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Object-oriented programming 
and data-structures
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◻ Introduced a formal notation for analysing the runtime/space complexity 
of algorithms

◻ Went through examples of Big-O formulas/proofs

◻ Analysed complexity of ArrayList/LinkedList

Lecture 7 Recap 
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◻ There will not be a prelim next week. Instead, future homeworks will 
include exam-style questions on the whole course to help you master the 
revision

◻ A3 will be released tomorrow evening and due next Tuesday

◻ HW5 has been released. It covers a lot of material and will get challenging 
at times. Start early!

◻ Please fill out the poll on Piazza. Thanks to those who already have.

Admin
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◻ Introduce Sorting Algorithms

◻ Derive and implement
⬜ Insertion sort
⬜ Selection sort
⬜ Merge sort
⬜ Quick sort

◻ Analyse their complexity

This lecture
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Why Sorting?
◻ Sorting is useful

⬜ Database indexing

⬜ Compressing data

⬜ Sorting TV channels, Netflix shows, Amazon products, etc.

◻ There are lots of ways to sort

⬜ There isn't one right answer

⬜ You need to be able to figure out the options and decide which one is 
right for your application.

⬜ Today, we'll learn about several different algorithms (and how to derive 
them)
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Some Sorting Algorithms
◻ Insertion sort

◻ Selection sort

◻ Binary Sort

◻ Bubble Sort

◻ Merge sort

◻ Quick sort

6



◻ Worst-case
⬜ Complexity in worst possible scenario. Gives an upper bound on 

performance, but may only arise rarely
◻ Average-case

⬜ Analyse for an 'average' input. Problem here is that need to somehow 
know what “average” means”

◻ Best-case
⬜ What is the minimum number of operations that must be done in the 

best case scenario
◻ Amortized analysis

⬜ If expensive operation happens rarely, and lots of cheap operations 
happen frequently, may want to amortise total cost over all the 
operations to get average cost per operation.
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Refining our analysis



Insertion Sort

◻ Let’s begin by looking through an example

 

◻ Consider the following array

Let’s sort it!
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3 6 4 5 1 2



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 6 4 5 1 2



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 6 4 5 1 2

Round 0: Position 0 of the array is already sorted. 

Sorted Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 6 4 5 1 2

Round 0: Select element at position 1 array[i+1] and place to correct 
position in sorted array

Sorted Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 6 4 5 1 2

Round 0: Element does not move as it is greater than sorted array (6>3)

Sorted Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted

13

3 6 4 5 1 2

Round 1: select item at index 2, and swap it to the correct place.

Sorted              Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted

14

3 6 4 5 1 2

Round 1: 6>4, so swap 6 and 4

Sorted              Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted

15

3 4 6 5 1 2

Round 1: 6>4, so swap 6 and 4

Sorted              Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 4 6 5 1 2

Round 1: 3<4, and all the elements that precede 3 are sorted, so 4 is in 
the correct position

Sorted              Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 4 6 5 1 2

Round 1: 3<4, and all the elements that precede 3 are sorted, so 4 is in 
the correct position

Sorted                           Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 4 6 5 1 2

Round 2: Select element at position 3 in the array

Sorted                            Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted

19

3 4 6 5 1 2

Round 2: Try to place it in the right position

Sorted                            Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 4 6 5 1 2

Round 2: 6>5, so swap the two elements

Sorted                            Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 4 5 6 1 2

Round 2: 6>5, so swap the two elements

Sorted                            Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 4 5 6 1 2

Round 2: 4<5, and the array array[0..1] is sorted, so 5 is in the correct 
position

Sorted                            Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 4 5 6 1 2

Round 2: 4<5, and the array array[0..1] is sorted, so 5 is in the correct 
position

Sorted                                          Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 4 5 6 1 2

Round 3: Select element at position 4 (i+1) in the array. The first

Sorted                                          Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 4 5 6 1 2

Round 3: Place it at the appropriate position in the sorted array

Sorted                                          Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 4 5 6 1 2

Round 3: 6>1, so swap

Sorted                                          Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 4 5 1 6 2

Round 3: 6>1, so swap

Sorted                                          Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 4 5 1 6 2

Round 3: 5>1, so swap

Sorted                                          Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 4 1 5 6 2

Round 3: 5>1, so swap

Sorted                                          Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 4 1 5 6 2

