# Object-oriented programming and data-structures 

## CS/ENGRD 2110 SUMMER 2018

[^0]
## Lecture 6 Recap

$\square$ Introduced the notion of recursion and backtracking recursion
$\square \quad$ Discussed a number of problems that could be solved using recursions
$\square \quad$ Hinted that recursion could be expensive.
$\square$ What does expensive mean?

## This lecture

$\square$ Formalise the notion of "expensive"
$\square \quad$ Introduce Big-O notation
$\square$ Proofs of Big-O
$\square$ Applying Big-O to datastructures

## What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?

Ex: is retrieving an element from LinkedList better than from ArrayList?

## What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?

Ex: is retrieving an element from LinkedList better than from ArrayList?
What do we mean by better?
$\square$ Faster?
$\square$ Less space?
$\square$ Easier to code?
$\square$ Easier to maintain?
$\square$ Required for homework?

## What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?

Ex: is retrieving an element from LinkedList better than from ArrayList?

What do we mean by better?
$\square$ Faster?
$\square$ Less space?
$\square$ Easier to code?
$\square$ Easier to maintain?
$\square$ Required for homework?

FIRST, Aim for simplicity, ease of understanding, correctness.

SECOND, Worry about efficiency only when it is needed.

## What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?

Ex: is retrieving an element from LinkedList better than from ArrayList?
What do we mean by better?
$\square$ Faster?
$\square$ Less space?
$\square$ Easier to code?
$\square$ Easier to maintain?
$\square$ Required for homework?

FIRST, Aim for simplicity, ease of understanding, correctness.

SECOND, Worry about efficiency only when it is needed.

## Basic Step: one "constant time" operation

Constant time operation: its time doesn't depend on the size or length of anything. Always roughly the same. Time is bounded above by some number

Basic step:
Input/output of a number
Access value of primitive-type variable, array element, or object fieldassign to variable, array element, or object fielddo one arithmetic or logical operationmethod call (not counting arg evaluation and execution of method body)

## Counting Steps

```
9
// Store sum of 1..n consecutive
integers in sum
sum=0;
// inv: sum = sum of 1..(k-1)
for (int k= 1;k<= n; k= k+1){
    sum= sum + k;
}
All basic steps take time 1.
```


## Counting Steps

10
// Store sum of 1..n consecutive integers in sum
sum=0;
// inv: sum = sum of $1 . .(k-1)$
for (int $k=1 ; k<=n ; k=k+1$ )
sum = sum + k;

```
Statement: # times done sum= 0;
    1
k= 1; 1
k<= n n+1
k=k+1; n
sum= sum + k; }\quad
```

\}

All basic steps take time 1.

## Counting Steps

// Store sum of 1..n consecutive integers in sum
sum=0;
// inv: sum = sum of $1 . .(k-1)$
for (int $k=1 ; k<=n ; k=k+1$ )
sum = sum + k;
\}
All basic steps take time 1.
There are n loop iterations. Therefore, takes time proportional to $n$.

```
Statement: # times done sum= 0;
    l
k=1; 1
k<= n n+1
k=k+1; n
sum= sum + k; }\quad
```


## Linear algorithm in n

## Not all operations are basic steps

// Store n copies of 'c' in s
s= "";
// inv: s contains $k-1$ copies of ' $c$ '
for (int $k=1 ; k<=n ; k=k+1$ )

$$
s=s+c^{\prime} ;
$$

\}

| Statement: | \# times done $s=" " ;$ |
| :--- | :--- |
| $k=1 ;$ | 1 |
| $k==n$ | $n+1$ |
| $k=k+1 ;$ | $n$ |
| $s=s+$ 'c'; | $n$ |
| Total steps: | $3 n+3$ |

## Not all operations are basic steps

// Store n copies of 'c' in s
s= "";
// inv: s contains $k-1$ copies of ' $c$ '
for (int k= 1; k $<=n ; k=k+1$ ) \{
s= s + 'c';
\}

Concatenation is not a basic step. For each $k$, catenation creates and fills $k$ array elements.


## String Concatenation

$\mathrm{s}=\mathrm{s}+$ " ""; is NOT constant time.
It takes time proportional to $1+$ length of $s$


## String Concatenation

$\mathrm{S}=\mathrm{s}+$ " ""; is NOT constant time.
It takes time proportional to $1+$ length of $s$


## String Concatenation

$\mathrm{s}=\mathrm{s}+{ }^{\text {" } \mathrm{c} \text { "; }}$ is NOT constant time.
It takes time proportional to $1+$ length of $s$


## Not all operations are basic steps

```
// Store n copies of 'c' in s
s= "";
// inv: s contains k-1 copies of 'c'
for (int k= 1; k <= n; k= k+1){
        s= s + 'c';
    }
```

| Statement: | \# times | \# steps |
| :---: | :---: | :---: |
| s= ""; | 1 | 1 |
| $\mathrm{k}=1$; | 1 | 1 |
| $\mathrm{k}<=\mathrm{n}$ | $\mathrm{n}+1$ | 1 |
| $\mathrm{k}=\mathrm{k}+1$; | n | 1 |
| s= s + 'c'; | n | k |
| Total steps: | n*(n+1 | $2+2 n+3$ |

Concatenation is not a basic step. For each k, catenation creates and fills $k$ array elements.


