
CS/ENGRD 2110
SUMMER 2018
Lecture 5: Exceptions and advanced typing

http://courses.cs.cornell.edu/cs2110/2018su

Object-oriented programming 
and data-structures

1



◻ Finished introducing main OOP principles and how they are instantiated in 
Java
⬜ Modularity
⬜ Inheritance
⬜ Abstraction
⬜ Polymorphism

Lecture 4 Recap 
2



◻ Focus on specific Java features that we feel you should know
⬜ Parametrised Types & Generics
⬜ Enumerations
⬜ Exceptions  & Testing
⬜ Java Collections
⬜ Cloning

◻ Last topic before we declare you a Java Expert, and move on to 
datastructures

Lecture 5 
3



◻ Recall our Date class

⬜ field month should really only 
contain valid months, not 
arbitrary integers or strings

⬜ how do we limit the type of inputs 
that can be passed in?

class Date {
String month;
int day;
int year;

}

Limiting input options
4



◻ Most OOP languages address this problem 
with enums

⬜ An enum type is a special data type 
that enables for a variable to be a set 
of predefined constants. The variable 
must be equal to one of the values that 
have been predefined for it.

◻ Enums are most often used in switch 
statements, where different actions are 
taken for each value of the enum

Enumeration
5

enum Month {
JANUARY,
FEBRUARY,
MARCH, ...

}

Month month = …;
switch(month):

case JANUARY:
case FEBUARY: 
 

class Date {
Month month;
int day;
int year;

}



◻ It occasionally makes sense for a class to 
store groups of fields of different types
⬜ ex: a 2D vector stores x and y coordinates. 

x/y could be integers, doubles, floats, etc.
⬜ But operations on them would remain the 

same

◻ Generics allow us to parametrise a class by a 
specific type. Avoid having to rewrite multiple 
classes

◻ More in Assignment 3….

Generics (very briefly)
6

class 2DIntVector {
int x;
int y;

}

class 2DFloatVector {
float x;
float y;

}



◻ It occasionally makes sense for a class to 
store groups of fields of different types
⬜ ex: a 2D vector stores x and y coordinates. 

x/y could be integers, doubles, floats, etc.
⬜ But operations on them would remain the 

same

◻ Generics allow us to parametrise a class by a 
specific type. Avoid having to rewrite multiple 
classes

◻ More in Assignment 3….

Generics (very briefly)

class 2DIntVector {
int x;
int y;

}

class 2DFloatVector {
float x;
float y;

}

class 2DVector<T> {
T x;
T y;

}

7



◻ So far, we’ve assumed that every input was correct, and that we wrote 
perfect code (ahem)

⬜ this is rarely true!

◻ Three types of errors

⬜ syntactic error -> code doesn’t compile, etc. Usually fairly easy to spot

⬜ logical errors (ie: bugs) -> your function doesn’t do what you thought it 
does

⬜ external errors -> external inputs that we can’t control

What if things go wrong
8



◻ Modular and systematic testing of every method/constructor

⬜ Yes, it’s boring and may sometimes seem stupid, but necessary

⬜ OOP encourages you to make each class independent of others, so 
should also be possible to test independently of others.

◻ Java provides two main tools to do that

⬜ assert statement -> program will crash if assertion is false

■ assert(x==5);
⬜ JUnit, a framework for writing repeatable test

■ Tutorial in the Java Hypertext

Minimising Bugs - Unit Testing
9



◻ Definition Errors are expected exceptional behaviour (ex: the file is corrupted 
or does not exist)

◻ Three main ways

⬜ via return codes

⬜ via deferred error-handling

⬜ via exceptions

◻ Different languages prefer different styles

⬜ Ex: C prefers return codes, Java Exceptions

Dealing with errors
10



◻ Traditional way of handling errors is to return value that indicates outcome of 
function

⬜ 0 for success, 1 for failure for reason X, 2 for failure for reason Y,, etc.

int setValueArray(int index, int[] array, int value) {
if (index >= array.length) return -1 
else {

array[index] = value; 
return 0 ;

}
}

◻

Error Codes
11



◻ Problems

⬜ Have to keep checking what the return values are meant to signify

⬜ The actual result can’t actually be returned in the return type

⬜ Can ignore the return value

◻ How would you implement a getValueAtIndex function with error codes?