Round 3: 4>1, so swap

Sorted                                          Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted

31

3 1 4 5 6 2

Round 3: 4>1, so swap

Sorted                                          Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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3 1 4 5 6 2

Round 3: 3>1, so swap

Sorted                                          Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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1 3 4 5 6 2

Round 3: 3>1, so swap

Sorted                                          Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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1 3 4 5 6 2

Round 3: Reached end of the array, so stop

Sorted                                          Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted

35

1 3 4 5 6 2

Round 3: Reached end of the array, so stop

Sorted                                          Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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1 3 4 5 6 2

Round 4: Repeat process for 2

Sorted                                                       Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted

37

1 2 3 4 5 6

Round 4: Repeat process for 2

Sorted                                                       Unsorted



Insertion Sort

◻ Insertion sort iterates over the array, swapping pairs of integers until they 
are in the correct position

◻ Maintains the following invariant: at round i, array[0,i] is sorted
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1 2 3 4 5 6

Round 4: Array is fully sorted.

Sorted                                                       Unsorted



How to implement Insertion Sort?
39

// sort b[], an array of int
// inv: b[0..i] is sorted
for (int i= 0; i < b.length - 1; i= i+1) {
     // Push b[i+1] down to its sorted
     // position in b[0..i]   
 

 
 }   

while (k > 0  &&  b[k-1] > b[k]) {
swap(b,k-1,k);
k--;

}

int k= i+1;



Insertion Sort - Analysis
40

◻ How many comparisons does each round of the algorithm do?



Insertion Sort - Analysis
41

◻ How many comparisons does each round of the algorithm do?

⬜ Round 0, does at most 1

⬜ Round 1, at most 2. Round 2 at most 2, …

⬜ Round i does i+1 comparisons max

◻ How many rounds are there?



Insertion Sort - Analysis
42

◻ How many comparisons does each round of the algorithm do?

⬜ Round 0, does at most 1

⬜ Round 1, at most 2. Round 2 at most 2, …

⬜ Round i does i+1 comparisons max

◻ How many rounds are there?

⬜ N-1 rounds



Insertion Sort - Analysis
43

◻ How many comparisons does each round of the algorithm do?

⬜ Round 0, does at most 1

⬜ Round 1, at most 2. Round 2 at most 2, …

⬜ Round i does i+1 comparisons max

◻ How many rounds are there?

⬜ N-1 rounds

◻ How many comparisons in total?

⬜ n(n-1)/2



Insertion Sort - Analysis
44

◻ Insertion sort is therefore O(n^2)

◻ In practice however, is it going to be expensive?

⬜ Can you think of scenarios where insertion sort is likely to perform well?



Selection Sort
45

◻ Selection sort has a similar invariant as insertion sort:

⬜ At round i, the positions before a[i] are already sorted

◻ Instead of swapping values, iterate over the unsorted array a[i..n-1] to find 
the minimum value, and place it in a[i]. 

sorted, smaller values                   larger valuesb
0                                                     i                                               length

Each iteration, swap min value of this section into b[i]



Selection Sort

◻ Let’s begin by looking through an example

 

◻ Consider the following array

Let’s sort it!

46

3 6 4 5 1 2



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

47

3 6 4 5 1 2



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

48

3 6 4 5 1 2

Round 0: Find the minimum element in a[i,n-1]



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

49

3 6 4 5 1 2

Round 0: Find the minimum element in a[i,n-1]



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

50

3 6 4 5 1 2

Round 0: Now swap with a[0] (a[i])



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

51

1 6 4 5 3 2

Round 0: Now swap with a[0] (a[i])



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

52

1 6 4 5 3 2

Round 1: Consider a[1] ( = 6). Find the minimum in a[1,n-1] 



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

53

1 6 4 5 3 2

Round 1: Consider a[1] ( = 6). Find the minimum in a[1,n-1] 



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

54

1 6 4 5 3 2

Round 1: Now swap with a[1]



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

55

1 2 4 5 3 6

Round 1: Now swap with a[1]



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

56

1 2 4 5 3 6

Round 2: Look at a[2]. Find minimum



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

57

1 2 4 5 3 6

Round 3: Look at a[2]. Find minimum



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

58

1 2 3 5 4 6

Round 2: Swap with a[2]



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

59

1 2 3 5 4 6

Round 3: Look at a[3]



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

60

1 2 3 5 4 6

Round 3: Look at a[3]. Find minimum



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

61

1 2 3 4 5 6

Round 3: Swap with a[3]



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted
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1 2 3 4 5 6

Round 4: Look at a[4]. Find minimum



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted

63

1 2 3 4 5 6

Round 4: Swap with itself



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted
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1 2 3 4 5 6

Round 5: Look at a[5]. 



