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Object-oriented programming 
and data-structures
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Data Structures
◻ There are different ways of storing data, called data structures

◻ Each data structure has operations that it is good at and operations that it 
is bad at

◻ For any application, you want to choose a data structure that is good at the 
things you do often
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Recall: ArrayList/LinkedList

Data Structure add(val x) lookup(int i)
Array

Linked List

3

2 1 3 0

2 1 3 0

  
  



The Problem of Search
4

Search is the  problem 
of finding an element in 
a datastructure when 
you don’t know where 
it is stored

ex: does this array 
contain element x?

Is Wally enrolled in this 
class?



Introducing Trees
5

We have already seen 
linked lists

But linked lists have O(n) 
complexity for searching 
elements

2 1 1 0

Node object
pointer

int value



Introducing Trees
6

We have already seen 
linked lists

But linked lists have O(n) 
complexity for searching 
elements

2 1 1 0

Node object
pointer

int value
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1Today, we look at trees. 
(Specific) trees have O(lg n) 
complexity for searching 
elements



Botanic lesson: what is a tree?
7

Tree: data structure with nodes, 
similar to linked list

⬜ Each node may have zero or 
more successors (children)

⬜ Each node has exactly one 
predecessor (parent) except 
the root, which has none

⬜ All nodes are reachable from 
root
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Not a tree A 
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Tree Terminology
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M

G W

PJD

NHB S

the root of the tree
(no parents)

the leaves of the tree
(no children)

child of M
child of M



Tree Terminology
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M

G W

PJD

NHB S

ancestors of B

descendants of W



Tree Terminology
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M

G W

PJD

NHB S

subtree of M



Tree Terminology
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M

G W

PJD

NHB S

A node’s depth is the length of the path to the root.

A tree’s (or subtree’s) height is the length of the longest path from the root to a leaf.

Depth 1, height 2.

Depth 3, height 0.



Tree Terminology
12

G W

PJD

NHB S

Multiple trees: a forest.



Class for general tree nodes



Class for general tree nodes
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class GTreeNode<T> {
    private T value;
    private Set<GTreeNode<T>> children;
    //appropriate constructors, getters, 
    //setters, etc.
}

5

4

7 8 9

2

7 8 3 1

General 
tree

Parent contains a list of its 
children



Binary Trees
15

A binary tree is a particularly 
important kind of tree where every 
node has at most two children.

In a binary tree, the two children are 
called the left and right children.
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Not a binary tree
(a general tree)
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Binary tree



Class for binary tree node
16



Class for binary tree node
17

class TreeNode<T> {
   private T value;
   private TreeNode<T> left, right;

   /** Constructor: one-node tree with datum x */
   public TreeNode (T v) { value= v; left= null; right= null;}

   /** Constr: Tree with root value x, left tree l, right tree r */
   public TreeNode (T v, TreeNode<T> l, TreeNode<T> r) {
       value= v; left= l; right= r;
   }
}

Either might be null if the 
subtree is empty.



Binary versus general tree

In a binary tree, each node has up to two pointers: to the left subtree and to the 
right subtree:

⬜ One or both could be null, meaning the subtree is empty
(remember, a tree is a set of nodes)

⬜ Binary trees are used for searching

In a general tree, a node can have any number of child nodes (and they need 
not be ordered)

⬜ Very useful in some situations ...

⬜ ... one of which may be in an assignment!
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Useful facts about binary trees
19

Max # of nodes at depth d: 2d

If height of tree is h
⬜ min # of nodes: h + 1
⬜ max #of nodes in tree:
⬜ 20 + … + 2h  =  2h+1 – 1 

Complete binary tree
⬜ All levels of tree down to a certain 

depth are completely filled
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2

0 4

depth
0

1

2

5

2

4
Height 2, 
minimum number of nodes

Height 2, 
maximum number of nodes

       



A Tree is a Recursive Concept
20

A binary tree is either null or an object consisting of a value, a left binary 
tree, and a right binary tree.