Error Codes
12



◻ Set some state in the system that 
needs to be checked explicitly for 
errors

⬜ C has a field “errno” that is used 
by certain functions to store the 
error code of the function

◻ Allows the function to return a value

◻ Still requires checking errno 
everytime

Deferred Error Handling

int main () {
FILE * fp;
fp = fopen ("filedoesnotexist.txt", "rb");
if (errno == 0) {

fprintf(fp, …):
} else {

fprintf(stderr, "Value of errno: %d\n", errno);
}
...
}

13



◻ Java privileges exceptions

◻ Definition: an exception is an object that can be thrown by a method when an 
error  occurs. The exception is caught by a handler.

Exceptions
14



◻ Java privileges exceptions

◻ Definition: an exception is an object that can be thrown by a method when an 
error  occurs. The exception is caught by a handler.

◻ Java exceptions have thrown with the following syntax:

⬜ Methods that can throw an exception must be marked as such

■ void setDay(int day) throws Exception {

if (day < 0 || day > 31) throw new Exception(“Illegal Day”);

else this.day = day;

System.out.println(“Day set”);

 }

Exceptions
15

Throwing an exception is an exit 
point of the function. Last line not 
printed if day >31

Why not use an 
assert here?



◻ Exceptions are handled  in a 
try/catch block.  

◻ Exception is raised in a try 
block and caught in a catch 
block.

⬜ Catch block is referred to 
as a handler

◻ Can be multiple handlers for a 
given try block, for different 
exception types.

Exceptions - Try/Catch
16

try {

setDay(day);
}
catch (IllegalDayException e) {

// NEVER LEAVE THIS BLANK
}
catch (IllegalYearException e) {

 ...
}



◻ Exceptions break the control 
flow of the program as prevent 
code that follows the exception 
to be executed.

◻ If need to write cleanup code 
regardless of whether the 
exception is thrown, wrap it in a 
finally block. 

Exceptions - Finally
17

try {
FileReader file = new FileReader(fileName);
file.read();
file.close();

}
catch (IOException e) {

...
}
finally {

if (file!=null) file.close();
}



◻ Java supports two types of exceptions: checked and unchecked

◻ Checked exceptions must be handled

⬜ Must be specified in the method signature (throws)

⬜ Code won’t compile unless provide a handler for each thrown 
exception

⬜ Usually used for “expected” errors (ex: file does not exist, IO bug, etc.)

◻ Unchecked exceptions do not need to be handled. Arise at runtime. Will 
crash program. Arise because of programming bugs usually

⬜ Ex: NullPointerException.

Checked exceptions
18



◻ Exceptions are defined as regular classes in Java

⬜ Possible to define specialised exceptions

⬜ All exceptions must extend the Exception class

■ Q: why is Exception not an interface?

class MyNewException extends Exception {

int illegalValue;

MyNewException(int value, String msg) {

super(msg);

this.illegalValue = value;

}

                  }

Exceptions are classes too!
19



◻ Java isn’t just a language, it’s a platform with thousands of classes/interface  
with 

⬜ Data Structures

⬜ Networking/Files

⬜ GUI/Multimedia/playback (!)

⬜ Security

⬜ Image Processing

⬜ Concurrency

◻ You should get into the habit of searching the javadoc to find the appropriate 
package

Java Class Library
20



◻ Will take brief look at collections

⬜ Very useful to use in most programs

⬜ Demonstrate the use of interfaces

◻ Definition: grouping of objects that can be iterated over

◻ Collections implement two main interfaces: Iterable, and Collection

⬜ (look it up!)

⬜ All collections therefore support a common set of operations

Collections
21



◻ If all support the same operations, why have more than one collection?

⬜ Collections implement multiple algorithm, that have different 
performance characteristics (we’ll see later in class)

⬜ STL containers in C++ is closest equivalent

◻ 4 main ones:

⬜ sets/lists/queues/maps

◻ Lookup the API!

⬜ https://docs.oracle.com/javase/7/docs/api/java/util/Collection.html

Collections
22



◻ A collection of elements without duplicates

⬜ Implementing classes:

■ TreeSet

■ Objects are sorted in order

■ Fast to retrieve contiguously 
sorted items

■ HashSet:

■ Objects are unordered

■ Supports fast 
addition/retrieval of single 
elements

Sets (implements Set<E>)
23



◻ An ordered collection of elements (may 
contain duplicates)

⬜ Linked List: linked lists of elements, 
store pointer to the head and the tail of 
the list. Can grow dynamically

⬜ ArrayList: array of elements. Efficient 
to access, but costly to grow. Costly to 
insert elements in the middle of the list.