Selection Sort

◻ Selection sort over the array, placing the minimum element of the unsorted 
array in a[i]

◻ Maintains the following invariant: at round i, the positions before array[i] are 
sorted
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1 2 3 4 5 6

Array is sorted!



How to implement Selection Sort?
66

// sort b[], an array of int
// inv: positions before b[i] are sorted
for (int i= 0; i < b.length - 1; i= i+1) {
     //  Find the smallest element in
     //a [i..end] and swap it into a[i] 
 

 
 }   

while (k > 0  &&  b[k-1] > b[k]) {
swap(b,k-1,k);
k--;

}

int k= i+1;



Selection Sort  - Analysis
67

◻ How many operations does each round of the algorithm do?



Selection Sort - Analysis
68

◻ How many comparisons does each round of the algorithm do?

⬜ Round 0,  n ( +1 swap)

⬜ Round 1, n-1 (+ 1 swap)

⬜ Round i does n - i comparisons ( + 1 swap)

◻ How many rounds are there?



Selection Sort - Analysis
69

◻ How many comparisons does each round of the algorithm do?

⬜ Round 0,  n ( +1 swap)

⬜ Round 1, n-1 (+ 1 swap)

⬜ Round i does n - i comparisons ( + 1 swap)

◻ How many rounds are there?

⬜ n



Selection Sort - Analysis
70

◻ How many comparisons does each round of the algorithm do?

⬜ Round 0,  n ( +1 swap)

⬜ Round 1, n-1 (+ 1 swap)

⬜ Round i does n - i comparisons ( + 1 swap)

◻ How many rounds are there?

⬜ N

◻ How many comparisons in total?



Selection Sort - Analysis
71

◻ How many comparisons does each round of the algorithm do?

⬜ Round 0,  n ( +1 swap)

⬜ Round 1, n-1 (+ 1 swap)

⬜ Round i does n - i comparisons ( + 1 swap)

◻ How many rounds are there?

⬜ N

◻ How many comparisons in total?

⬜ n(n+1)/2



Selection Sort - Analysis
72

◻ Selection sort is therefore O(n^2)

◻ In practice however, is it going to be expensive?

◻ What is likely to be faster ?

⬜ Insertion sort?

⬜ Selection sort?



Merge Sort
73

◻ Could recursion save the day?

◻ Instead of  processing one large big array, what if we recursively subdivided 
each array into smaller arrays, sorted those subarrays, and then merged 
the sorted arrays together at the end?

◻ What would be the base case of merge sort?



Merge Sort
74

◻ Could recursion save the day?

◻ Instead of  processing one large big array, what if we recursively subdivided 
each array into smaller arrays, sorted those subarrays, and then merged 
the sorted arrays together at the end?

◻ What would be the base case of merge sort?



Merge Sort
75

◻ Let’s begin by looking through an example

 

◻ Consider the following array

Let’s sort it!

3 6 4 5 1 2



Merge Sort
76

3 6 4 5 1 2

Let’s first partition the array into two smaller arrays



Merge Sort
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3 6 4 5 1 2

Let’s first partition the array into two smaller arrays

3 6 4 5 1 2



Merge Sort
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3 6 4 5 1 2

Let’s first partition the array into two smaller arrays

3 6 4 5 1 2

And again



Merge Sort
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3 6 4 5 1 2

Let’s first partition the array into two smaller arrays

3 6 4 5 1 2

And again

3 6 4 5 1 2



Merge Sort
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3 6 4 5 1 2

Let’s first partition the array into two smaller arrays

3 6 4 5 1 2

And again

3 6 4 5 1 2

And again

3 6 4 5 1 2



Merge Sort
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3 6 4 5 1 2

Let’s first partition the array into two smaller arrays

3 6 4 5 1 2

And again

3 6 4 5 1 2

And again

3 6 4 5 1 2

Arrays of size 1 are sorted. Base case!