A Tree is a Recursive Concept
21

A binary tree is either null or an object consisting of a value, a left binary 
tree, and a right binary tree.

9

8 3

Binary tree

5 7

2

0

Left subtree,
which is a binary tree too

Right subtree
(also a binary tree)



Looking at trees recursively

a binary tree



Looking at trees recursively

value

left
subtree

right
subtree



Looking at trees recursively

value



Recall: recursive functions
25

Base case:
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.



Recursive Functions on Binary Trees
26

Base case:
empty tree (null)
or, possibly, a leaf

Recursive case:
Call the function on each subtree.
Use the recursive result to build a solution for the full input.

Go through the tutorial 
http://www.cs.cornell.edu/courses/JavaAndDS/recursion/recursionTree.ht
ml 

http://www.cs.cornell.edu/courses/JavaAndDS/recursion/recursionTree.html
http://www.cs.cornell.edu/courses/JavaAndDS/recursion/recursionTree.html


Tree traversals

◻ “Walking” over the whole tree is a tree traversal

⬜  Done often enough that there are standard names

◻ In-order traversal

⬜ Process left subtree / Process root / Process right subtree

◻ Pre-order traversal

⬜ Process root / Process left subtree / Process right subtree

◻ Post-order traversal
⬜ Process left subtree / Process right subtree / Process root

◻ Level-order traversal
⬜ Not recursive: uses a queue (we’ll cover this later)

Note: Can do other processing besides printing
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Searching in a Binary Tree
28

9

8 3 5 7

2

0
Analog of linear search in lists: given tree and an 
object, find out if object is stored in tree

Easy to write recursively, harder to write 
iteratively



Searching in a Binary Tree
29

/** Return true iff x is the datum in a node of tree  t*/
public static boolean treeSearch(T x, TreeNode<T> t) {

   if (t == null) return false;

   if (x.equals(t.value)) return true;

   return treeSearch(x, t.left) || treeSearch(x, t.right);

}

9

8 3 5 7

2

0
Analog of linear search in lists: given tree and an 
object, find out if object is stored in tree

Easy to write recursively, harder to write 
iteratively



Have we made search faster?
30

◻ What is the complexity of search on a tree?



Have we made search faster?
31

◻ What is the complexity of search on a tree?

◻ Bad news: it’s still O(n) in the worst-case

◻ There is no constraints on the positions of the elements in the tree, so have 
to go through the whole tree

◻ To improve the complexity of search, we want to impose some kind of 
structure on the positions of elements in the tree



> 5< 5

Binary Search Tree (BST)
32

2

0 3 7 9

5

8

A BST is the key to making search way faster.

◻ A Binary Search Tree is a binary tree that is ordered and has no duplicate 
values

⬜ All nodes in the left subtree have values that are less than the value in 
that node

⬜ All values in the right subtree are greater



Building a BST
33

◻ To insert a new item:

⬜ Pretend to look for the item

⬜ Put the new node in the place where you fall off the tree
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Building a BST

15
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Building a BST

15

18
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Building a BST

15

186
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Building a BST

15

18

17

6
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Building a BST

15

18

17 20

6

 



39

Building a BST

15

18

17 20

6

3
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Building a BST

15

18

17 20

6

3 7

2 4 13
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Because of ordering rules for 
a BST, it’s easy to print the 
items in alphabetical order

⬜ Recursively print 
left subtree

⬜ Print the node

⬜ Recursively print 
right subtree

Sorting



42

Because of ordering rules for 
a BST, it’s easy to print the 
items in alphabetical order

⬜ Recursively print 
left subtree

⬜ Print the node

⬜ Recursively print 
right subtree

/** Print BST t in alpha order */
private static void print(TreeNode<T> t) {
   if (t== null) return;
   print(t.left);
   System.out.print(t.value);
   print(t.right);
}