Lists (implements List<E>)
24

LinkedList<Integer> l = new LinkedList<Integer>();
l.add(1);
l.get(); // return 1
...



◻ Ordered collection of elements (may 
contain duplicates) that supports removal 
from head only

⬜ LinkedList: yes, it’s both a list and a 
queue!

⬜ PriorityQueue: sort elements 
according to priority so that higher 
priority elements are at head of queue

Queue (implements Queue<E>)
25

LinkedList<Integer> l = new LinkedList<Integer>();
l.offer(1);
l.poll(); // return 1
...



◻ Maps keys to values

◻ Keys must be unique but values can be 
duplicated or null

◻ Think of dictionaries in Python (for ex) or 
Matlab

⬜ TreeMap: keys kept in order

■ Fast to lookup contiguously sorted 
items

⬜ HashMap: keys not sorted in order

■ Fast lookup/insertion of single 
item

Maps (implements Map<K,V>)
26



◻ Through a for loop

◻ Through an iterator

⬜ Key benefit of an 
iterator: safe to remove 
elements to the 
collection

Iterating over a collection
27

Set<Integer> mySet = new TreeSet<Integer>();
for (Integer i: mySet) {

System.out.println(i);
}

Set<Integer> mySet = new TreeSet<Integer>();
Iterator<Integer> it = mySet.iterator();
while (it.hasNext()) {

Integer i = it.next();
}
while (it.hasNext()) {

it.remove();
}



◻ Collections requires testing whether objects are equal, or sorting objects

◻ It is straightforward to compare primitive types

⬜ >, <=, ==, !=., <, <=

◻ Objects require more care

⬜ == on objects tests reference equality: checks whether point to same 
object

◻ We would like a way to compare objects whose state is identical

Manipulating objects - Equality
28



◻ Recall that every class extends the 
Object class

◻ Object class introduces an equals() 
method

⬜ default implementation just does 
reference equality

◻ To test for value equality, need to 
override the equals method

Equals() method
29



◻ Recall that every class extends the 
Object class

◻ Object class introduces an equals() 
method

⬜ default implementation just does 
reference equality

◻ To test for value equality, need to 
override the equals method

Equals() method
30

class Person {
private String name;
private Date dob;
private String netId;

@Override
public boolean equals(Object o) {

If (o instanceof Person) {
Person p = (Person) o;
return p.netId.equals(o.netId);

}
else return false;

}
}



◻ Sometimes equality is not enough: many collections require sorting

◻ Objects that are comparable implement the interface Comparable<T>

⬜ Pay attention to the use of an interface! Many objects that have nothing 
to do with each other can all have the sortable functionality. It would not 
make sense to use an abstract class in this case

◻ Comparable Interfaces  allow you to define  greater than/smaller than/equal 
functionality

⬜ Must implement method int compareTo(T obj)

■ Returns <0 if smaller, then obj, >0 if greater, 0 if equals

Manipulating objects - Comparable
31



◻ Recall how immutable classes? To make a class immutable, need to copy 
mutable objects before assigning them to a field

◻ Java provides a mechanism to do that: the clone() method in the Object class.

◻ Other languages provide what is called a copy constructor

Manipulating objects - Cloning
32



◻ Distinguish between 
deep and shallow  
cloning

⬜ Shallow cloning: 
makes a copy of the 
object, does not 
change its fields.

⬜ Deep cloning: makes 
a copy of the object, 
including all objects 
that it has as fields 
(recursively)

Manipulating objects - Cloning
33

   Person    Date

   Person

   Person    Date

   Person    Date

Clone

Clone



◻ Like equals(), must override the clone method

◻ Must also implement the cloneable interface

⬜ But cloneable interface is empty!

⬜ It is a marker interface

■ marker interfaces are empty 
interfaces used to label classes for 
the compiler

◻ Clone is quite ugly, unfortunately, copy 
constructors are problematic too (for 
inheritance)

Clone() method
34

class Person {
private String name;
private Date dob;
private String netId;

@Override
public Person clone() throws … {

Person person = super.clone();
Person.dob = dob.clone();
return person;

}
}



35

You are now Java experts!

◻ This is almost all the Java that we will 
teach you in this course

◻ Will see a few last things in the 
remainder of class

◻ Now will begin focusing on 
datastructures



enumeration

exception

assert

error handling

collections

comparable

cloning

equals

References in JavaHyperText
36