Merge Sort

3 6 4 5 1 2

Now merge sorted arrays back together

3 6

3 64

51

51 2

3 64 51 2



How to merge two sorted arrays?
83

3

6

4

5

1

2



How to merge two sorted arrays?
84

3

6

4

5

1

2

Step 1: Create an array of size a.length + b.length



How to merge two sorted arrays?
85

3

6

4

5

1

2

Step 1: Create an array of size a.length + b.length

Step 2: Where can we find the smallest element of the 
new array?



How to merge two sorted arrays?
86

3

6

4

5

1

2

Step 1: Create an array of size a.length + b.length

Step 2: Where can we find the smallest element of the 
new array?

It is either the smallest element of a or the 
smallest element of b

Step 3: Where can we find the second smallest 
element of the new array?

Depending on what we chose last, it is either the 
first element of a/b or the second element of a/b



How to merge two sorted arrays?
87

3

6

4

5

1

2

Step 1: Create an array of size a.length + b.length

Step 2: Where can we find the smallest element of the new 
array?

It is either the smallest element of a or the smallest 
element of b

Step 3: Where can we find the second smallest element of the 
new array?

Depending on what we chose last, it is either the first 
element of a/b or the second element of a/b

Keep two indices headA and headB. When select an element of 
a, incremeant headA. When select an element of b, increment 
headB. Then test for a[headA]<=b[headB] at every iteration



How to merge two sorted arrays?
88

3

6

4

5

1

2

headA = 0;
headB = 0;



How to merge two sorted arrays?
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3

6

4

5

1

2

headA = 0;
headB = 0;



How to merge two sorted arrays?
90

3

6

4

5

1

2

headA = 0;
headB = 0;

a[headA] <= b[headB]?
No -> result[0] = b[headB]; headB++



How to merge two sorted arrays?
91

3

6

4

5

2

headA = 0;
headB = 1;

a[headA] <= b[headB]?
No -> result[1] = b[headB]; headB++

1



How to merge two sorted arrays?
92

3

6

4

5

headA = 0;
headB = 2;

a[headA] <= b[headB]?
Yes -> result[2] = a[headA]; headA++

1

2



How to merge two sorted arrays?
93

6

4

5

headA = 1;
headB = 2;

a[headA] <= b[headB]?
Yes -> result[3] = a[headA]; headA++3

1

2



How to merge two sorted arrays?
94

6 5

headA = 2;
headB = 2;

a[headA] <= b[headB]?
Yes -> result[3] = a[headA]; headA++3

1

2

4



How to merge two sorted arrays?
95

6

headA = 1;
headB = 2;

a[headA] <= b[headB]?
No -> result[3] = b[headB]; headB++3

1

2

4

5



How to merge two sorted arrays?
96

headA = 2;
headB = 2;

headB >= b.length.
result[3] = a[headA]; headA++3

1

2

6

4

5



Merge sort complexity analysis
97

◻ And more generally: how do we analyse the complexity of a recursive 
algorithm.



Merge sort complexity analysis
98

◻ And more generally: how do we analyse the complexity of a recursive 
algorithm.

◻ First: what is the complexity of the function that merges two sorted arrays?



Merge sort complexity analysis
99

◻ And more generally: how do we analyse the complexity of a recursive 
algorithm.

◻ First: what is the complexity of the function that merges two sorted arrays?

⬜ One pass over the arrays, so O(n)



Merge sort complexity analysis
100

◻ And more generally: how do we analyse the complexity of a recursive 
algorithm.

◻ First: what is the complexity of the function that merges two sorted arrays?

⬜ One pass over the arrays, so O(n)

◻ When algorithm contains recursive call, can describe its running time by a 
recurrence equation that describes running time of a problem of size n in 
terms of running time on smaller inputs.



Recurrence Relations
101

◻ Let T(n) be the running time on a problem of size n.

