1

Obiject-oriented programming
and data-structures

CS/ENGRD 2110
SUMMER 2018

Lecture 4 Recap

Finished introducing main OOP principles and how they are instantiated in
Java

Modularity

Inheritance

Abstraction

Polymorphism

Lecture 5

Focus on specific Java features that we feel you should know
Parametrised Types & Generics
Enumerations
Exceptions & Testing
Java Collections
Cloning

Last topic before we declare you a Java Expert, and move on to
datastructures

Limiting input options

Recall our Date class

field month should really only

contain valid months, not class Date {
arbitrary integers or strings String month;
int day;
int year;

how do we limit the type of inputs
that can be passed in?

Enumeration

Most OOP languages address this problem
with enums

An enum typeis a special data type
that enables for a variable to be a set
of predefined constants. The variable
must be equal to one of the values that
have been predefined for if.

Enums are most often used in switch
statements, where different actions are
taken for each value of the enum

class Date {
Month month;
int day;
int year;

enum Month {
JANUARY,
FEBRUARY,
MARCH, ...

}

Month month = ...;
switch(month):
case JANUARY::
case FEBUARY::

Generics (very briefly)

It occasionally makes sense for a class to

store groups of fields of different types class 2DIntVector { class 2DFloatVector {
ex: a 2D vector stores x and y coordinates. int x; float x;
x/y could be integers, doubles, floats, etc. inty; float y;
But operations on them would remain the }
same

Generics allow us to parametrise a class by a
specific type. Avoid having to rewrite multiple
classes

More in Assignment 3....

Generics (very briefly)

It occasionally makes sense for a class to

store groups of fields of different types class 2DIntVector { class 2DFloatVector {
ex: a 2D vector stores x and y coordinates. int x; float x;
x/y could be integers, doubles, floats, etc. inty; float y;
But operations on them would remain the }
same
. . class 2DVector<T> {
Generics allow us fo parametrise a class by @ Tx:
specific type. Avoid having to rewrite multiple Ty;
classes b

More in Assignment 3....

What if things go wrong

So far, we've assumed that every input was correct, and that we wrote
perfect code (ahem)

this is rarely true!

Three types of errors
syntactic error -> code doesn’'t compile, etc. Usually fairly easy to spot

logical errors (ie: bugs) -> your function doesn’t do what you thought it
does

external errors -> external inputs that we can't control

Minimising Bugs - Unit Testing

Modular and systematic testing of every method/constructor
Yes, it's boring and may sometimes seem stupid, but necessary

OOP encourages you to make each class independent of others, so
should also be possible to test independently of others.

Java provides two main tools to do that
assert statement -> program will crash if assertion is false
assert(x==>5);
JUnit, a framework for writing repeatable test

Tutorial in the Java Hypertext

Dealing with errors

Definition Errors are expected exceptional behaviour (ex: the file is corrupted
or does not exist)

Three main ways
via return codes
via deferred error-handling

via exceptions

Different languages prefer different styles
Ex: C prefers return codes, Java Exceptions

Error Codes

Traditional way of handling errors is to return value that indicates outcome of
function

O for success, 1 for failure for reason X, 2 for failure for reason'Y,, etc.

int setValueArray(int index, int[] array, int value) {
if (index >= array.length) return -1
else {
array[index] = value;

return O ;

Error Codes

Problems
Have to keep checking what the return values are meant to signify
The actual result can’t actually be returned in the return type

Canignore the return value

How would you implement a getValueAtIndex function with error codes?

Deferred Error Handling

Set some state in the system that int main () {

needs to be checked explicitly for FILE * fp;
errors fp = fopen ("filedoesnotexist.txt", "rb");
if (errno == 0) {

C has a field “errno” that is used forintf(fp. ...):

by certain functions to store the velse {
error code of the function fprintf(stderr, "Value of errno: %d\n", errno);
}
Allows the function to return a value !

Still requires checking errno
everyfime

Exceptions

Java privileges exceptions

Definition: an exception is an object that can be thrown by a method when an
error occurs. The exception is caught by a handler.

Exceptions

Java privileges exceptions

Definition: an exception is an object that can be thrown by a method when an
error occurs. The exception is caught by a handler.

Java exceptions have thrown with the following syntax:

Methods that can throw an exception must be marked as such
void setDay(int day) throws Exception {
if (day <0 || day > 31) throw new Exception(“Illegal Day”);
Why not use an _
assert here? else this.day = day; Throwing an exception is an exit

System.out.println(“Day set”); point of the function. Last line not
printed if day >31

Exceptions - Try/Catch

Exceptions are handled ina

try/catch block.
try {
. . . . setDay(day);
Exception is raised in a try) y(day)
block and caught in a catch catch (IllegalDayException e) {
block. // NEVER LEAVE THIS BLANK
h
Catch block is referred to catch (Illegal Y earException ¢) {
as a handler

b

Can be multiple handlers for a
given try block, for different
exception types.

