ...
... one of which may be in an assignment!

Useful facts about binary frees

Max # of nodes at depth d: 2¢

If height of tree is h
min # of nodes: h + 1

max #of nodes in tree:
204+ . 4+2h = obfl

Complete binary tree

All levels of tree down to a certain
depth are completely filled

Height 2,
maximum number of nodes

N
| D
Height 2,

minimum number of nodes

A Tree is a Recursive Concept

A binary tree is either null or an object consisting of a value, a left binary
tree, and a right binary free.

A Tree is a Recursive Concept

A binary tree is either null or an object consisting of a value, a left binary
tree, and a right binary free.

Binary tree

Right subtree

/QD\@ (also a binary tree)
S e

Left subtree,
which is a binary tree too

Looking at trees recursively
.,

a binary tree

Looking at trees recursively
]

N

left right

Looking at trees recursively
]

O
JANVAVAN

Recall: recursive functions

Base case:
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.

Recursive Functions on Binary Trees
26|

Base case:
empty tree (null)
or, possibly, a leaf

Recursive case:

Call the function on each subftree.
Use the recursive result to build a solution for the full input.

Go through the tutorial

http://www.cs.cornell.edu/courses/JavaAndDS/recursion/recursionTree.html
http://www.cs.cornell.edu/courses/JavaAndDS/recursion/recursionTree.html

Tree traversals

0 "Walking” over the whole tree is a free fraversal

Done often enough that there are standard names

71 In-order traversal
Process left subtree / Process root / Process right subtree
-1 Pre-order traversal

[0 Process root / Process left subtree / Process right subtree

1 Post-order traversal
[0 Process left subtree / Process right subtree / Process root

1 Level-order traversal
[] Not recursive: uses a queue (we'll cover this later)

Note: Can do other processing besides printing

Searching in a Binary Tree

Analog of linear search in lists: given tree and an)/QD\
object, find out if object is stored in tree

Easy to write recursively, harder to write \@> @j/ \§>

iteratively

Searching in a Binary Tree

/** Return true iff x is the datum in a node of free t*/
public static boolean treeSearch(T x, TreeNode<T> t) {

if (t == null) return false;
if (x.equals(t.value)) return frue;
return treeSearch(x, t.left) | treeSearch(x, t.right);

}
Analog of linear search in lists: given tree and an)/QD\
object, find out if object is stored in tree

Easy to write recursively, harder to write \@> @j/ \§>

iteratively

Have we made search faster?
30 K

7 What is the complexity of search on a tree?

Have we made search faster?

What is the complexity of search on a tree?
Bad news: it's still O(n) in the worst-case

There is no constraints on the positions of the elements in the tree, so have
to go through the whole tree

To improve the complexity of search, we want to impose some kind of
structure on the positions of elements in the tree

Binary Search Tree (BST)

A Binary Search Tree is a binary tree that is ordered and has no duplicate
values

All nodes in the left subtree have values that are less than the value in
that node

All values in the right subtree are greater

AR

A BST is the key to making search way faster.

Building a BST

I I EEEEEEE—————————

1 Toinsert a new item:
"1 Pretend to look for the item
"1 Put the new node in the place where you fall off the tree

Building a BST

()

Building a BST

Building a BST

Building a BST

Building a BST

Building a BST

Building a BST

Sorting

Because of ordering rules for
a BST, it's easy to print the
items in alphabetical order

Recursively print
left subtree

Print the node

Recursively print
right subtree

Sorting

Because of ordering rules for
a BST, it's easy to print the

items in alphabetical order _ ,
/** Print BST t in alpha order */

R ivel int : : : .
ecursively prin private static void print(TreeNode<T> t) {

left subtree
if (t== null) return;

Print the node .
a velv orint print(t.left);

ecursively prin : .
right subtree System.out.print(t.value);

print(t.right);
;

Searching in a Binary Tree

Analog of linear search in lists: given tree and an)/QD\
object, find out if object is stored in tree

Easy to write recursively, harder to write \@> @j/ \§>

iteratively

Searching in a Binary Tree

/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(T x, TreeNode<T> t) {

if (t == null) return false;

if (x.equals(t.value)) return true;

if (x < t.value) return treeSearch(x,t.left)
else return treeSearch(x, t.right);

}

Analog of linear search in lists: given tree and an)/QD\

object, find out if object is stored in tree

Easy to write recursively, harder to write \@> @j/ \§>

iteratively

Binary Search Tree (BST)

Compare binary tree to binary search tree:

boolean searchBT (n, Vv):
if n==null, return false
if n.v == v, return true
return searchBST (n.left, wv)

| | searchBST (n.right, wv)

boolean searchBST (n, Vv):
if n==null, return false
if n.v == v, return true
if v < n.v
return searchBST (n.left, v)
else

return searchBST (n.right, v)

2 recursive calls

1 recursive call

Binary Search Tree (BST)

4
o What is the complexity of search in a binary search tree?