Sorting



Searching in a Binary Tree
43

9

8 3 5 7

2

0
Analog of linear search in lists: given tree and an 
object, find out if object is stored in tree

Easy to write recursively, harder to write 
iteratively



Searching in a Binary Tree
44

/** Return true iff x is the datum in a node of tree  t*/
public static boolean treeSearch(T x, TreeNode<T> t) {
   if (t == null) return false;
   if (x.equals(t.value)) return true;
   if (x < t.value) return treeSearch(x,t.left)
   else return treeSearch(x, t.right);
}

9

8 3 5 7

2

0
Analog of linear search in lists: given tree and an 
object, find out if object is stored in tree

Easy to write recursively, harder to write 
iteratively



Binary Search Tree (BST)
45

2

0 3 7 9

5

8

boolean searchBST(n, v):

  if n==null, return false

  if n.v == v, return true

  if v < n.v

    return searchBST(n.left, v)

  else

    return searchBST(n.right, v)

boolean searchBT(n, v):

  if n==null, return false

  if n.v == v, return true

  return searchBST(n.left, v)

      || searchBST(n.right, v)

Compare binary tree to binary search tree:

2 recursive calls 1 recursive call



Binary Search Tree (BST)
46

◻ What is the complexity of search in a binary search tree?



Binary Search Tree (BST)
47

◻ What is the complexity of search in a binary search tree?

◻ Unlike binary tree, structure allows you to explore a single branch in the tree

◻ Becomes O(depth)



Binary Search Tree (BST)
48

◻ What is the complexity of a binary search tree?

◻ Unlike binary tree, structure allows you to explore a single branch in the tree

◻ Becomes O(depth)

Binary Tree

BST

Data Structure add(val x) lookup(int i)
Array

Linked List
  

  

search(val x)

 
 

   
   



Other operations

◻ Binary Search Trees aren’t just useful for search operations

◻ They support efficient implements of 

⬜ Finding the minimum/maximum of a collection of elements

⬜ Given an element, finding its predecessor/successor

49



Finding the Minimum

◻ Recall that elements that are smaller than the root node are to the left side 
of the tree.

◻  Where do you think the smallest element of the binary tree is going to be?
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Finding the Minimum

◻ Recall that elements that are smaller than the root node are to the left side 
of the tree.

◻  Where do you think the smallest element of the binary tree is going to be?

◻ It will be the left-most element of the tree

51
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Finding the Maximum

◻ Recall that elements that are larger than the root node are to the left side of 
the tree.

◻  Where do you think the largest element of the binary tree is going to be?
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Finding the Maximum

◻ Recall that elements that are larger than the root node are to the left side of 
the tree.

◻  Where do you think the largest element of the binary tree is going to be?

◻ It will be the right-most element of the tree
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Finding the Successor

◻ Where is the successor of an 
element going to be in a BST?

⬜ Successor = successor of x 
is the node with the 
smallest key greater than x.

◻ Successor of 15 is:

⬜ 17

◻ Successor of 13 :

⬜ 15

54
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Finding the Successor

◻ To find the successor of x:

⬜ Two cases:

■ x has a right subtree: the 
minimum of the right 
subtree is x’s successor

■ x has no right subtree: 
successor is the lowest 
ancestor of x whose left 
child is also an ancestor 
of x.
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Finding the Successor

◻ To find the successor of x:

⬜ Two cases:

■ 15 has a right subtree 
and 17 is the minimum of 
that subtree

■ 13 has no right subtree, 
and the first element 
whose left child (6) is an 
ancestor of 13, is 15. 
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Finding the Predecessor

◻ Where is the predecessor of 
an element going to be in a 
BST?

⬜ Predecessor = predecessor 
of x is the node with the 
greatest key smaller than x.

