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Object-oriented programming 
and data-structures
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◻ Introduced the notion of recursion and backtracking recursion

◻ Discussed a number of problems that could be solved using recursions

◻ Hinted that recursion could be expensive.
⬜ What does expensive mean?

Lecture 6 Recap 
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◻ Formalise the notion of “expensive”

◻ Introduce Big-O notation

◻ Proofs of Big-O

◻ Applying Big-O to datastructures

This lecture
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What Makes a Good Algorithm?
4

Suppose you have two possible algorithms that do the same thing; which is 
better?

Ex: is retrieving an element from LinkedList better than from ArrayList?
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Suppose you have two possible algorithms that do the same thing; which is 
better?

Ex: is retrieving an element from LinkedList better than from ArrayList?

What do we mean by better?
⬜ Faster?
⬜ Less space?
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⬜ Easier to maintain?
⬜ Required for homework?

FIRST, Aim for simplicity, ease of 
understanding, correctness. 

SECOND, Worry about efficiency 
only when it is needed.



What Makes a Good Algorithm?
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Suppose you have two possible algorithms that do the same thing; which is 
better?

Ex: is retrieving an element from LinkedList better than from ArrayList?

What do we mean by better?
⬜ Faster?
⬜ Less space?
⬜ Easier to code?
⬜ Easier to maintain?
⬜ Required for homework?

FIRST, Aim for simplicity, ease of 
understanding, correctness. 

SECOND, Worry about efficiency 
only when it is needed.

How do we measure speed of an algorithm?



Basic Step: one “constant time” operation
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Basic step:
⬜ Input/output of a number
⬜ Access value of primitive-type variable, array element, or object field
⬜ assign to variable, array element, or object field 
⬜ do one arithmetic or logical operation
⬜ method call (not counting arg evaluation and execution of method body)

Constant time operation: its time doesn’t depend on the size
or length of anything. Always roughly the same. Time is bounded above by 
some number 



Counting Steps
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// Store sum of 1..n consecutive 
integers in sum

sum= 0;

// inv: sum = sum of 1..(k-1)

for (int k= 1; k <= n; k= k+1){

    sum= sum + k;

}

All basic steps take time 1.
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integers in sum

sum= 0;

// inv: sum = sum of 1..(k-1)
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Statement: # times done sum= 0;
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k= 1; 1
k <= n n+1
k= k+1; n
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Counting Steps
11

// Store sum of 1..n consecutive 
integers in sum

sum= 0;

// inv: sum = sum of 1..(k-1)

for (int k= 1; k <= n; k= k+1){

    sum= sum + k;

}

All basic steps take time 1.
There are n loop iterations. Therefore, 
takes time proportional to n.

Statement: # times done sum= 0;
1

k= 1; 1
k <= n n+1
k= k+1; n
sum= sum + k; n
Total steps: 3n + 3

Linear algorithm in n



Statement: # times done s= "";
1

k= 1; 1
k <= n n+1
k= k+1; n
s= s + 'c'; n
Total steps: 3n + 3

Not all operations are basic steps
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// Store n copies of ‘c’ in s 

s= "";

// inv: s contains k-1 copies of ‘c’

for (int k= 1; k <= n; k= k+1){

    s=  s + 'c';

}



Statement: # times done s= "";
1

k= 1; 1
k <= n n+1
k= k+1; n
s= s + 'c'; n
Total steps: 3n + 3

Not all operations are basic steps
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// Store n copies of ‘c’ in s 

s= "";

// inv: s contains k-1 copies of ‘c’

for (int k= 1; k <= n; k= k+1){

    s=  s + 'c';

}

Concatenation is not a basic step. For 
each k, catenation creates and fills k 
array elements. 

❌



String Concatenation
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s= s + “c”;    is NOT constant time.
It takes time proportional to 1 + length of s

  s



String@00
String

  b char[]

char[]@02
char[]

0 ‘d’

String Concatenation
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s= s + “c”;    is NOT constant time.
It takes time proportional to 1 + length of s

  s

1 ‘x’



String@00
String

  b char[]

char[]@02
char[]

0 ‘d’

String Concatenation
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s= s + “c”;    is NOT constant time.
It takes time proportional to 1 + length of s

  s

1 ‘x’

String@90
String

  b char[]

char[]@018
char[]

0 ‘d’
1 ‘x’
2   ‘c

’



Not all operations are basic steps
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// Store n copies of ‘c’ in s 

s= "";

// inv: s contains k-1 copies of ‘c’

for (int k= 1; k <= n; k= k+1){

    s=  s + 'c';

}

Concatenation is not a basic step. 
For each k, catenation creates and 
fills k array elements. 