## Linear versus quadractic

```
// Store sum of 1..n in sum
sum= 0;
// inv: sum = sum of 1..(k-1)
for (int k= 1; k <= n; k= k+1)
    sum=sum + n
```


## Linear algorithm

// Store n copies of 'c' in s
S="";
// inv: s contains $k-1$ copies of ' $c$ ' for (int $k=1 ; k=n ; k=k+1$ ) $s=s+c^{\prime}$;

## Quadratic algorithm

In comparing the runtimes of these algorithms, the exact number of basic steps is not important. What's important is that One is linear in $n$-takes time proportional to $n$ One is quadratic in $n$-takes time proportional to $\mathrm{n}^{2}$

## Looking at execution speed

Number of
operations executed


## Looking at execution speed

20
Number of
operations executed


## Looking at execution speed



## Looking at execution speed

22


## What do we want from a definition of "runtime complexity"?

| Number of |
| :--- |
| operations |
| executed |

$n^{*} \mathrm{n}$ ops
$0123 \ldots$ size $n$ of problem

## What do we want from a definition of "runtime complexity"?

1. Distinguish among cases for large $n$, not small n

| Number of |
| :--- |
| operations |
| executed |

5 ops
$0123 \ldots$ size $n$ of problem

## What do we want from a definition of "runtime complexity"?



1. Distinguish among cases for large n , not small n
2. Distinguish among important cases, like

- n*n basic operations
- n basic operations
- log n basic operations
- 5 basic operations
$0123 \ldots$ size $n$ of problem


## What do we want from a definition of "runtime complexity"?



1. Distinguish among cases for large $n$, not small $n$
2. Distinguish among important cases, like

- n*n basic operations
- n basic operations
- log n basic operations
- 5 basic operations

3. Don't distinguish among trivially different cases.
-5 or 50 operations
-n, n+2, or 4n operations

## "Big O" Notation

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $N \geq 0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$


## "Big O" Notation

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $N \geq 0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$


## "Big O" Notation

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $N \geq 0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$


## "Big O" Notation

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $N \geq 0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$


## Prove that $\left(2 n^{2}+n\right)$ is $O\left(n^{2}\right)$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $N \geq 0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$

Example: Prove that $\left(2 n^{2}+n\right)$ is $O\left(n^{2}\right)$

Methodology:

Start with $\mathrm{f}(\mathrm{n})$ and slowly transform into $\mathrm{c} \cdot \mathrm{g}(\mathrm{n})$ :

- Use = and <= and < steps
$\square$ At appropriate point, can choose N to help calculation
$\square$ At appropriate point, can choose c to help calculation


## Prove that $\left(2 n^{2}+n\right)$ is $O\left(n^{2}\right)$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $N \geq 0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$

Example: Prove that $\left(2 n^{2}+n\right)$ is $O\left(n^{2}\right)$
f(n)
$=\quad<$ definition of $f(n)>$
$2 n^{2}+n$

Transform $f(n)$ into $c \cdot g(n)$ :
-Use =, <= , < steps

- Choose N to help calc.
-Choose c to help calc


## Prove that $\left(2 n^{2}+n\right)$ is $O\left(n^{2}\right)$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $N \geq 0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$

Example: Prove that $\left(2 n^{2}+n\right)$ is $O\left(n^{2}\right)$
$\mathrm{f}(\mathrm{n})$

$$
\begin{aligned}
& =\quad<\text { definition of } f(n)> \\
& 2 n^{2}+n \\
& <=\quad<\text { for } n \geq 1, n \leq n^{2}> \\
& 2 n^{2}+n^{2}
\end{aligned}
$$

$$
\text { Transform } f(n) \text { into } c \cdot g(n) \text { : }
$$

-Use =, <= , < steps

- Choose N to help calc.
-Choose c to help calc

$$
\begin{aligned}
& \text { Choose } \\
& N=1
\end{aligned}
$$

## Prove that $\left(2 n^{2}+n\right)$ is $O\left(n^{2}\right)$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $N \geq 0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$