◻ Predecessor of 15 is:

⬜ 13

◻ Predecessor of 7 :

⬜ 6
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Finding the Predecessor

◻ To find the predecessor of x:

⬜ Two cases:

■ x has a left subtree:the 
maximum of the left 
subtree is x’s 
predecessor

■ x has no right subtree: 
predecessor is the 
lowest ancestor of x 
whose rightchild is also 
an ancestor of x.
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Finding the Predecessor

◻ To find the predecessor of x:

⬜ Two cases:

■ 15 has a left subtree and 
13 is the maximum of 
that subtree

■ 7 has no left subtree, 
and the first element 
whose right child is an 
ancestor of 7, is 6. 
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Deleting

◻ To delete a node in  a BST, 
distinguish between three cases:

⬜ Case 1: The node has no 
children

⬜ Case 2: The node has one child

⬜ Case 3: The node has two 
children

60
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Deleting

◻ To delete a node in  a BST, 
distinguish between three cases:

⬜ Case 1: The node has no 
children

Consider deleting node 18
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Deleting

◻ To delete a node in  a BST, 
distinguish between three cases:

⬜ Case 1: The node has no 
children

Consider deleting node 18

Simply remove 18 from the tree, 
setting the right (or left) pointer of 
its parent to null
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Deleting

◻ To delete a node in  a BST, 
distinguish between three cases:

⬜ Case 2: The node has one child

Consider deleting node 16
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Deleting

◻ To delete a node in  a BST, 
distinguish between three cases:

⬜ Case 2: The node has one child

Remove node from tree and set 
the right (/left) pointer of its parent 
to the child subtree of the node 
being deleted
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Deleting

◻ To delete a node in  a BST, 
distinguish between three cases:

⬜ Case 2: The node has one child

Remove node from tree and set 
the right (/left) pointer of its parent 
to the child subtree of the node 
being deleted
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Deleting

◻ To delete a node in  a BST, 
distinguish between three cases:

⬜ Case 3: The node has two 
children

More complicated. Proceed in 
several steps.
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Deleting

◻ To delete a node in  a BST, 
distinguish between three cases:

⬜ Case 3: The node has two 
children

Step 1: find the successor of 10 in 
the tree.
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Deleting

◻ To delete a node in  a BST, 
distinguish between three cases:

⬜ Case 3: The node has two 
children

Step 1: find the successor of 10 in 
the tree. Smallest value that’s 
greater than 10.
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Deleting

◻ To delete a node in  a BST, 
distinguish between three cases:

⬜ Case 3: The node has two 
children

Step 1: find the successor of 10 in 
the tree. Smallest value that’s 
greater than 10.

Step 2: replace the value to be 
deleted by its successor
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Deleting

◻ To delete a node in  a BST, 
distinguish between three cases:

⬜ Case 3: The node has two 
children

Step 1: find the successor of 10 in 
the tree. Smallest value that’s 
greater than 10.

Step 2: replace the value to be 
deleted by its successor

70

12

9 20

19

15

17

21

22

12

13

14



Deleting

◻ To delete a node in  a BST, 
distinguish between three cases:

⬜ Case 3: The node has two 
children

Step 1: find the successor of 10 in 
the tree. Smallest value that’s 
greater than 10.

Step 2: replace the value to be 
deleted by its successor

Step 3: delete the successor by 
applying Case 2
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Deleting

◻ To delete a node in  a BST, 
distinguish between three cases:

⬜ Case 3: The node has two 
children

Step 1: find the successor of 10 in 
the tree. Smallest value that’s 
greater than 10.

Step 2: replace the value to be 
deleted by its successor

Step 3: delete the successor by 
applying Case 2
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Are we done?
73

◻ We wanted an efficient way to do search.

◻ We know that Binary Search Tree Search has complexity O(height).

 

◻ Is that good enough?



Inserting in Sorted Order
74

2



Inserting in Sorted Order
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Inserting in Sorted Order
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Inserting in Sorted Order
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Inserting in Sorted Order
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Inserting in Sorted Order
79
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Insertion Order Matters
◻ A balanced binary tree is one where the two subtrees of any node are 

about the same size.

◻ Searching a binary search tree takes O(depth) time, where h is the height of 
the tree.

◻ But if you insert data in sorted order, the tree becomes imbalanced, so 
searching is O(n) again

◻ So we haven’t found a way to improve our worst-case complexity!

◻ Need a way to ensure tree remains balanced

80



Balancing a BST

◻ Balancing a BST is necessary to achieve good performance.