Binary Search Tree (BST)

What is the complexity of search in a binary search tree?
Unlike binary tree, structure allows you to explore a single branch in the tree

Becomes O(depth)

Binary Search Tree (BST)

What is the complexity of a binary search tree?

Unlike binary tree, structure allows you to explore a single branch in the tree

Becomes O(depth)
Array o(n) O(1) o)
Linked List o(1) oO(n) O(n)
Binary Tree 9] (1) [0 (n) [0) (n)

BST O(depth) O(depth) O(depth)

Other operations

Binary Search Trees aren’t just useful for search operations

They support efficient implements of
Finding the minimum/maximum of a collection of elements

Given an element, finding its predecessor/successor

Finding the Minimum

Recall that elements that are smaller than the root node are to the left side
of the tree.

Where do you think the smallest element of the binary tree is going to be?

Finding the Minimum

Recall that elements that are smaller than the root node are to the left side
of the tree.

Where do you think the smallest element of the binary tree is going to be?

It will be the left-most element of the tree ° G

Finding the Maximum

Recall that elements that are larger than the root node are to the left side of
the tree.

Where do you think the largest element of the binary tree is going to be?

Finding the Maximum

Recall that elements that are larger than the root node are to the left side of
the tree.

Where do you think the largest element of the binary tree is going to be?

It will be the right-most element of the free

Finding the Successor

Where is the successor of an °
element going to be in a BST?

Successor = successor of x ° @

is the node with the

smallest key greater than x. ° ‘ a @
Successor of 15s;

e)
Successor of 13

15

Finding the Successor

To find the successor of X; G

Two cases:
x has a right subtree: the 6 »

minimum of the right ° ‘ G @

subtree is x's successor

X has no right subftree: ° ‘ G

successor is the lowest
ancestor of x whose left Q
child is also an ancestor

of x.

Finding the Successor

To find the successor of X; G

Two cases: ° e

15 has a right subtree

and 17 is the minimum of ° ‘ a @

that subtree

13 has no right subtree, ° 0 G

and the first element
whose left child (6) is an °

ancestor of 13, is 15.

Finding the Predecessor

Where is the predecessor of °
an element going to beina

55T o O
s e nadonithine O @ O®
greatest key smaller than x. ° 0 G

Predecessor of 15 is: °
13

Predecessor of 7 :
6

Finding the Predecessor

To find the predecessor of x: G

Two cases: o
x has a left subtree:the °

maximum of the left ° ‘ G @

subtreeis x's

OO W

X has no right subftree:
predecessor is the Q
lowest ancestor of x

whose rightchild is also

an ancestor of x.

Finding the Predecessor

To find the predecessor of x: G

Two cases: ° @

15 has a left subtree and

13 is the maximum of ° ‘ a @

that subtree
7 has no left subtree, ° 0 G
and the first element °

whose right child is an
ancestor of 7, is 6.

Deleting

To delete anode in a BST,
distinguish between three cases:

Case 1: The node has no
children

Case 2: The node has one child

Case 3: The node has two
children

Deleting

1 Todelete anodein aBST,

distinguish between three cases:

Case 1: The node has no
children

Consider deleting node 18

Deleting

To delete anode in a BST,
distinguish between three cases:

Case 1: The node has no
children

Consider deleting node 18

Simply remove 18 from the tree,
setting the right (or left) pointer of
its parent to null

Deleting

1 Todeleteanodein aBST,
distinguish between three cases:

Case 2: The node has one child

Consider deleting node 16

Deleting

To delete anode in a BST, @
distinguish between three cases:

Case 2: The node has one child ° °

Remove node from free and set

the right (/left) pointer of its parent 0 e
to the child subtree of the node

being delefed a

Deleting

To delete anode in a BST,
distinguish between three cases:

Case 2: The node has one child

Remove node from free and set
the right (/left) pointer of its parent
to the child subtree of the node
being deleted

Deleting

1 Todelete anodein aBST,

distinguish between three cases:

Case 3: The node has two
children

More complicated. Proceed in
several steps.

Deleting

1 Todeleteanodein aBST,
distinguish between three cases:

Case 3: The node has two
children

Step 1: find the successor of 10 in
the tree.

Deleting

1 Todeleteanodein aBST,
distinguish between three cases:

Case 3: The node has two
children

Step 1: find the successor of 10 in
the tree. Smallest value that's
greater than 10.