Quadratic algorithm in n

Statement: # times     # steps 
s= ""; 1     1 
k= 1; 1     1
k <= n n+1     1
k= k+1; n     1
s= s + 'c'; n     k
Total steps:     n*(n+1)/2 + 2n + 3



Linear versus quadractic
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// Store sum of 1..n in sum

sum= 0;

// inv: sum = sum of 1..(k-1)

for (int k= 1; k <= n; k= k+1)

    sum= sum + n

// Store n copies of ‘c’ in s 

s= “”;

// inv: s contains k-1 copies of ‘c’

for (int k= 1; k = n; k= k+1)

    s=  s + ‘c’;

In comparing the runtimes of these algorithms, the exact number of basic 
steps is not important. What’s important is that
One is linear in n—takes time proportional to n

One is quadratic in n—takes time proportional to n2

Linear algorithm Quadratic algorithm



Looking at execution speed
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size n of the input0  1  2  3  …

Constant time

Number of 
operations executed
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Looking at execution speed
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size n of the input0  1  2  3  …

Constant time

n ops
n + 2 ops
2n + 2 ops

2n+2, n+2, n are all linear in n, 
proportional to n

Number of 
operations executed



Looking at execution speed
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size n of the input0  1  2  3  …

Constant time

n ops
n + 2 ops
2n + 2 ops

n*n ops

Number of 
operations executed



What do we want from a 
definition of “runtime complexity”?
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size n of problem0  1  2  3  …

Number of 
operations 
executed

5 ops

2+n ops

n*n ops
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What do we want from a 
definition of “runtime complexity”?
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size n of problem0  1  2  3  …

Number of 
operations 
executed

5 ops

2+n ops

n*n ops

1. Distinguish among cases for 
large n, not small n

2. Distinguish among important 
cases, like
• n*n basic operations
• n basic operations
• log n basic operations
• 5 basic operations



What do we want from a 
definition of “runtime complexity”?
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size n of problem0  1  2  3  …

Number of 
operations 
executed

5 ops

2+n ops

n*n ops

1. Distinguish among cases for 
large n, not small n

2. Distinguish among important 
cases, like
• n*n basic operations
• n basic operations
• log n basic operations
• 5 basic operations

3. Don’t distinguish among trivially 
different cases.

•5 or 50 operations
•n, n+2, or 4n operations



"Big O" Notation
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Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such 
that for all n ≥ N,   f(n) ≤ c·g(n)

c·g(n)
f(n)

N
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Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such 
that for all n ≥ N,   f(n) ≤ c·g(n)

c·g(n)
f(n)

N

Get out far enough (for n 
≥ N)
f(n) is at most c·g(n)

Intuitively, f(n) is O(g(n))
means that f(n) grows
like g(n) or slower



Prove that (2n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)

Methodology:

Start with f(n) and slowly transform into c · g(n):

◻ Use  =   and  <=  and  <  steps

◻    At appropriate point, can choose N to help calculation

◻    At appropriate point, can choose c to help calculation
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Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such 
that for all n ≥ N,   f(n) ≤ c·g(n)



Prove that (2n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)

        f(n)

=         <definition of f(n)>

         2n2 + n

<=       <for n ≥ 1,  n ≤ n2>

         2n2 + n2

=          <arith>

          3*n2

=           <definition of g(n) = n2>
                3*g(n)

 

32

Transform f(n) into c·g(n):

•Use  =, <= , <  steps

•Choose N to help calc.

•Choose c to help calc

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such 
that for all n ≥ N,   f(n) ≤ c·g(n)
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Example: Prove that (2n2 + n) is O(n2)

        f(n)

=         <definition of f(n)>

         2n2 + n

<=       <for n ≥ 1,  n ≤ n2>

         2n2 + n2

=          <arith>

          3*n2

=           <definition of g(n) = n2>
                3*g(n)
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Choose
N = 1

Transform f(n) into c·g(n):

•Use  =, <= , <  steps

•Choose N to help calc.