Exceptions - Finally

Exceptions break the control
flow of the program as prevent

code that follows the exception i FileReader file = new FileReader(fileName);
to be executed. file.read();
b
If need to write cleanup code catch (IOException €) {
regardless of whether the)
exception is thrown, wrap itin a finally {

finq||y block. if (file!=null) file.close();
b

Checked exceptions

Java supports two types of exceptions: checked and unchecked

Checked exceptions must be handled
Must be specified in the method signature (throws)

Code won't compile unless provide a handler for each thrown
exception
Usually used for “expected” errors (ex: file does not exist, IO bug, etc.)

Unchecked exceptions do not need to be handled. Arise at runtime. Will
crash program. Arise because of programming bugs usually

Ex: NullPointerException.

Exceptions are classes too!

Exceptions are defined as regular classes in Java
Possible to define specialised exceptions
All exceptions must extend the Exception class
Q: why is Exception not an interface?

class MyNewException extends Exception {
int illegalValue;
MyNewException(int value, String msg) {
super(msg);

this.illegalValue = value;

Java Class Library

Javaisn't just a language, it's a platform with thousands of classes/interface
with

Data Structures

Networking/Files

GUI/Multimedia/playback (!)

Security

Image Processing

Concurrency

You should get into the habit of searching the javadoc to find the appropriate
package

Collections

Will take brief look at collections
Very useful to use in most programs
Demonstrate the use of interfaces

Definition: grouping of objects that can be iterated over
Collections implement two main interfaces: Iterable, and Collection

(look it up!)
All collections therefore support a common set of operations

Collections

If all support the same operations, why have more than one collection?

Collections implement multiple algorithm, that have different
performance characteristics (we'll see later in class)

STL containers in C++ is closest equivalent

4 main ones:

sets/lists/queues/maps

Lookup the API!

https://docs.oracle.com/javase/7/docs/api/java/util/Collection.html

Sefts (implements Set<E>)

o Acollection of elements without duplicates

Implementing classes:
m TreeSet
Obijects are sorted in order

Fast to retrieve contiguously
sorted items

m HashSet:
Obijects are unordered

Supports fast
addition/retrieval of single
elements

Java™ Platform P
OVERVIEW PACKAGE [@F:\558 USE TREE DEPRECATED INDEX HELP Standard Ed. 8
PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

compactl, compact2, compact3
java.util

Interface Set<E>

Type Parameters:

E - the type of elements maintained by this set

All Superinterfaces:

Collection<E>, Iterable<E>

All Known Subinterfaces:
NavigableSet<E>, SortedSet<E>

All Known Implementing Classes:

AbstractSet, ConcurrentHashMap.KeySetView, ConcurrentSkipListSet,
CopyOnWriteArraySet, EnumSet, HashSet, JobStateReasons, LinkedHashSet,
TreeSet

public interface Set<E>
extends Collection<E>

A collection that contains no duplicate elements. More formally, sets contain no pair
of elements el and e2 such that el.equals(e2), and at most one null element. As
implied by its name, this interface models the mathematical set abstraction.

The Set interface places additional stipulations, beyond those inherited from the

Lists (implements List<E>

An ordered collection of elements (may

contain duplicates)

LinkedList<Integer> | = new LinkedList<Integer>();

l.add(1);

Linked List: linked lists of elements,
store pointer to the head and the tail of

the list. Can grow dynamically

ArrayList: array of elements. Efficient
to access, but costly to grow. Costly to
insert elements in the middle of the list.

l.get(); // return 1

T

Interface List<E>

Type Parameters:

E - the type of elements in this list
All Superinterfaces:

Collection<E>, Iterable<E>
All Known Implementing Classes:

AbstractList, AbstractSequentialList, ArrayList, AttributeList, CopyOnWriteArrayList, LinkedList, RoleList,
RoleUnresolvedList, Stack, Vector

public interface List<E>
extends Collection<E>

An ordered collection (also known as a sequence). The user of this interface has precise control over where in the
list each element is inserted. The user can access elements by their integer index (position in the list), and search
for elements in the list.