Deleting

To delete anode in a BST,
distinguish between three cases:

Case 3: The node has two
children

Step 1: find the successor of 10in
the tree. Smallest value that's
greater than 10.

Step 2: replace the value to be
deleted by its successor

Deleting

To delete anode in a BST,
distinguish between three cases:

Case 3: The node has two
children

Step 1: find the successor of 10in
the tree. Smallest value that's
greater than 10.

Step 2: replace the value to be
deleted by its successor

Deleting

To delete anode in a BST,
distinguish between three cases:

Case 3: The node has two
children

Step 1: find the successor of 10in
the tree. Smallest value that's
greater than 10.

Step 2: replace the value to be
deleted by its successor

Step 3: delete the successor by
applying Case 2

Deleting

To delete anode in a BST,
distinguish between three cases:

Case 3: The node has two
children

Step 1: find the successor of 10in
the tree. Smallest value that's
greater than 10.

Step 2: replace the value to be
deleted by its successor

Step 3: delete the successor by
applying Case 2

Are we done?

We wanted an efficient way to do search.
We know that Binary Search Tree Search has complexity O(height).

Is that good enough?

Inserting in Sorted Order

&

Inserting in Sorted Order

e

Inserting in Sorted Order

Inserting in Sorted Order

Inserting in Sorted Order

Inserting in Sorted Order

Insertion Order Maftters

A balanced binary tree is one where the two subtrees of any node are
about the same size.

Searching a binary search tree takes O(depth) time, where h is the height of
the tree.

But if you insert data in sorted order, the tree becomes imbalanced, so
searching is O(n) again

So we haven't found a way to improve our worst-case complexity!

Need a way to ensure tree remains balanced

Balancing a BST

Balancing a BST is necessary to achieve good performance.

To balance a tree, we will either:
Left-rotate a free

Right-rotate a tree

Left-rotation
Shortens right-subtree by 1, lengthens left subtree by 1
Right rotation does the opposite

Left Rotation

11 Left-rotation rotates the right
subtree of a BST to the left.

Left Rotation

Left-rotation rotates the right
subtree of a BST to the left.

Place the root of the right subtree as
the new root of the tree.

Left Rotation

Left-rotation rotates the right
subtree of a BST to the left.

Place the root of the right subtree as
the new root of the tree.

Left Rotation

Left-rotation rotates the right
subtree of a BST to the left.

Place the root of the right subtree as
the new root of the tree.

Move the left subtree of the new root as
the right subtree of the old root.

To help you understand why that
works, remember the ordering
relationships on subtrees!

Left Rotation

Left Rotation

o (4
RO
(D (s E—
& ® SN 2

Right Rotation

71 Right-rotation rotates the left
subtree of a BST to the right.

r.".

Right Rotation

Right-rotation rotates the left
subtree of a BST to the right.

Inverse of left: make left subtree the
root, placing B as the right subtree
of A, and placing the right subtree of
A as the new left subtree of B

Right Rotation

Right-rotation rotates the left
subtree of a BST to the right.

Inverse of left: make left subtree the
root, placing B as the right subtree
of A, and placing the right subtree of
A as the new left subtree of B

Next Class

A BST works great as long as it's balanced.

There are kinds of trees that can
automatically keep themselves balanced as
you insert things!

We'll be looking at Red-Black trees, which is
the datastructure that TreeSet in Java uses.

Balanced Search Trees

Goal is to ensure that the height of the tree is always O(log n)
This enables search/insert/delete/min/max/pred/succ to also be
O(log n)

Note: O(log n) is the best you can do for binary trees
all operations must at least go down one full branch
you need at least O(log n) levels to store n elements

Red-Black Trees

Self-balancing BST

Each node has one extra bit of information "colour"

Constraints on how nodes can be coloured enforces approximate balance

Why red-black?

Different explanations:
Option 1: they only had red and black pens at the time

Option 2: red was the nicest colour that the Xerox Parc printer could
print

Red-Black Trees

A red-black tree is a binary search tree.

Every node is either red or black.
The root is black.
If a node is red, then its (hon-null) children are black.

For each node, every path to a descendant null node contains the same
number of black nodes.

RB Tree Quiz

Which of the following are red-black trees?

TR

RB Tree Quiz

Which of the following are red-black trees?

el

YES NO

warning

You will sometimes see this invariant:
All leaves (nil) of a Red-Black tree are black
And see red-black trees drawn like this:

With NIL leaves
It makes implementing the functionality easier

For simplicity, we don't represent them in this class

Is this magic?