◻ To balance a tree, we will either:

⬜ Left-rotate a tree

⬜ Right-rotate a tree

◻ Left-rotation 

⬜ Shortens right-subtree by 1, lengthens left subtree by 1

◻ Right rotation does the opposite

81



Left Rotation

◻ Left-rotation rotates the right 
subtree of a BST to the left.

82
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Y Z



Left Rotation

◻ Left-rotation rotates the right 
subtree of a BST to the left.

Place the root of the right subtree as 
the new root of the tree.
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Left Rotation

◻ Left-rotation rotates the right 
subtree of a BST to the left.

Place the root of the right subtree as 
the new root of the tree.
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Left Rotation

◻ Left-rotation rotates the right 
subtree of a BST to the left.

Place the root of the right subtree as 
the new root of the tree.

Move the left subtree of the new root as 
the right subtree of the old root.

To help you understand why that 
works, remember the ordering 
relationships on subtrees!

85

A

X

B

Y Z



Left Rotation
86

1

2

3

4

6

7



Left Rotation
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Right Rotation

◻ Right-rotation rotates the left 
subtree of a BST to the right.

88

B

A Z

X Y



Right Rotation

◻ Right-rotation rotates the left 
subtree of a BST to the right.

Inverse of left: make left subtree the 
root, placing B as the right subtree 
of A, and placing the right subtree of 
A as the new left subtree of B

89
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Right Rotation

◻ Right-rotation rotates the left 
subtree of a BST to the right.

Inverse of left: make left subtree the 
root, placing B as the right subtree 
of A, and placing the right subtree of 
A as the new left subtree of B

90
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Next Class
91

A BST works great as long as it’s balanced.

There are kinds of trees that can 
automatically keep themselves balanced as 
you insert things!

We’ll be looking at Red-Black trees, which is 
the datastructure that TreeSet in Java uses.
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Balanced Search Trees
92

◻ Goal is to ensure that the height of the tree is always O(log n)
⬜ This enables search/insert/delete/min/max/pred/succ to also be 

O(log n)

◻ Note: O(log n) is the best you can do for binary trees
⬜  all operations must at least go down one full branch
⬜ you need at least O(log n) levels to store n elements



Red-Black Trees
◻ Self-balancing BST

◻ Each node has one extra bit of information "colour"

◻ Constraints on how nodes can be coloured enforces approximate balance
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Why red-black?

◻ Different explanations:

⬜ Option 1: they only had red and black pens at the time

⬜ Option 2: red was the nicest colour that the Xerox Parc printer could 
print
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Red-Black Trees
1) A red-black tree is a binary search tree.

2) Every node is either red or black.

3) The root is black.

4) If a node is red, then its (non-null) children are black.

5) For each node, every path to a descendant null node contains the same 
number of black nodes.
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RB Tree Quiz
◻ Which of the following are red-black trees?
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RB Tree Quiz
◻ Which of the following are red-black trees?
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Warning
◻ You will sometimes see this invariant:

⬜ All leaves (nil) of a Red-Black tree are black

◻ And see red-black trees drawn like this:
⬜ With NIL leaves
⬜ It makes implementing the functionality easier

◻ For simplicity, we don’t represent them in this class
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Is this magic?
◻ Red-Black tree invariants can appear quite random
⬜ But they are key to guaranteeing that the tree is “mostly” balanced

◻ Intuitively:
⬜ Property 5: (each branch contains the same number of black nodes) 

ensures that the tree is perfectly balanced if it does not contain red 
nodes

⬜ Property 4  ensures that there can never be two consecutive red nodes 
in a branch. This guarantees that, for a tree with k black nodes, there 
can be at most k red nodes. So adding the red nodes only increases the 
height by a factor of two.

◻ A subtree can therefore have, at most, a height twice greater than the other 
subtrees.
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Proving that height is O(log n)
◻ Let BH(x) be the number of black nodes on every x-to-leaf path.

