
CS/ENGRD 2110
SUMMER 2018
Lecture 7: Complexity

http://courses.cs.cornell.edu/cs2110/2018su

Object-oriented programming
and data-structures

1

◻ Introduced the notion of recursion and backtracking recursion

◻ Discussed a number of problems that could be solved using recursions

◻ Hinted that recursion could be expensive.
⬜ What does expensive mean?

Lecture 6 Recap
2

◻ Formalise the notion of “expensive”

◻ Introduce Big-O notation

◻ Proofs of Big-O

◻ Applying Big-O to datastructures

This lecture
3

What Makes a Good Algorithm?
4

Suppose you have two possible algorithms that do the same thing; which is
better?

Ex: is retrieving an element from LinkedList better than from ArrayList?

What Makes a Good Algorithm?
5

Suppose you have two possible algorithms that do the same thing; which is
better?

Ex: is retrieving an element from LinkedList better than from ArrayList?

What do we mean by better?
⬜ Faster?
⬜ Less space?
⬜ Easier to code?
⬜ Easier to maintain?
⬜ Required for homework?

What Makes a Good Algorithm?
6

Suppose you have two possible algorithms that do the same thing; which is
better?

Ex: is retrieving an element from LinkedList better than from ArrayList?

What do we mean by better?
⬜ Faster?
⬜ Less space?
⬜ Easier to code?
⬜ Easier to maintain?
⬜ Required for homework?

FIRST, Aim for simplicity, ease of
understanding, correctness.

SECOND, Worry about efficiency
only when it is needed.

What Makes a Good Algorithm?
7

Suppose you have two possible algorithms that do the same thing; which is
better?

Ex: is retrieving an element from LinkedList better than from ArrayList?

What do we mean by better?
⬜ Faster?
⬜ Less space?
⬜ Easier to code?
⬜ Easier to maintain?
⬜ Required for homework?

FIRST, Aim for simplicity, ease of
understanding, correctness.

SECOND, Worry about efficiency
only when it is needed.

How do we measure speed of an algorithm?

Basic Step: one “constant time” operation
8

Basic step:
⬜ Input/output of a number
⬜ Access value of primitive-type variable, array element, or object field
⬜ assign to variable, array element, or object field
⬜ do one arithmetic or logical operation
⬜ method call (not counting arg evaluation and execution of method body)

Constant time operation: its time doesn’t depend on the size
or length of anything. Always roughly the same. Time is bounded above by
some number

Counting Steps
9

// Store sum of 1..n consecutive
integers in sum

sum= 0;

// inv: sum = sum of 1..(k-1)

for (int k= 1; k <= n; k= k+1){

 sum= sum + k;

}

All basic steps take time 1.

Counting Steps
10

// Store sum of 1..n consecutive
integers in sum

sum= 0;

// inv: sum = sum of 1..(k-1)

for (int k= 1; k <= n; k= k+1){

 sum= sum + k;

}

All basic steps take time 1.

Statement: # times done sum= 0;
1

k= 1; 1
k <= n n+1
k= k+1; n
sum= sum + k; n
Total steps: 3n + 3

Counting Steps
11

// Store sum of 1..n consecutive
integers in sum

sum= 0;

// inv: sum = sum of 1..(k-1)

for (int k= 1; k <= n; k= k+1){

 sum= sum + k;

}

All basic steps take time 1.
There are n loop iterations. Therefore,
takes time proportional to n.

Statement: # times done sum= 0;
1

k= 1; 1
k <= n n+1
k= k+1; n
sum= sum + k; n
Total steps: 3n + 3

Linear algorithm in n

Statement: # times done s= "";
1

k= 1; 1
k <= n n+1
k= k+1; n
s= s + 'c'; n
Total steps: 3n + 3

Not all operations are basic steps
12

// Store n copies of ‘c’ in s

s= "";

// inv: s contains k-1 copies of ‘c’

for (int k= 1; k <= n; k= k+1){

 s= s + 'c';

}

Statement: # times done s= "";
1

k= 1; 1
k <= n n+1
k= k+1; n
s= s + 'c'; n
Total steps: 3n + 3

Not all operations are basic steps
13

// Store n copies of ‘c’ in s

s= "";

// inv: s contains k-1 copies of ‘c’

for (int k= 1; k <= n; k= k+1){

 s= s + 'c';

}

Concatenation is not a basic step. For
each k, catenation creates and fills k
array elements.