Red-Black tree invariants can appear quite random
But they are key to guaranteeing that the tree is “mostly” balanced

Intuitively:
Property 5: (each branch contains the same number of black nodes)
ensures that the tree is perfectly balanced if it does not contain red
nodes
Property 4 ensures that there can never be two consecutive red nodes
in a branch. This guarantees that, for a tree with k black nodes, there
can be at most k red nodes. So adding the red nodes only increases the
height by a factor of two.

A subtree can therefore have, at most, a height twice greater than the other
subtrees.

Proving that height is O(log n)

Let BH(x) be the number of black nodes on every x-to-leaf path.

BH(x) = 2

Lemma 1: A subtree rooted at x has at least 2*BH(X) - 1 nodes

Proving that height is O(log n)

Let BH(x) be the number of black nodes on every x-to-leaf path.

BH(x) = 2

Lemma 1: A subtree rooted at x has at least 2*BH(x) - 1 nodes
Suppose that x's subtree has only black nodes. By Property 5, the tree is
complete

Proving that height is O(log n)

Let BH(x) be the number of black nodes on every x-to-leaf path.

BH(x) = 2

Lemma 1: A subtree rooted at x has at least 2*BH(x) - 1 nodes
Suppose that x's subtree has only black nodes. By Property 5, the tree is
complete
A complete tfree has 2*(height + 1) - 1 nodes
(recall the formula). So 2*BH(x) -1 nodes
If red nodes are included, BH(x) doesn't change
So the number of nodes is still at least 2*BH(x) -1

Proving that height is O(log n)

If a node is red, then its (hon-null) children are black.

For each node, every path to a descendant null node contains the same
number of black nodes.

Lemma 2: Let h be the height of the tree. Then BH(root) >= h/2

Proving that height is O(log n)

If a node is red, then its (hon-null) children are black.

For each node, every path to a descendant null node contains the same
number of black nodes.

Lemma 2: Let h be the height of the tree. Then BH(root) >= h/2
By property 4, a red node cannot be the parent of another red node.
So red and black nodes must be interleaved. Because red nodes can't
be consecutive, each root-to-leaf path can never have more than h/2
red nodes. So BH(root) >= h/2

Proving that height is O(log n)

105

-1 Theorem: The height h of a Red-Black tree is O(log n)

Proving that height is O(log n)

Theorem: The height h of a Red-Black tree is O(log n)

n >= 2"BH(root) -1 (Lemma 1)

Proving that height is O(log n)

Theorem: The height h of a Red-Black tree is O(log n)

n >= 2*BH(root) -1 (Lemma 1)
n>=2%h/2) -1 >=2"BH(root) -1 (by Lemma 2: BH(root) > h/2)

Proving that height is O(log n)

Theorem: The height h of a Red-Black tree is O(log n)

n >= 2*BH(root) -1 (Lemma 1)
n>=2%h/2) -1 >=2"BH(root) -1 (by Lemma 2: BH(root) > h/2)
n+1>=2"h/2)

Proving that height is O(log n)

Theorem: The height h of a Red-Black tree is O(log n)

n >= 2*BH(root) -1 (Lemma 1)

n>=2%h/2) -1 >=2"BH(root) -1 (by Lemma 2: BH(root) > h/2)
n+1>=2%h/2)

log(n+1) >=log(2*(h/2))

Proving that height is O(log n)

Theorem: The height h of a Red-Black tree is O(log n)

n >= 2*BH(root) -1 (Lemma 1)

n>=2%h/2) -1 >=2"BH(root) -1 (by Lemma 2: BH(root) > h/2)
n+1>=2%h/2)

log(n+1) >=log(2*(h/2))

log(n+1) >=h/2

Proving that height is O(log n)

Theorem: The height h of a Red-Black tree is O(log n)

n >= 2*BH(root) -1 (Lemma 1)
n>=2%h/2) -1 >=2"BH(root) -1 (by Lemma 2: BH(root) > h/2)
n+1>=2%h/2)
log(n+1) >=log(2*(h/2))
log(n+1) >=h/2
2log(n+1) >=h

Proving that height is O(log n)

Theorem: The height h of a Red-Black tree is O(log n)

n >= 2*BH(root) -1 (Lemma 1)
n>=2%h/2) -1 >=2"BH(root) -1 (by Lemma 2: BH(root) > h/2)
n+1>=2%h/2)
log(n+1) >=log(2*(h/2))
log(n+1) >=h/2
2log(n+1) >=h
2log(2n) > 2log(h+1) >=h

Proving that height is O(log n)