Example: Prove that $\left(2 n^{2}+n\right)$ is $O\left(n^{2}\right)$
$\mathrm{f}(\mathrm{n})$
$=\quad$ <definition of $f(n)>$ $2 n^{2}+n$
$<=\quad<$ for $n \geq 1, n \leq n^{2}>$
$2 n^{2}+n^{2}$
$=\quad$ <arith>
$3^{*} n^{2}$

Transform $f(n)$ into $c \cdot g(n)$ :
-Use =, <= , < steps
-Choose N to help calc.
-Choose c to help calc

## Prove that $\left(2 n^{2}+n\right)$ is $O\left(n^{2}\right)$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $N \geq 0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$
Example: Prove that $\left(2 n^{2}+n\right)$ is $O\left(n^{2}\right)$
$\mathrm{f}(\mathrm{n})$
$=\quad$ <definition of $f(n)>$

$$
2 n^{2}+n
$$

$$
<=\quad<\text { for } n \geq 1, n \leq n^{2}>
$$

$$
2 n^{2}+n^{2}
$$

$$
=\quad<\text { arith }>
$$

$3^{*} n^{2}$
$=\quad<$ definition of $g(n)=n^{2}>$ $3^{*} g(n)$

Transform $f(n)$ into $c \cdot g(n)$ :
-Use =, <= , < steps
-Choose N to help calc.
-Choose c to help calc

$$
\begin{array}{|l}
\hline \text { Choose } \\
N=1 \text { and } c=3 \\
\hline
\end{array}
$$

## Prove that $100 \mathrm{n}+\log \mathrm{n}$ is $\mathrm{O}(\mathrm{n})$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $N \geq 0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$

```
    f(n)
= <put in what f(n) is>
    100n + logn
<= <We know logn n n for n\geq1>
    100n+n
= <arith>
N=1 and c= 101
```

Choose

```
    101 n
    = <g(n) = n>
        101 g(n)
```


## Prove that $100 \mathrm{n}+\log \mathrm{n}$ is $\mathrm{O}(\mathrm{n})$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $N \geq 0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$

```
        f(n)
= <put in what f(n) is>
    100n + logn
<= <We know logn n n for n\geq1>
    100n+n
= <arith>
N=1 and c= 101
```

Choose

```
101 n
\(=\quad<g(n)=n>\)
\(101 \mathrm{~g}(\mathrm{n})\)
```


## O(...) Examples

Let $f(n)=3 n^{2}+6 n-7$
$f(n)$ is $O\left(n^{2}\right)$
$\square f(n)$ is $O\left(n^{3}\right)$
$\square f(n)$ is $O\left(n^{4}\right)$
$p(n)=4 n \log n+34 n-89$
$\square p(n)$ is $O(n \log n)$
$\square p(n)$ is $O\left(n^{2}\right)$
$h(n)=20 \cdot 2^{n}+40 n$
$h(n)$ is $O\left(2^{n}\right)$
$a(n)=34$
$\square a(n)$ is $O(1)$

## O(...) Examples

```
Let f(n)=3n
    f(n) is O(n}\mp@subsup{n}{}{2}
    f(n) is O(n (}
    f(n) is O(n+)
p(n)=4n log n + 34n-89
    p(n) is O(n log n)
    \square p ( n ) \text { is O( } n ^ { 2 } \text { )}
h(n)=20\cdot2n}+40
    h(n) is O(2n)
a(n)=34
    a(n) is O(1)
```

Only the leading term (the term that grows most rapidly) matters

If it's $O\left(n^{2}\right)$, it's also $O\left(n^{3}\right)$
etc! However, we always use the smallest one

## Do NOT say or write $f(n)=O(g(n))$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $N \geq 0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$
$f(n)=O(g(n))$ is simply WRONG. Mathematically, it is a disaster.
You see it sometimes, even in textbooks. Don't read such things.

## Do NOT say or write $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$

Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c>0$ and $N \geq 0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$
$f(n)=O(g(n))$ is simply WRONG. Mathematically, it is a disaster.
You see it sometimes, even in textbooks. Don't read such things.
Here's an example to show what happens when we use = this way.
We know that $n+2$ is $O(n)$ and $n+3$ is $O(n)$. Suppose we use $=$

$$
\begin{aligned}
& n+2=O(n) \\
& n+3=O(n)
\end{aligned}
$$

But then, by transitivity of equality, we have $n+2=n+3$. We have proved something that is false. Not good.