Unlike sets, lists typically allow duplicate elements. More formally, lists typically allow pairs of elements el and e2
such that el.equals(e2), and they typically allow multiple null elements if they allow null elements at all. It is not
inconceivable that someone might wish to implement a list that prohibits duplicates, by throwing runtime exceptions
when the user attempts to insert them, but we expect this usage to be rare.

The List interface places additional stipulations, beyond those specified in the Collection interface, on the
contracts of the iterator, add, remove, equals, and hashCode methods. Declarations for other inherited
methods are also included here for convenience.

The List interface provides four methods for positional (indexed) access to list elements. Lists (like Java arrays)
are zero based. Note that these operations may execute in time proportional to the index value for some
implementations (the LinkedList class, for example). Thus, iterating over the elements in a list is typically
preferable to indexing through it if the caller does not know the implementation

The List interface provides a special iterator, called a ListIterator, that allows element insertion and
replacement, and bidirectional access in addition to the normal operations that the Iterator interface provides. A
method is provided to obtain a list iterator that starts at a specified position in the list.

The List interface provides two methods to search for a specified object. From a performance standpoint, these
methods should be used with caution. In manv imnlementations thev will nerform costlv linear searches

Queue (implements Queue<E>)

1 Ordered collection of elements (may
contain duplicates) that supports removal
from head only

LinkedList: yes, it's both a list and a
queuel!

PriorityQueue: sort elements
according to priority so that higher
priority elements are at head of queue

LinkedList<Integer> | = new LinkedList<Integer>();
l.offer(1);
l.poll(); // return 1

Java™ Platform

i Pack: 4 T D ted | Helj Standard Ed. 7
Overview Package M Use Tree Deprecated Index Help tan

Prev Class Next Class Frames No Frames All Classes
Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method
java.util

Interface Queue<E>

Type Parameters:

E - the type of elements held in this collection

All Superinterfaces:

Collection<E>, Iterable<E>

All Known Subinterfaces:

BlockingDeque<E>, BlockingQueue<E>, Deque<E>, TransferQueue<E>

All Known Implementing Classes:

AbstractQueue, ArrayBlockingQueue, ArrayDeque, ConcurrentLinkedDeque, ConcurrentLinkedQueue,
DelayQueue, LinkedBlockingDeque, LinkedBlockingQueue, LinkedList, LinkedTransferQueue,
PriorityBlockingQueue, PriorityQueue, SynchronousQueue

public interface Queue<E>
extends Collection<k>

A g for holding el prior to processing. Besides basic Collection operations, queues
provide additional insertion, extraction, and inspection operations. Each of these methods exists in two forms: one
throws an exception if the operation fails, the other returns a special value (either null or false, depending on the
operation). The latter form of the insert operation is designed specifically for use with capacity-restricted Queue

; in most 1S, insert cannot fail.
Throws exception Returns special value
Insert add(e) offer(e)
Remove remove () poll()

Maps (implements Map<K,V>

1 Maps keys to values

7 Keys must be unique but values can be
duplicated or null

o Think of dictionaries in Python (for ex) or
Matlab

TreeMap: keys kept in order

m Fast to lookup contiguously sorted
items

HashMap: keys not sorted in order

m Fast lookup/insertion of single
item

PIETTTICENETeT Lmr e T

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

java.util

Interface Map<K,V>

Type Parameters:
K - the type of keys maintained by this map
V - the type of mapped values

All Known Subinterfaces:

Bindings, ConcurrentMap<K,V>, ConcurrentNavigableMap<K,V>, LogicalMessageContext, MessageContext,
Navi <K,V>, SOAPI ontext, SortedMap<K,V>

All Known Implementing Classes:

AbstractMap, Attributes, AuthProvider, ConcurrentHashMap, ConcurrentSkipListMap, EnumMap, HashMap,
Hashtable, IdentityHashMap, LinkedHashMap, PrinterStateReasons, Properties, Provider, RenderingHints,
SimpleBindings, TabularDataSupport, TreeMap, UlDefaults, WeakHashMap

public interface Map<K,V>
An object that maps keys to values. A map cannot contain duplicate keys; each key can map to at most one value.
This interface takes the place of the Dictionary class, which was a totally abstract class rather than an interface.

The Map interface provides three collection views, which allow a map's contents to be viewed as a set of keys,
collection of values, or set of key-value mappings. The order of a map is defined as the order in which the iterators
on the map's collection views return their elements. Some map implementations, like the TreeMap class, make
specific guarantees as to their order; others, like the HashMap class, do not.

Note: great care must be exercised if mutable objects are used as map keys. The behavior of a map is not
specified if the value of an object is changed in a manner that affects equals comparisons while the object is a key
in the map. A special case of this prohibition is that it is not permissible for a map to contain itself as a key. While it
is permissible for a map to contain itself as a value, extreme caution is advised: the equals and hashCode
methods are no longer well defined on such a map.