Theorem: The height h of a Red-Black tree is O(log n)

n >= 2*BH(root) -1 (Lemma 1)
n>=2%h/2) -1 >=2"BH(root) -1 (by Lemma 2: BH(root) > h/2)
n+1>=2"h/2)
log(n+1) >=log(2*(h/2))
log(n+1) >=h/2
2log(n+1) >=h
2log(2n) > 2log(h+1) >=h
2log(2) + 2log(n) > 2log(h+1) >=h

Proving that height is O(log n)

Theorem: The height h of a Red-Black tree is O(log n)

n >= 2*BH(root) -1 (Lemma 1)
n>=2%h/2) -1 >=2"BH(root) -1 (by Lemma 2: BH(root) > h/2)
n+1>=2"h/2)
log(n+1) >=log(2*(h/2))
log(n+1) >=h/2
2log(n+1) >=h
2log(2n) > 2log(h+1) >=h
2log(2) + 2log(n) > 2log(h+1) >=h
O(1) + c*log(n) > h

his log(n)

Red-Black Trees are popular

They underpin the datastructure in Java Treeset
The C++ STL library uses them internally to implement Set and Map

They are used to schedule processes in the Linux Kernel
Specifically in the Completely Fair Scheduler (CFS)

They are used to manage memory allocated to processes in the Linux
Kernel

Class for a RBNode

Class for a RBNode

class RBNode<T> {
private T value;
private Colour colour;
private RBNode<T> parent;
private RBNode<T> left, right;

/** Constructor: one-node tree with value x */
public RBNode (T v, Colour c) { value= d; colour= c; }

Insertion

High-level idea

Insert a node in the free as you would in a BST and mark it as red
This may violate the RB-tree invariants

There may be two consecutive red nodes, causing the tree to be
unbalanced.

Must “fix” the tree by rotating the subtrees appropriately

Rotating the subtrees may create new violations. Continue recursively
until invariant has been restored.

Insertion

Let’s define the notion of an uncle node:
An uncle node for x is the sibling of the
parent of x

Let’'s write a subtree consisting of black root as

Insertion can only violate Property 4. Once node
has been inserted into appropriate position,
must fix the free

Case 1

120

- Parent of xis red. uncle is red

Case 1

Parent of x is red. uncle is red

Recolour

Push C's black onto A/D
and recurse, since C's
parent may be red

Recolour

Intuitively: A and D are both new inserted nodes inserted on both sides of the
subtrees, so it's “safe” to mark them black without rotating. However, the
subtree rooted at the parent of C, may still be unbalanced by the insertion of

B. hence why we mark C red.

Case 2

123

- Parent of xis red. uncle is black

A

Case 2

Parent of x is red, uncle is black

Left-rotate(A)

L -

Transform to Case 3

Case 3

Parent of x is red, uncle is black

Right-rotate(C)
and recolour

A

Done! No more violations
are possible

An example

An example

Parent of z is red, and
uncle y is red.
Case 1

An example

An example

The parent of z is red, and
the uncle y is black. x is
the right child of its parent
so we left rotate the
subtree at root 2.

Case 2

An example

An example

The parent of z is red, and
the uncle y is black. x is
the right child of its parent
so we right rotate the
subtree at root 7 and
Case 3

An example

The parent of z is red, and
the uncle y is black. x is
the right child of its parent
so we right rotate the
subtree at root 7

Pseudocode

Fix-Tree(T, z)
While z.p.colour == Red
If z.p==2z.p.p.left
y = z.p.p.right
If y.colour ==red
z.p.colour = black
y.colour = black;
z.p.p.colour = red
Z=2Z.p.p
Else if z==z.p.right
Z=27.p
LEFT-ROTATE(T,z)
Z.p.colour = black
Z.p.p.colour = red
RIGHT-ROTATE(T,z, p.p)

“Left” exchanged)

/I Case 1
/I Case 1
/I Case 1
/I Case 1
/I Case 2
/I Case 2
/I Case 2
/I Case 3
/I Case 3
/I Case 3

else (same as then clause but with “right and

Plenty of other trees in the forest

Balanced Trees are a huge part of computer science
2-3 Trees, AVL Trees, AA Trees

Tango Trees, Scapegoat Trees, Weight-Balanced Trees
B-Trees, B+Trees, Splay Trees

Have slightly different properties but follow the core logic of RB trees
Splay Trees allow “recently” accessed items to be retrieved more
efficiently at the cost of doing rotations on search/succ/pred
B-Trees are very shallow but wide, and can store multiple values per
node

This is node to better align with the memory hierarchy in databases
AVL trees have slightly cheaper search but more expensive inserts

Next Class

We'll move on to another useful abstraction:
Priority Queues
Heaps

These datastructures can also be implemented with trees :-)