❌

String Concatenation
14

s= s + “c”; is NOT constant time.
It takes time proportional to 1 + length of s

 s

String@00
String

 b char[]

char[]@02
char[]

0 ‘d’

String Concatenation
15

s= s + “c”; is NOT constant time.
It takes time proportional to 1 + length of s

 s

1 ‘x’

String@00
String

 b char[]

char[]@02
char[]

0 ‘d’

String Concatenation
16

s= s + “c”; is NOT constant time.
It takes time proportional to 1 + length of s

 s

1 ‘x’

String@90
String

 b char[]

char[]@018
char[]

0 ‘d’
1 ‘x’
2 ‘c

’

Not all operations are basic steps
17

// Store n copies of ‘c’ in s

s= "";

// inv: s contains k-1 copies of ‘c’

for (int k= 1; k <= n; k= k+1){

 s= s + 'c';

}

Concatenation is not a basic step.
For each k, catenation creates and
fills k array elements.

Quadratic algorithm in n

Statement: # times # steps
s= ""; 1 1
k= 1; 1 1
k <= n n+1 1
k= k+1; n 1
s= s + 'c'; n k
Total steps: n*(n+1)/2 + 2n + 3

Linear versus quadractic
18

// Store sum of 1..n in sum

sum= 0;

// inv: sum = sum of 1..(k-1)

for (int k= 1; k <= n; k= k+1)

 sum= sum + n

// Store n copies of ‘c’ in s

s= “”;

// inv: s contains k-1 copies of ‘c’

for (int k= 1; k = n; k= k+1)

 s= s + ‘c’;

In comparing the runtimes of these algorithms, the exact number of basic
steps is not important. What’s important is that
One is linear in n—takes time proportional to n

One is quadratic in n—takes time proportional to n2

Linear algorithm Quadratic algorithm

Looking at execution speed
19

size n of the input0 1 2 3 …

Constant time

Number of
operations executed

Looking at execution speed
20

size n of the input0 1 2 3 …

Number of
operations executed

Constant time

n ops
n + 2 ops
2n + 2 ops

Looking at execution speed
21

size n of the input0 1 2 3 …

Constant time

n ops
n + 2 ops
2n + 2 ops

2n+2, n+2, n are all linear in n,
proportional to n

Number of
operations executed

Looking at execution speed
22

size n of the input0 1 2 3 …

Constant time

n ops
n + 2 ops
2n + 2 ops

n*n ops

Number of
operations executed

What do we want from a
definition of “runtime complexity”?

23

size n of problem0 1 2 3 …

Number of
operations
executed

5 ops

2+n ops

n*n ops

What do we want from a
definition of “runtime complexity”?

24

size n of problem0 1 2 3 …

Number of
operations
executed

5 ops

2+n ops

n*n ops

1. Distinguish among cases for
large n, not small n

What do we want from a
definition of “runtime complexity”?

25

size n of problem0 1 2 3 …

Number of
operations
executed

5 ops

2+n ops

n*n ops

1. Distinguish among cases for
large n, not small n

2. Distinguish among important
cases, like
• n*n basic operations
• n basic operations
• log n basic operations
• 5 basic operations

What do we want from a
definition of “runtime complexity”?

26

size n of problem0 1 2 3 …

Number of
operations
executed

5 ops

2+n ops

n*n ops

1. Distinguish among cases for
large n, not small n

2. Distinguish among important
cases, like
• n*n basic operations
• n basic operations
• log n basic operations
• 5 basic operations

3. Don’t distinguish among trivially
different cases.

•5 or 50 operations
•n, n+2, or 4n operations

"Big O" Notation
27

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such
that for all n ≥ N, f(n) ≤ c·g(n)

c·g(n)
f(n)

N

"Big O" Notation
28

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such
that for all n ≥ N, f(n) ≤ c·g(n)

c·g(n)
f(n)

N

Get out far enough (for n
≥ N)
f(n) is at most c·g(n)

"Big O" Notation
29

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such
that for all n ≥ N, f(n) ≤ c·g(n)

c·g(n)
f(n)

N

Get out far enough (for n
≥ N)
f(n) is at most c·g(n)

Intuitively, f(n) is O(g(n))
means that f(n) grows
like g(n) or slower

"Big O" Notation
30

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such
that for all n ≥ N, f(n) ≤ c·g(n)

c·g(n)
f(n)

N

Get out far enough (for n
≥ N)
f(n) is at most c·g(n)

Intuitively, f(n) is O(g(n))
means that f(n) grows
like g(n) or slower

Prove that (2n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)

Methodology:

Start with f(n) and slowly transform into c · g(n):

◻ Use = and <= and < steps

◻ At appropriate point, can choose N to help calculation

◻ At appropriate point, can choose c to help calculation

31

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such
that for all n ≥ N, f(n) ≤ c·g(n)

Prove that (2n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)

 f(n)

= <definition of f(n)>

 2n2 + n

<= <for n ≥ 1, n ≤ n2>

 2n2 + n2

= <arith>

 3*n2

= <definition of g(n) = n2>
 3*g(n)

32

Transform f(n) into c·g(n):

•Use =, <= , < steps

•Choose N to help calc.