All general-purpose map implementation classes should provide two "standard" constructors: a void (no arguments)
constructor which creates an empty map, and a constructor with a single argument of type Map, which creates a

new map with the same key-value mappings as its argument. In effect, the latter constructor allows the user to copy

Iterating over a collection

Through a for loop

Through an iterator

Key benefit of an
iterator: safe to remove
elements to the
collection

Set<Integer> mySet = new TreeSet<Integer>();
for (Integer i: mySet) {
System.out.printin(i);

}

Set<integer> mySet = new TreeSet<Integer>();
lterator<Integer> it = mySet.iterator();
while (it.hnasNext()) {
Integer i = it.next();
}
while (it.nasNext()) {
it.remove();

}

Manipulating objects - Equality

Collections requires testing whether objects are equal, or sorting objects

It is straightforward to compare primitive types

>, <=, ==, 1=, <, <=

Objects require more care

== On objects tests reference equality: checks whether point to same
object

We would like a way to compare objects whose state is identical

Equals() method

Recall that every class extends the
Obiject class

Object class introduces an equals()
method

default implementation just does
reference equality

To test for value equality, need to
override the equals method

KK K K K K K K K K K K K K

*

<p>

The equals method for class <code>Object</code> implements the most
discriminating possible equivalence relation on objects; that is,
for any reference values <code>x</code> and <code>y</code>, this
method returns <code>true</code> if and only if <code>x</code> and
<code>y</code> refer to the same object (<code>x==y</code> has the
value <code>true</code>).

@param obj the reference object with which to compare.

@return <code>true</code> if this object is the same as the obj
argument; <code>false</code> otherwise.

@see java.lang.Boolean#hashCode()

@see java.util.Hashtable

@since JDK1.0

public boolean equals(Object obj) {

/

KR K K K K K K K K K X K K

return (this == obj);

Creates a new object of the same class as this object. It then
initializes each of the new object's fields by assigning it the
same value as the corresponding field in this object. No
constructor is called.

<p>

The <code>clone</code> method of class <code>Object</code> will
only clone an object whose class indicates that it is willing for
its instances to be cloned. A class indicates that its instances
can be cloned by declaring that it implements the
<code>Cloneable</code> interface.

@return a clone of this instance.

@exception CloneNotSupportedException if the object's class does not

Equals() method

Recall that every class extends the

Obiject class class Person {
private String name;

Obiject class introduces an equals() private Date dob;
method private String netld,;

default implementation just does @Override

reference equality public boolean equals(Object o) {

If (0 instanceof Person) {

To test for value equality, need to Person p = (Person) o;
override the equols method } return p.netld.equals(o.netld);

else return false;

Manipulating objects - Comparable

Sometimes equality is not enough: many collections require sorting

Objects that are comparable implement the interface Comparable<T>

Pay attention to the use of an interface! Many objects that have nothing
to do with each other can all have the sortable functionality. It would not
make sense to use an abstract class in this case

Comparable Interfaces allow you to define greater than/smaller than/equal
functionality

Must implement method int compareTo(T obj)
Returns <0 if smaller, then obj, >0 if greater, 0 if equals

Manipulating objects - Cloning

Recall how immutable classes? To make a class immutable, need to copy
mutable objects before assigning them to a field

Java provides a mechanism to do that: the clone() method in the Obiject class.

Other languages provide what is called a copy constructor

Manipulating objects - Cloning

Distinguish between

deep and shallow

cloning Person Date
|
Shallow cloning: Clone
makes a copy of the

object, does not e
change its fields.

Deep cloning: makes

including all objects

that it has as fields

a copy of the object, Person - Date
Clone (
(recursively) Person * Date

Clone() method

Like equals(), must override the clone method

Must also implement the cloneable inferface ... person {

But cloneable interface is empty! private String name;
private Date dob;
It is a marker interface private String netld;
marker interfaces are empty @Override
intferfaces used to label classes for public Person clone() throws ... {

Person person = super.clone();
Person.dob = dob.clone();
return person,

the compiler

Clone is quite ugly, unfortunately, copy)
constructors are problematic too (for
inheritance)

You are now Java experts!
_ 35

o Thisis almost all the Java that we will
teach you in this course

o Will see a few last things in the

remainder of class ORACLE

Certified
Expert

o Now will begin focusing on
datastructures

References in JavaHyperText

enumeration
exception
assert

error handling
collections
comparable
cloning

equals