◻ If the problem is small enough (ex: base case), say n<= c for some constant 
c, solving the base case takes constant time O(1)

◻ Assume that the recursive call yields a subproblems, each of which is 1/b of 
the size of the original. It takes time T(n/b) to solve one subproblem of size 
n/b and so it takes aT(n/b) to solve a of them. If it takes D(n) to subdivide the 
arrays, and C(n) to combine them, then we have the following recurrence rel

T(n) = O(1) if n<= c
T(n) = aT(n/b) + D(n) + C(n) otherwise 

n/b n/b n/b n/ba=4



Recurrence Relation for Merge Sort
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◻ In the general case:
⬜ T(n) = O(1) if n<= c

    T(n) = aT(n/b) + D(n) + C(n) otherwise 

◻ For merge sort:
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◻ In the general case:
⬜ T(n) = O(1) if n<= c

    T(n) = aT(n/b) + D(n) + C(n) otherwise 

◻ For merge sort:

⬜ a = 2, b = 2
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◻ In the general case:
⬜ T(n) = O(1) if n<= c

    T(n) = aT(n/b) + D(n) + C(n) otherwise 

◻ For merge sort:

⬜ a = 2, b = 2

⬜ D(n) is O(1) (computes middle of the subarray)



Recurrence Relation for Merge Sort
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◻ In the general case:
⬜ T(n) = O(1) if n<= c

    T(n) = aT(n/b) + D(n) + C(n) otherwise 

◻ For merge sort:

⬜ a = 2, b = 2

⬜ D(n) is O(1) (computes middle of the subarray)

⬜ C(n) is O(n) (merge procedure of sorted arrays)



Recurrence Relation for Merge Sort
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◻ In the general case:
⬜ T(n) = O(1) if n<= c

    T(n) = aT(n/b) + D(n) + C(n) otherwise 

◻ For merge sort:

⬜ a = 2, b = 2

⬜ D(n) is O(1) (computes middle of the subarray)

⬜ C(n) is O(n) (merge procedure of sorted arrays)

◻ T(n) = c if n = 1
       T(n) = 2T(n/2) + cn if n > 1 
(For simplicitly lets assume that n is a power of 2)



How do we solve the recurrence?
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◻ Use a recurrence tree
⬜ Graphically lay out the cost of each level of the recursion in a 

tree-structure.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/n cn/n cn/n cn/n

...
cn/n cn/n...



How do we solve the recurrence?
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◻ Use a recurrence tree
⬜ Graphically lay out the cost of each level of the recursion in a 

tree-structure.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/n cn/n cn/n cn/n

...
cn/n cn/n...

Each level in the tree has exactly cn cost:
Level 0 has cn
Level 1 has cn/2 + cn/2 = cn
Level 2 has cn/4 + cn/4 + cn/4 + cn/4 = cn
Level i has (i+1) * cn/2^i = cn
Level d (where n = 2^d) has n * cn/2^d = n * c = cn



How do we solve the recurrence?
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◻ Use a recurrence tree
⬜ Graphically lay out the cost of each level of the recursion in a 

tree-structure.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/n cn/n cn/n cn/n

...
cn/n cn/n...

How many levels are there?



How do we solve the recurrence?
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◻ Use a recurrence tree
⬜ Graphically lay out the cost of each level of the recursion in a 

tree-structure.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/n cn/n cn/n cn/n

...
cn/n cn/n...

How many levels are there?

Remember that the recursion stops 
when the input size is 1
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◻ Use a recurrence tree
⬜ Graphically lay out the cost of each level of the recursion in a 

tree-structure.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/n cn/n cn/n cn/n

...
cn/n cn/n...

How many levels are there?

Remember that the recursion stops 
when the input size is 1

So if n = 2^1, there would be 2 levels
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◻ Use a recurrence tree
⬜ Graphically lay out the cost of each level of the recursion in a 

tree-structure.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/n cn/n cn/n cn/n

...
cn/n cn/n...

How many levels are there?

Remember that the recursion stops 
when the input size is 1

So if n = 2^1, there would be 2 levels
If n = 2^2, there would be 3 levels
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◻ Use a recurrence tree
⬜ Graphically lay out the cost of each level of the recursion in a 

tree-structure.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/n cn/n cn/n cn/n

...
cn/n cn/n...

How many levels are there?