•Choose c to help calc

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such
that for all n ≥ N, f(n) ≤ c·g(n)

Prove that (2n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)

 f(n)

= <definition of f(n)>

 2n2 + n

<= <for n ≥ 1, n ≤ n2>

 2n2 + n2

= <arith>

 3*n2

= <definition of g(n) = n2>
 3*g(n)

33

Choose
N = 1

Transform f(n) into c·g(n):

•Use =, <= , < steps

•Choose N to help calc.

•Choose c to help calc

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such
that for all n ≥ N, f(n) ≤ c·g(n)

Prove that (2n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)

 f(n)

= <definition of f(n)>

 2n2 + n

<= <for n ≥ 1, n ≤ n2>

 2n2 + n2

= <arith>

 3*n2

34

Choose
N = 1

Transform f(n) into c·g(n):

•Use =, <= , < steps

•Choose N to help calc.

•Choose c to help calc

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such
that for all n ≥ N, f(n) ≤ c·g(n)

Prove that (2n2 + n) is O(n2)

Example: Prove that (2n2 + n) is O(n2)

 f(n)

= <definition of f(n)>

 2n2 + n

<= <for n ≥ 1, n ≤ n2>

 2n2 + n2

= <arith>

 3*n2

= <definition of g(n) = n2>
 3*g(n)

35

Choose
N = 1 and c = 3

Transform f(n) into c·g(n):

•Use =, <= , < steps

•Choose N to help calc.

•Choose c to help calc

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such
that for all n ≥ N, f(n) ≤ c·g(n)

Prove that 100 n + log n is O(n)
36

 f(n)

= <put in what f(n) is>

 100 n + log n

<= <We know log n ≤ n for n ≥ 1>

 100 n + n

= <arith>

 101 n

= <g(n) = n>

 101 g(n)

Choose
N = 1 and c = 101

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such
that for all n ≥ N, f(n) ≤ c·g(n)

Prove that 100 n + log n is O(n)
37

 f(n)

= <put in what f(n) is>

 100 n + log n

<= <We know log n ≤ n for n ≥ 1>

 100 n + n

= <arith>

 101 n

= <g(n) = n>

 101 g(n)

Choose
N = 1 and c = 101

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such
that for all n ≥ N, f(n) ≤ c·g(n)

O(…) Examples
38

Let f(n) = 3n2 + 6n – 7
⬜ f(n) is O(n2)
⬜ f(n) is O(n3)
⬜ f(n) is O(n4)

p(n) = 4 n log n + 34 n – 89
⬜ p(n) is O(n log n)
⬜ p(n) is O(n2)

h(n) = 20·2n + 40n
h(n) is O(2n)

a(n) = 34
⬜ a(n) is O(1)

O(…) Examples
39

Let f(n) = 3n2 + 6n – 7
⬜ f(n) is O(n2)
⬜ f(n) is O(n3)
⬜ f(n) is O(n4)

p(n) = 4 n log n + 34 n – 89
⬜ p(n) is O(n log n)
⬜ p(n) is O(n2)

h(n) = 20·2n + 40n
h(n) is O(2n)

a(n) = 34
⬜ a(n) is O(1)

Only the leading term (the term that
grows most rapidly) matters

If it’s O(n2), it’s also O(n3)

etc! However, we always use the
smallest one

Do NOT say or write f(n) = O(g(n))
40

f(n) = O(g(n)) is simply WRONG. Mathematically, it is a disaster.
You see it sometimes, even in textbooks. Don’t read such things.

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such
that for all n ≥ N, f(n) ≤ c·g(n)

Do NOT say or write f(n) = O(g(n))
41

f(n) = O(g(n)) is simply WRONG. Mathematically, it is a disaster.
You see it sometimes, even in textbooks. Don’t read such things.

Here’s an example to show what happens when we use = this way.

 We know that n+2 is O(n) and n+3 is O(n). Suppose we use =

 n+2 = O(n)
 n+3 = O(n)
But then, by transitivity of equality, we have n+2 = n+3.
We have proved something that is false. Not good.