◻ Lemma 1: A subtree rooted at x has at least 2^BH(x) - 1 nodes

100

BH(x) = 2



Proving that height is O(log n)
◻ Let BH(x) be the number of black nodes on every x-to-leaf path.

◻ Lemma 1: A subtree rooted at x has at least 2^BH(x) - 1 nodes
⬜ Suppose that x’s subtree has only black nodes. By Property 5, the tree is 

complete

101

BH(x) = 2



Proving that height is O(log n)
◻ Let BH(x) be the number of black nodes on every x-to-leaf path.

◻ Lemma 1: A subtree rooted at x has at least 2^BH(x) - 1 nodes
⬜ Suppose that x’s subtree has only black nodes. By Property 5, the tree is 

complete
⬜ A complete tree has 2^(height + 1) - 1 nodes

(recall the formula). So 2^BH(x) -1 nodes
If red nodes are included, BH(x) doesn’t change
So the number of nodes is still at least 2^BH(x) -1

102
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Proving that height is O(log n)

1) If a node is red, then its (non-null) children are black.

2) For each node, every path to a descendant null node contains the same 
number of black nodes.

◻ Lemma 2: Let h  be the height of the tree. Then BH(root) >= h/2
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Proving that height is O(log n)

1) If a node is red, then its (non-null) children are black.

2) For each node, every path to a descendant null node contains the same 
number of black nodes.

◻ Lemma 2: Let h  be the height of the tree. Then BH(root) >= h/2
⬜ By property 4, a red node cannot be the parent of another red node. 

So red and black nodes must be interleaved. Because red nodes can’t 
be consecutive, each root-to-leaf path can never have more than h/2 
red nodes. So BH(root) >= h/2
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Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜
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Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
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Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜      n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)
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Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜      n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)
⬜      n + 1 >= 2^(h/2)
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Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜      n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)
⬜      n + 1 >= 2^(h/2)
⬜      log(n+1) >= log(2^(h/2))
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Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜      n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)
⬜      n + 1 >= 2^(h/2)
⬜      log(n+1) >= log(2^(h/2))
⬜      log(n+1) >= h/2
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Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜      n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)
⬜      n + 1 >= 2^(h/2)
⬜      log(n+1) >= log(2^(h/2))
⬜      log(n+1) >= h/2
⬜     2log(n+1) >= h
⬜
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Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜      n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)
⬜      n + 1 >= 2^(h/2)
⬜      log(n+1) >= log(2^(h/2))
⬜      log(n+1) >= h/2
⬜     2log(n+1) >= h
⬜     2log(2n) > 2log(n+1) >= h
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Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜      n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)
⬜      n + 1 >= 2^(h/2)
⬜      log(n+1) >= log(2^(h/2))
⬜      log(n+1) >= h/2
⬜     2log(n+1) >= h
⬜     2log(2n) > 2log(n+1) >= h
⬜     2log(2) + 2log(n) > 2log(n+1) >= h
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Proving that height is O(log n)

◻ Theorem: The height h of a Red-Black tree is O(log n)

⬜ n >= 2^BH(root) -1 (Lemma 1)
⬜      n >= 2^(h/2) -1 >= 2^BH(root) -1 (by Lemma 2: BH(root) > h/2)
⬜      n + 1 >= 2^(h/2)
⬜      log(n+1) >= log(2^(h/2))
⬜      log(n+1) >= h/2
⬜     2log(n+1) >= h
⬜     2log(2n) > 2log(n+1) >= h
⬜     2log(2) + 2log(n) > 2log(n+1) >= h
⬜     O(1) + c*log(n) > h

h is log(n)
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Red-Black Trees are popular

◻ They underpin the datastructure in Java Treeset

◻ The C++ STL library uses them internally to implement Set and Map

◻ They are used to schedule processes in the Linux Kernel
⬜ Specifically in the Completely Fair Scheduler (CFS)

◻ They are used to manage memory allocated to processes in the Linux 
Kernel
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Class for a RBNode
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class RBNode<T> {
   private T value;
   private Colour colour;
   private RBNode<T> parent;
   private RBNode<T> left, right;

   /** Constructor: one-node tree with value x */
   public RBNode (T v, Colour c) { value= d; colour= c; }

   ...
}

Class for a RBNode



118

Insertion

◻ High-level idea

⬜ Insert a node in the tree as you would in a BST and mark it as red

⬜ This may violate the RB-tree invariants
■ There may be two consecutive red nodes, causing the tree to be 

unbalanced.