## Problem-size examples

$\square$ Suppose a computer can execute 1000 operations per second; how large a problem can we solve?

| operations | 1 second | 1 minute | 1 hour |
| :---: | :---: | :---: | :---: |
| n | 1000 | 60,000 | $3,600,000$ |
| $\mathrm{n} \log \mathrm{n}$ | 140 | 4893 | 200,000 |
| $\mathrm{n}^{2}$ | 31 | 244 | 1897 |
| $3 \mathrm{n}^{2}$ | 18 | 144 | 1096 |
| $\mathrm{n}^{3}$ | 10 | 39 | 153 |
| $2^{\mathrm{n}}$ | 9 | 15 | 21 |

## Big-O notation is not just for time

$\square$ Applies to both time complexity and space complexity
$\square$ Same reasoning in both cases
$\square$ In this class, we'll focus primarily on time complexity

## A more formal look at datastructures

$\square$ Recall the two types of List in Java Collections (<List>)
$\square$ ArrayList
$\square$ LinkedList
$\square$ ArrayList is backed by an underlying array
$\square$ LinkedList is a doubly inkea IIst and has pointers to the head/tail of the queue. Each element has a pointer to previous/next element


## Array Lists

$\square$ ArrayList is backed by an underlying array
$\square$ Arrays allow direct access to each element
$\square$ What is the cost of accessing the ith element of the array?

## Array Lists

$\square$ ArrayList is backed by an underlying array
$\square$ Arrays allow direct access to each element
$\square$ What is the cost of accessing the ith element of the array?
$\square$ What is the cost of inserting an element
$\square$ May need to allocate a new array and copy all the previous elements into new array

## Array Lists

$\square$ ArrayList is backed by an underlying array
$\square$ Arrays allow direct access to each element
$\square$ What is the cost of accessing the ith element of the array?
$\square$ What is the cost of inserting an element
$\square$ May need to allocate a new array and copy all the $r$ Amortised $\quad$ its into new array

## Array Lists

$\square$ ArrayList is backed by an underlying array
$\square$
$\square$ Arrays allow direct access to each element
$\square$ What is the cost of accessing the ith element of the array?
$\square$ What is the cost of inserting an element
$\square$ May need to allocate a new array and copy all the previous elements into new array
$\square$ What is the cost of deleting the ith element
$\square$ When delete an element, have to shift all the remaining elements to the left

## Array Lists

$\square$ ArrayList is backed by an underlying array
$\square$
$\square$ Arrays allow direct access to each element
$\square$ What is the cost of accessing the ith element of the array?
$\square$ What is the cost of inserting an element
$\square$ May need to allocate a new array and copy all the previous elements into new array
$\square$ What is the cost of deleting the ith element
$\square$ When delete an element, have to shift all the remaining

## Linked Lists

$\square$ LinkedList is a doubly linked list and has pointers to the head/tail of the queue. Each element has a pointer to previous/next element
$\square$ What is the cost of accessing the ith element of the array?
$\square$ What is the cost of inserting an element to the head
$\square$ What is the cost of deleting the ith element

## Linked Lists

$\square$ LinkedList is a doubly linked list and has pointers to the head/tail of the queue. Each element has a pointer to previous/next element
$\square$ What is the cost of accessing the ith element of the array?
$\square$ Need to start from the head and follow pointers
$\square$ What is the cost of inserting an element to the head
$\square$ What is the cost of deleting the ith element

## Linked Lists

$\square$ LinkedList is a doubly linked list and has pointers to the head/tail of the queue. Each element has a pointer to previous/next element
$\square$ What is the cost of accessing the ith element of the array?
$\square$ Need to start from the head and follow pointers
$\square$ What is the cost of inserting an element to the head
$\square$ Direct access through head pointer
$\square$ What is the cost of deleting the ith element

## Linked Lists

$\square$ LinkedList is a doubly linked list and has pointers to the head/tail of the queue. Each element has a pointer to previous/next element
$\square$ What is the cost of accessing the ith element of the array?
$\square$ Need to start from the head and follow pointers
$\square$ What is the cost of inserting an element to the head
$\square$ Direct access through head pointer
$\square$ What is the cost of deleting the ith element
$\square$ Need to find the ith element first

## Linked Lists

$\square$ LinkedList is a doubly linked list and has pointers to the head/tail of the queue. Each element has a pointer to previous/next element
$\square$ What is the cost of accessing the ith element of the array?
$\square$ Need to start from the head and follow pointers
$\square$ What is the cost of inserting an element to the head
$\square$ Direct access through head pointer
$\square$ What is the cost of deleting the ith element
$\square$ Need to find the ith element first
What about deleting the

## Do the performance numbers match up?



## Only tell half the story ...



- On my machine, ArrayList add is 5 times faster than LinkedList add
- Underlying reason is memory allocation is much more efficient for arrays than linked list: arrays can allocate large blocks of memory at once while you have to allocate individual nodes for a linked list


[^0]:    Lecture 7: Complexity
    http://courses.cs.cornell.edu/cs2110/2018su