•Choose c to help calc

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such 
that for all n ≥ N,   f(n) ≤ c·g(n)
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Example: Prove that (2n2 + n) is O(n2)

        f(n)

=         <definition of f(n)>

         2n2 + n

<=       <for n ≥ 1,  n ≤ n2>

         2n2 + n2

=          <arith>

          3*n2
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Choose
N = 1 

Transform f(n) into c·g(n):

•Use  =, <= , <  steps

•Choose N to help calc.

•Choose c to help calc

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such 
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Prove that (2n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)

        f(n)

=         <definition of f(n)>

         2n2 + n

<=       <for n ≥ 1,  n ≤ n2>

         2n2 + n2

=          <arith>

          3*n2

=           <definition of g(n) = n2>
                3*g(n)
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Choose
N = 1 and c = 3

Transform f(n) into c·g(n):

•Use  =, <= , <  steps

•Choose N to help calc.

•Choose c to help calc

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such 
that for all n ≥ N,   f(n) ≤ c·g(n)



Prove that 100 n + log n   is   O(n)
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      f(n)

=         <put in what f(n) is>

      100 n  +   log n

<=        <We know log n ≤ n for n ≥ 1>

      100 n + n

=         <arith>

     101 n

=         <g(n) = n>

       101 g(n)

Choose
N = 1 and c = 101

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such 
that for all n ≥ N,   f(n) ≤ c·g(n)



Prove that 100 n + log n   is   O(n)
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      f(n)

=         <put in what f(n) is>

      100 n  +   log n

<=        <We know log n ≤ n for n ≥ 1>

      100 n + n

=         <arith>

     101 n

=         <g(n) = n>

       101 g(n)

Choose
N = 1 and c = 101

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such 
that for all n ≥ N,   f(n) ≤ c·g(n)



O(…) Examples
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Let f(n) = 3n2 + 6n – 7
⬜ f(n) is O(n2)
⬜ f(n) is O(n3)
⬜ f(n) is O(n4)

p(n) = 4 n log n + 34 n – 89
⬜ p(n) is O(n log n)
⬜ p(n) is O(n2)

h(n) = 20·2n + 40n
h(n) is O(2n)

a(n) = 34
⬜ a(n) is O(1)



O(…) Examples
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Let f(n) = 3n2 + 6n – 7
⬜ f(n) is O(n2)
⬜ f(n) is O(n3)
⬜ f(n) is O(n4)

p(n) = 4 n log n + 34 n – 89
⬜ p(n) is O(n log n)
⬜ p(n) is O(n2)

h(n) = 20·2n + 40n
h(n) is O(2n)

a(n) = 34
⬜ a(n) is O(1)

Only the leading term (the term that 
grows most rapidly) matters

If it’s O(n2), it’s also O(n3)

etc!  However, we always use the 
smallest one



Do NOT say or write f(n) = O(g(n))
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f(n) = O(g(n)) is simply WRONG. Mathematically, it is a disaster.
You see it sometimes, even in textbooks. Don’t read such things.

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such 
that for all n ≥ N,   f(n) ≤ c·g(n)
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f(n) = O(g(n)) is simply WRONG. Mathematically, it is a disaster.
You see it sometimes, even in textbooks. Don’t read such things.

Here’s an example to show what happens when we use = this way.

     We know that n+2 is O(n) and n+3 is O(n). Suppose we use =

               n+2 = O(n)
               n+3 = O(n)
But then, by transitivity of equality, we have n+2 = n+3.
We have proved something that is false. Not good.