⬜ Must “fix” the tree by rotating the subtrees appropriately

⬜ Rotating the subtrees may create new violations. Continue recursively 
until invariant has been restored.
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Insertion

◻ Let’s define the notion of an uncle node:
⬜ An uncle node for x is  the sibling of the 

parent of x 

 
◻ Let’s write a subtree consisting of black root as

◻ Insertion can only violate Property 4. Once node 
has been inserted into appropriate position, 
must fix the tree
 

R

P

x

U
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Case 1

◻ Parent of x is red, uncle is red
 

C

A D

B
x
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Case 1

◻ Parent of x is red, uncle is red
 

C

A D

B
x

C

A D

B

Push C’s black onto A/D 
and recurse, since C’s 
parent may be red

Recolour
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Case 1

C

A D

B
x

C

A D

B

Recolour

Intuitively: A and D are both new inserted nodes inserted on both sides of the 
subtrees, so it’s “safe” to mark them black without rotating. However, the 
subtree rooted at the parent of C, may still be unbalanced by the insertion of 
B, hence why we mark C red.
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Case 2

◻ Parent of x is red, uncle is black
 

C

A

B
x
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Case 2

◻ Parent of x is red, uncle is black
 

C

A

B
x

C

B

A

Transform to Case 3

Left-rotate(A)



Case 3

C

B

A

Right-rotate(C) 
and recolour

B

A C

Done! No more violations 
are possible

◻ Parent of x is red, uncle is black
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An example
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z

y

Parent of z is red, and 
uncle y is red.
Case 1
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An example

11

14

15

2

1 7

5

4

8

z

y

The parent of z is red, and 
the uncle y is black. x is 
the right child of its parent 
so we left rotate the 
subtree at root 2.
Case 2
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An example
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1
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5

4

8

z

y

The parent of z is red, and 
the uncle y is black. x is 
the right child of its parent 
so we right rotate the 
subtree at root 7 and 
Case 3



An example

11
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2

1

7

5

4

8

z
y

The parent of z is red, and 
the uncle y is black. x is 
the right child of its parent 
so we right rotate the 
subtree at root 7



Pseudocode
Fix-Tree(T, z)
While z.p.colour == Red
    If z.p == z.p.p.left

y = z.p.p.right
If y.colour == red

z.p.colour = black // Case 1 
y.colour = black; // Case 1
z.p.p.colour = red // Case 1
z = z.p.p // Case 1

Else  if z == z.p.right // Case 2
z = z.p // Case 2
LEFT-ROTATE(T,z)  // Case 2

          Z.p.colour = black // Case 3
          Z.p.p.colour = red // Case 3
          RIGHT-ROTATE(T,z, p.p) // Case 3

     else (same as then clause but with “right and
 “Left” exchanged)
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Plenty of other trees in the forest

◻ Balanced Trees are a huge part of computer science
⬜ 2-3 Trees, AVL Trees, AA Trees
⬜ Tango Trees, Scapegoat Trees, Weight-Balanced Trees
⬜ B-Trees, B+Trees, Splay Trees

◻ Have slightly different properties but follow the core logic of RB trees
⬜ Splay Trees allow “recently” accessed items to be retrieved more 

efficiently at the cost of doing rotations on search/succ/pred
⬜ B-Trees are very shallow but wide, and can store multiple values per 

node
■ This is node to better align with the memory hierarchy in databases

⬜ AVL trees have slightly cheaper search but more expensive inserts
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Next Class

◻ We’ll move on to another useful abstraction:
⬜ Priority Queues
⬜ Heaps

◻ These datastructures can also be implemented with trees :-)