Remember that the recursion stops 
when the input size is 1

So if n = 2^1, there would be 2 levels
If n = 2^2, there would be 3 levels
If n = 2^3, there would be 4 levels
   



How do we solve the recurrence?
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◻ Use a recurrence tree
⬜ Graphically lay out the cost of each level of the recursion in a 

tree-structure.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/n cn/n cn/n cn/n

...
cn/n cn/n...

How many levels are there?

Remember that the recursion stops 
when the input size is 1

In general, there are lg(n) + 1 levels in the 
tree.
   



How do we solve the recurrence?
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◻ Use a recurrence tree
⬜ Graphically lay out the cost of each level of the recursion in a 

tree-structure.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/n cn/n cn/n cn/n

...
cn/n cn/n...

Each level of the tree does cn work and 
there are lg(n) + 1  levels of the tree
(cn)(lg(n) + 1) = cn* lg(n) + cn
   



How do we solve the recurrence?
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◻ Use a recurrence tree
⬜ Graphically lay out the cost of each level of the recursion in a 

tree-structure.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/n cn/n cn/n cn/n

...
cn/n cn/n...

Merge sort is  O(nlgn)
   



Merge sort vs others
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◻ Insertion sort and selection sort have worse time complexity than merge 
sort.

◻ But, they have better space complexity as they can sort the data in-place 
whereas merge sort requires additional arrays (merge sort has O(n) space 
complexity)

◻ For small inputs, insertion sort is often faster!



Best of both worlds?
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◻ Can we design an algorithm that sorts arrays in-place but with O(nlgn) 
complexity?

 

 



Best of both worlds?
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◻ Can we design an algorithm that sorts arrays in-place but with O(nlgn) 
complexity?

◻ The answer is almost!

⬜ Quicksort sorts arrays in place and has O(nlgn) complexity in the 
best-case, but O(n^2) in the worst-case.

 



Quicksort
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◻ Can we design an algorithm that sorts arrays in-place but with O(nlgn) 
complexity?

◻ The answer is almost!

⬜ Quicksort sorts arrays in place and has O(nlgn) complexity in the 
best-case, but O(n^2) in the worst-case.

 



Quicksort - Cute Story
121

Quicksort developed by Tony Hoare (he’s currently 83, still works at 
Microsoft Research)

Developed Quicksort in 1958. But he could not explain it to his colleage, 
so he gave up on it.

Later, he saw a draft of the new language Algol 58 (which became Algol 
60). It had recursive procedures, for the first time, in a procedural 
programming language. “Ah!”. he said. “I know how to write it better now”. 
15 minutes later, his colleague also understood it.

Fun fact: at university, we had a course called Hoare Logic, based on 
what he invented. He attended our lectures a few times :-). Nothing like 
attending an entire course named after you.



Quicksort - Key Idea
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◻ Quicksort is recursive like merge sort.

◻ Unlike merge sort, however, quicksort first processes the array before 
partitioning the array in two.

◻ This processing allows quicksort to have better space complexity

◻ Idea is to pick a pivot element and partition the array into those bigger than 
the pivot and those smaller than the pivot, calling quicksort recursively on 
each side of the array.

 



Quicksort - Partitioning
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◻ Pick a pivot (any element in the array) and partition the array sy such that all 
elements smaller than the pivot are to the left of the pivot, all the elements 
greater than the pivot are to the right.

 

Swap array values around until b[h..k] looks like this:

x                                        ?                     
h   h+1                                                                    k            

        <= x                           x           >= x                                               

h                                        j                                    k            

pre:

post:

x is called the 
pivot



Quicksort - Example
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◻ Let’s sort this array (again)

 

3 6 4 5 1 2

Select 5 as the pivot



Quicksort - Example
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◻ Let’s sort this array (again)

 

3 64 512

Partition the array



Quicksort - Example
126

◻ Let’s sort this array (again)

 

3 64 512

Run quicksort on the 
two partitions



Quicksort - Example
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◻ Let’s sort this array (again)

 

3 64 512

Run quicksort on the 
two partitions

3 4 12 6
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◻ Let’s sort this array (again)

 

3 64 512

Run quicksort on the 
two partitions

3 4 12 6



Quicksort - Example
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◻ Let’s sort this array (again)

 

3 64 512

Run quicksort on the 
two partitions

3 4 12 6

Partition Array



Quicksort - Example
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◻ Let’s sort this array (again)

 