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such 
that for all n ≥ N,   f(n) ≤ c·g(n)



Problem-size examples
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◻ Suppose a computer can execute 1000 operations per second; how large 
a problem can we solve?

operations 1 second 1 minute 1 hour

n 1000 60,000 3,600,000
n log n 140 4893 200,000

n2 31 244 1897
3n2 18 144 1096
n3 10 39 153
2n 9 15 21



Big-O notation is not just for time
43

⬜ Applies to both time complexity and space complexity

⬜ Same reasoning in both cases

⬜ In this class, we’ll focus primarily on time complexity



A more formal look at datastructures
44

◻ Recall the two types of List in Java Collections (<List>)
⬜ ArrayList
⬜ LinkedList

◻ ArrayList is backed by an underlying array

◻ LinkedList is a doubly linked list and has pointers to the head/tail of the 
queue. Each element has a pointer to previous/next element



Array Lists
45

◻ ArrayList is backed by an underlying array

◻ Arrays allow direct access to each element
⬜ What is the cost of accessing the ith element of the array?

O(1)
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◻ ArrayList is backed by an underlying array

◻ Arrays allow direct access to each element
⬜ What is the cost of accessing the ith element of the array?

◻ What is the cost of inserting an element
⬜ May need to allocate a new array and copy all the previous elements into 

new array



Array Lists
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◻ ArrayList is backed by an underlying array

◻ Arrays allow direct access to each element
⬜ What is the cost of accessing the ith element of the array?

◻ What is the cost of inserting an element
⬜ May need to allocate a new array and copy all the previous elements into 

new array
Amortised 
O(1)/O(n)
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◻ ArrayList is backed by an underlying array

◻ Arrays allow direct access to each element
⬜ What is the cost of accessing the ith element of the array?

◻ What is the cost of inserting an element
⬜ May need to allocate a new array and copy all the previous elements into 

new array
◻ What is the cost of deleting the ith element

⬜ When delete an element, have to shift all the remaining elements to the left



Array Lists
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◻ ArrayList is backed by an underlying array

◻ Arrays allow direct access to each element
⬜ What is the cost of accessing the ith element of the array?

◻ What is the cost of inserting an element
⬜ May need to allocate a new array and copy all the previous elements into 

new array
◻ What is the cost of deleting the ith element

⬜ When delete an element, have to shift all the remaining elements to the left
O(n)



Linked Lists
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◻ LinkedList is a doubly linked list and has pointers to the head/tail of the queue. 
Each element has a pointer to previous/next element

◻ What is the cost of accessing the ith element of the array?

◻ What is the cost of inserting an element to the head

◻ What is the cost of deleting the ith element



Linked Lists
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◻ LinkedList is a doubly linked list and has pointers to the head/tail of the queue. 
Each element has a pointer to previous/next element

◻ What is the cost of accessing the ith element of the array?
⬜ Need to start from the head and follow pointers

◻ What is the cost of inserting an element to the head

◻ What is the cost of deleting the ith element

O(n)



Linked Lists
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◻ LinkedList is a doubly linked list and has pointers to the head/tail of the queue. 
Each element has a pointer to previous/next element

◻ What is the cost of accessing the ith element of the array?
⬜ Need to start from the head and follow pointers

◻ What is the cost of inserting an element to the head
⬜ Direct access through head pointer

◻ What is the cost of deleting the ith element

O(n)

O(1)



Linked Lists
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◻ LinkedList is a doubly linked list and has pointers to the head/tail of the queue. 
Each element has a pointer to previous/next element

◻ What is the cost of accessing the ith element of the array?
⬜ Need to start from the head and follow pointers

◻ What is the cost of inserting an element to the head
⬜ Direct access through head pointer

◻ What is the cost of deleting the ith element
⬜ Need to find the ith element first

O(n)

O(1)

O(n)



Linked Lists
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◻ LinkedList is a doubly linked list and has pointers to the head/tail of the queue. 
Each element has a pointer to previous/next element

◻ What is the cost of accessing the ith element of the array?
⬜ Need to start from the head and follow pointers

◻ What is the cost of inserting an element to the head
⬜ Direct access through head pointer

◻ What is the cost of deleting the ith element
⬜ Need to find the ith element first

O(n)

O(1)

O(n)

What about 
deleting the 
head/tail 
element?



Do the performance numbers match up?
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Only tell half the story ...
56

● On my machine, ArrayList add 
is 5 times faster than  
LinkedList add

● Underlying reason is memory 
allocation is much more 
efficient for arrays than linked 
list: arrays can allocate large 
blocks of memory at once 
while you have to allocate 
individual nodes for a linked 
list 


