
CS/ENGRD 2110
SUMMER 2018
Lecture 4: OO Principles - Polymorphism

http://courses.cs.cornell.edu/cs2110/2018su

Object-oriented programming
and data-structures

1

◻ Good design principles.
⬜ Modularity
⬜ Encapsulation
⬜ Inheritance

◻ Access modifiers, extends, constructor chaining, etc.

Lecture 3 Recap
2

◻ Abstraction

◻ Polymorphism

◻ Multiple Inheritance Problems

◻ Interfaces

◻ Parametrised Types

Lecture 4
3

◻ Inheritance allows types to be specialised

⬜ Minimise code re-use

⬜ Allows multiple specialised types (ex: instructor, student) to be used
everywhere the base class can be used.

◻ But has some shortcomings ...

Inheritance - Recap

◻ Assume that want to write a geometry program that can manipulate the
area and perimeter of 2D shapes.
⬜ Want to define circle, rectangle and triangle

A geometry detour

(x, y) Position of a rectangle in the plane is given by
its upper-left corner. Calculate perimeter by
2*(width + height), area by width * height

Position of a circle in the plane is given by the
upper-left corner of its bounding box. Perimeter
calculated by 2*Π*radius, area by Π*radius^2

(x, y)

A geometry detour - Inheritance?

Shape
 x
 y
 area()
 perim()

Triangle
 area()
 perim()
 base
 height

Circle
 area()
 perim()
 radius

Rectangle
 area()
 perim()
 width
 height

Create a class shape that defines area() and
perim() functions, and have every subclass
extend Shape and override those methods.

What’s wrong here?

◻ Inheritance allows types to be specialised
⬜ Minimise code re-use
⬜ Allows multiple specialised types (ex: instructor, student) to be used

everywhere the base class can be used.

◻ Inheritance can
⬜ force a family of derived classes to implement specific functionality
⬜ But there isn’t really a convenient default behaviour for the base

class.

Inheritance - Recap

◻ Program specification mandates any class that is a Shape should
implement area() and perimeter()
⬜ But area() and perimeter() of a Shape doesn’t really make sense

◻ Instead, want to force all Shapes to implement their own area() and
perimeter()

◻ Shape is an abstract type with certain desired functionality
⬜ Square, Circle, etc. are concrete instantiations of that type

Abstraction

◻ Most OOP languages support a notion of abstract classes
⬜ Abstract classes can contain method stubs (methods without a body)
⬜ Abstract classes cannot be instantiated

■ Why?

◻ Java uses keyword abstract
⬜ class abstract Shape {

int x ; int y;
int getXPosition() { return x;}
abstract int area();

}

Abstract classes to the rescue

Syntax:
If a method has keyword
abstract in its declaration,
use a semicolon instead of
a method body

◻ Examples so far suggest that a class can inherit from a single base class

◻ Sometimes, want to inherit from multiple base classes
⬜ Meet the graduate student

■ Can be both a Student and an Instructor
⬜ What can we do?

Multiple Inheritance

◻ Multiple inheritance introduces the diamond problem

◻ Definition: Ambiguity that arises when a class inherits from two classes
that define and implement the same method.

Diamond Inheritance Problem

class Instructor extends Person {
int salary;
int getSalary();
void dance() { System.out.println(“Let’s boogie”);}

}

class Student extends Person {
int gpa;
int getGpa();
void dance() { System.out.println(“Let’s cha-cha”);}

}

GraduateStudent inherits from both Instructor and Student.
Should she boogie or cha-cha?

Interfaces to the rescue

◻ Java mandates that every class can inherit from at most one class
(possibly abstract)
⬜ Instead, it introduce “special classes” that can do multiple

inheritance: interfaces

◻ Definition Interfaces are special classes that have
⬜ no state (cannot define any fields)
⬜ all methods are abstract

◻ Interfaces define functionality only, a contract that any concrete types
must satisfy

Interfaces to the rescue

◻ Java uses interface keyword to define an interface

◻ Classes must implement an interface

public interface A {
public int myMethod();

}

public class B implements A {
public int myMethod();

}

Revisiting the Graduate Student

◻ A graduate student can teach
⬜ Implements a Teaching interface with

method getSalary()

◻ A graduate student can study
⬜ Implements a Study interface with a

method getGPA();

◻ A graduate student is still a Person
(hopefully)
⬜ Extends class Person, inherit fields

name, DoB

class GraduateStudent extends
Person implements Teaching,
Study {

...
}

Interfaces vs Abstract Classes

◻ Not going to lie, they are similar. Hard to determine which one to use at times
⬜ We’ll see next lecture two examples of Java Interfaces
⬜ Rule of thumb: when it doubt, start with an interface

◻ View interfaces as:
⬜ what something can do/defines an abstract data type/contract to fullfill
⬜ force high-level of abstraction in code

◻ View abstract classes as:
⬜ represents something
⬜ allows sharing common code between subclasses

◻ What should Shape be? Interface or abstract class?

◻ Recall: inheritance allows us to use derived types everywhere we want to
use a base type.

◻ Consider a method:
⬜ Want to calculate the sum of the areas of all the shapes in the

drawing
⬜ But area() is an abstract method and all shapes implement different

area methods. What can we do?

Manipulating derived types

public int sumAreas(Shape[] allShapes)

◻ Explicitly try casting each
individual shape to the
appropriate type
⬜ instanceof keyword

◻ Downsides:
⬜ Cumbersome to write,

error-prone
⬜ Every time add a new

Shape, have to modify
that function

First attempt - Casting

public int sumAreas(Shape[] allShapes) {

int sum = 0;

int nbShapes = allShapes.length;

for (int i = 0 ; i < nbShapes ; i++ {

Shape s = shape[i];

if (s instanceof Circle) {

Circle c = (Circle) s;

sum+= c.area();

} else if (s instanceof Triangle) {

Triangle t = (Triangle) s;

} else { … }

 }

}

}

◻ Definition: a language's ability to process objects of various types and
classes through a single, uniform interface

◻ Java polymorphism calls the appropriate method for the type of the
object that is referred to in each variable rather than the method that is
defined by the variable's type
⬜ Shape s = new Circle(); s.area() will call the circle area method.

◻ Polymorphism
⬜ separates the interface and implementation
⬜ allows the programmer to program at the interface only

Polymorphism to the rescue
18

◻ Magic of polymorphism

◻ Only need to worry about
the spec of Shapes (they all
implement an area()
method). Not about any
specifics of the Shape
⬜ Better modularity
⬜ Less buggy

Second attempt

public int sumAreas(Shape[] allShapes) {

int sum = 0;

int nbShapes = allShapes.length;

for (int i = 0 ; i < nbShapes ; i++ {

Shape s = shape[i];

sum+= s.area();

}

return sum;

}

◻ Java uses dynamic polymorphism
⬜ Run the method in the child
⬜ Must be down at runtime since that is when you know the child’s

type.
◻ Alternative is static polymorphism

⬜ Decide at compile-time.
⬜ Since don’t know what true type will be, just run the method in the

parent type.

◻ Dynamic polymorphism much more practical, but has a performance
overhead
⬜ Java only does dynamic
⬜ C++ offers developers the choice

Static vs Dynamic Polymorphism

◻ May all seem similar
⬜ Modularity
⬜ Encapsulation
⬜ Abstraction
⬜ Polymorphism

◻ All sides of the same coin: enable clean, easy to reason about with
minimal bugs, where each object has well-defined functionality and
exposes only the minimal information necessary to other components of
the system.

Principles of OO Recap

abstraction

abstract class

interface

implements

extends

polymorphism

subtyping

abstract data type

References in JavaHyperText