3 64 512

Run quicksort on the 
two partitions

3 41 2 6

Partition Array



Quicksort - Example
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◻ Let’s sort this array (again)

 

3 64 512

Run quicksort on the 
two partitions

3 41 2 6

Run quicksort on two partitions

1 43



Quicksort - Example
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◻ Let’s sort this array (again)

 

3 64 512

Run quicksort on the 
two partitions

3 41 2 6

Run quicksort on two partitions

1 43

4



Quicksort - Example
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◻ Let’s sort this array (again)

 

3 64 512

Run quicksort on the 
two partitions

3 41 2 6

Run quicksort on two partitions

1 43

4

When we reach the base 
case, no need to merge. 
The array is already 
sorted!



Back to the partition algorithm
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◻ The secret sauce of quicksort is its partitioning algorithm that partitions the 
array in place

◻  Partition function as it executes, partitions the array into four regions:

<=x  > x unrestricted x

p                        i                             j                              A[r]

Define several terms: p, the beginning index of the array that we want to partition. i 
is the start of the region for which >x. j is the end of the region for which >x. a[r] is 
the pivot x



Back to the partition algorithm
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◻ The secret sauce of quicksort is its partitioning algorithm that partitions the 
array in place

◻  Partition function as it executes, partitions the array into four regions:

Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

<=x  > x unrestricted x

p                        i                             j                              A[r]



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 8 7 1 3 5 6 4



Back to the partition algorithm
137

Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 8 7 1 3 5 6 4

Initialise i to p-1, j to p, and select the last element as the pivot

i p,j r



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 8 7 1 3 5 6 4

Now loop from j = p to j = r-1

i p,j r



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 8 7 1 3 5 6 4

If A[j]  <= x, increment a[i]  to indicate that there is now one element 
that is < x.  Then swap A[j] with A[i] 

i p,j r



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 8 7 1 3 5 6 4

If A[j]  <= x, increment a[i]  to indicate that there is now one element 
that is < x.  Then swap A[j] with A[i] 

p,j,i r



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 8 7 1 3 5 6 4

If A[i]> x, then do not change i, and simply increment j. The partition 
between a[i+1] and a[j-1] denotes the values that are greater than the 
pivot

p,i rj



Back to the partition algorithm
142

Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 8 7 1 3 5 6 4

If A[i]> x, then do not change i, and simply increment j. The partition 
between a[i+1] and a[j-1] denotes the values that are greater than the 
pivot

p,i rj



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 8 7 1 3 5 6 4

If A[i]> x, then do not change i, and simply increment j. The partition 
between a[i+1] and a[j-1] denotes the values that are greater than the 
pivot

p,i rj



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 8 7 1 3 5 6 4

If A[j]  <= x, increment a[i]  to indicate that there is now one element 
that is < x.  Then swap A[j] with A[i] 

p,i rj



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 8 7 1 3 5 6 4

i = 0 + 1, so swap a[1] ( = 8 ) with a[j] = 1. 

p,i rj



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 871 3 5 6 4

i = 0 + 1, so swap a[1] ( = 8 ) with a[j] = 1. 

p rj  i



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 871 3 5 6 4

If A[j]  <= x, increment a[i]  to indicate that there is now one element 
that is < x.  Then swap A[j] with A[i] 

p rj  i



Back to the partition algorithm
148

Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 871 3 5 6 4

i = 1 + 1, so swap a[2] ( = 7 ) with a[j] = 3. 

p rj  i



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 8 71 3 5 6 4

i = 1 + 1, so swap a[2] ( = 7 ) with a[j] = 3. 

p rj  i



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 8 71 3 5 6 4

i = 1 + 1, so swap a[2] ( = 7 ) with a[j] = 3. 

p rj  i



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 8 71 3 5 6 4

If A[i]> x, then do not change i, and simply increment j. The partition 
between a[i+1] and a[j-1] denotes the values that are greater than the 
pivot

p rj  i



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 8 71 3 5 6 4

If A[i]> x, then do not change i, and simply increment j. The partition 
between a[i+1] and a[j-1] denotes the values that are greater than the 
pivot

p rj  i



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 8 71 3 5 6 4

When j = r, exchange a[i+1] (i=2, so 8) with A[r]

p r,j  i



Back to the partition algorithm
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Goes in a loop from p to r-1, and maintains the following invariant for each 
element a[k] in the array