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such
that for all n ≥ N, f(n) ≤ c·g(n)

Problem-size examples
42

◻ Suppose a computer can execute 1000 operations per second; how large
a problem can we solve?

operations 1 second 1 minute 1 hour

n 1000 60,000 3,600,000
n log n 140 4893 200,000

n2 31 244 1897
3n2 18 144 1096
n3 10 39 153
2n 9 15 21

Big-O notation is not just for time
43

⬜ Applies to both time complexity and space complexity

⬜ Same reasoning in both cases

⬜ In this class, we’ll focus primarily on time complexity

A more formal look at datastructures
44

◻ Recall the two types of List in Java Collections (<List>)
⬜ ArrayList
⬜ LinkedList

◻ ArrayList is backed by an underlying array

◻ LinkedList is a doubly linked list and has pointers to the head/tail of the
queue. Each element has a pointer to previous/next element

Array Lists
45

◻ ArrayList is backed by an underlying array

◻ Arrays allow direct access to each element
⬜ What is the cost of accessing the ith element of the array?

O(1)

Array Lists
46

◻ ArrayList is backed by an underlying array

◻ Arrays allow direct access to each element
⬜ What is the cost of accessing the ith element of the array?

◻ What is the cost of inserting an element
⬜ May need to allocate a new array and copy all the previous elements into

new array

Array Lists
47

◻ ArrayList is backed by an underlying array

◻ Arrays allow direct access to each element
⬜ What is the cost of accessing the ith element of the array?

◻ What is the cost of inserting an element
⬜ May need to allocate a new array and copy all the previous elements into

new array
Amortised
O(1)/O(n)

Array Lists
48

◻ ArrayList is backed by an underlying array

◻ Arrays allow direct access to each element
⬜ What is the cost of accessing the ith element of the array?

◻ What is the cost of inserting an element
⬜ May need to allocate a new array and copy all the previous elements into

new array
◻ What is the cost of deleting the ith element

⬜ When delete an element, have to shift all the remaining elements to the left

Array Lists
49

◻ ArrayList is backed by an underlying array

◻ Arrays allow direct access to each element
⬜ What is the cost of accessing the ith element of the array?

◻ What is the cost of inserting an element
⬜ May need to allocate a new array and copy all the previous elements into

new array
◻ What is the cost of deleting the ith element

⬜ When delete an element, have to shift all the remaining elements to the left
O(n)

Linked Lists
50

◻ LinkedList is a doubly linked list and has pointers to the head/tail of the queue.
Each element has a pointer to previous/next element

◻ What is the cost of accessing the ith element of the array?

◻ What is the cost of inserting an element to the head

◻ What is the cost of deleting the ith element

Linked Lists
51

◻ LinkedList is a doubly linked list and has pointers to the head/tail of the queue.
Each element has a pointer to previous/next element

◻ What is the cost of accessing the ith element of the array?
⬜ Need to start from the head and follow pointers

◻ What is the cost of inserting an element to the head

◻ What is the cost of deleting the ith element

O(n)

Linked Lists
52

◻ LinkedList is a doubly linked list and has pointers to the head/tail of the queue.
Each element has a pointer to previous/next element

◻ What is the cost of accessing the ith element of the array?
⬜ Need to start from the head and follow pointers

◻ What is the cost of inserting an element to the head
⬜ Direct access through head pointer

◻ What is the cost of deleting the ith element

O(n)

O(1)

Linked Lists
53

◻ LinkedList is a doubly linked list and has pointers to the head/tail of the queue.
Each element has a pointer to previous/next element

◻ What is the cost of accessing the ith element of the array?
⬜ Need to start from the head and follow pointers

◻ What is the cost of inserting an element to the head
⬜ Direct access through head pointer

◻ What is the cost of deleting the ith element
⬜ Need to find the ith element first

O(n)

O(1)

O(n)

Linked Lists
54

◻ LinkedList is a doubly linked list and has pointers to the head/tail of the queue.
Each element has a pointer to previous/next element

◻ What is the cost of accessing the ith element of the array?
⬜ Need to start from the head and follow pointers

◻ What is the cost of inserting an element to the head
⬜ Direct access through head pointer

◻ What is the cost of deleting the ith element
⬜ Need to find the ith element first

O(n)

O(1)

O(n)

What about
deleting the
head/tail
element?

Do the performance numbers match up?
55

Only tell half the story ...
56

● On my machine, ArrayList add
is 5 times faster than
LinkedList add

● Underlying reason is memory
allocation is much more
efficient for arrays than linked
list: arrays can allocate large
blocks of memory at once
while you have to allocate
individual nodes for a linked
list