◻ If p <= k < =i, then a[k] <= x
◻ If i+1 <=k<=j-1, then A[k]>x

◻ Let’s sort this array

 

2 871 3 5 64

Important point: the pivot is now in the correct location for the sorted 
array.  Now recurse on a[p,i] and a[i+2, r]

p r,j  i



Quicksort Pseudocode
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Quicksort(a,p,r):
   if p < r

q = partition(a,p,r)
quicksort(a,p,q-1)
quicksort(a,q+1,r)

Partition(a,p,r):
   x = a[r]
   i = p-1
   For j = p to r-1

If a[j] <=x
I = i+1
swap(a[i],a[j])

    Swap(a[i+1], a[r])
    return i+1



Quicksort complexity analysis
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◻ What is the complexity of the partition function?
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◻ What is the complexity of the partition function?
⬜ O(n)
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◻ What is the complexity of the partition function?
⬜ O(n)

◻ What about for Quicksort?
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◻ What is the complexity of the partition function?
⬜ O(n)

◻ What about for Quicksort?
⬜ Let’s write the recurrence relation

◻ T(n) = c if n = 1



Quicksort complexity analysis
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◻ What is the complexity of the partition function?
⬜ O(n)

◻ What about for Quicksort?
⬜ Let’s write the recurrence relation

◻ T(n) = c if n = 1

◻ T(n) = T(n
1
) + T(n

2
) + O(n) where n

1
 is array size before pivot, n

2
 after
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◻ T(n) = c if n = 1

◻ T(n) = T(n
1
) + T(n

2
) + O(n) where n

1
 is array size before pivot, n

2
 after

◻ If choose pivot such that exactly in the middle of the array: n
1
 = n

2
 = n/2

⬜ T(n) = 2T(n/2) + O(n)
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◻ T(n) = c if n = 1

◻ T(n) = T(n
1
) + T(n

2
) + O(n) where n

1
 is array size before pivot, n

2
 after

◻ If choose pivot such that exactly in the middle of the array: n
1
 = n

2
 = n/2

⬜ T(n) = 2T(n/2) + O(n)

⬜ Same as merge sort O(nlgn)

◻ But what if pivot is such that it is always the last element of the array?

⬜ T(n) = O(n) + T(n-1) + O(1)



Quicksort complexity analysis
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◻ If pivot is such that it is always the last element of the array?

⬜ T(n) = O(n) + T(n-1) + O(1)

⬜ N + N -1 + N-2  + … + 2 + 1

◻ Quicksort has O(n^2) complexity in the worst-case

⬜ Because we always choose the last element as the pivot, arises when 
input is sorted already



How to choose pivot?
164

Popular heuristics: Use

• first array value (not so good)

• middle array value (not so good)

• Choose a random element (not so good)

• median of first, middle, last, values (often used)!

x             ?                     
h   h                       k            

   <= x           x     >= x                                               
h              j             k            

b

b

pre:

post:

Choosing pivot

Ideal pivot: the median, since it 
splits array in half

But computing is O(n), quite 
complicated



Can we do better?

◻ Do algorithms with better than O(nlgn) complexity exist?

⬜ Yes and no

◻ For comparison based algorithms (ak: when you actually compare to 
elements in the array a[i]<a[j], O(nlgn) is actually optimal!

◻ But there are algorithms that are not comparison based!

165



Non-comparison based sorting

◻ Counting sort

⬜ Assumes that each of the n input elements is an integer in range (0,k)

⬜ Determines, for each input element x, the number of elements less than 
x. Uses this information to place element x directly into its position in the 
output array

◻ Radix sort

⬜ Used by the card-sorting machines you see in computer museums

⬜ Sorts integers by their digits (starting from the least significant one)

◻ Bucket sort

⬜ Assumes data is uniformly generated.

⬜ Creates different buckets and assumes buckets will be mostly empty
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Sorting in Java
◻ Java.util.Arrays has a method Sort()

⬜ implemented as a collection of overloaded methods

⬜ for primitives, Sort is implemented with a version of quicksort

⬜ for Objects that implement Comparable, Sort is implemented with 
mergesort

◻ Tradeoff between speed/space and stability/performance guarantees
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