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Object-oriented programming 
and data-structures
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◻ Good design principles. 
⬜ Modularity
⬜ Encapsulation
⬜ Inheritance

◻ Access modifiers, extends, constructor chaining, etc.

Lecture 3 Recap
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◻ Abstraction

◻ Polymorphism

◻ Multiple Inheritance Problems

◻ Interfaces

◻ Parametrised Types

Lecture 4 
3



◻ Inheritance allows types to be specialised

⬜ Minimise code re-use

⬜ Allows multiple specialised types (ex: instructor, student) to be used 
everywhere the base class can be used.

◻ But has some shortcomings ...

Inheritance - Recap



◻ Assume that want to write a geometry program that can manipulate the 
area and perimeter of 2D shapes.
⬜ Want to define circle, rectangle and triangle

A geometry detour

(x, y) Position of a rectangle in the plane is given by 
its upper-left corner. Calculate perimeter by 
2*(width + height), area by width * height

Position of a circle in the plane is given by the 
upper-left corner of its bounding box. Perimeter 
calculated by 2*Π*radius, area by Π*radius^2

(x, y)



A geometry detour - Inheritance?

Shape
    x 
    y
    area()
    perim()

Triangle
   area()
   perim()
   base
   height

Circle
   area()
   perim()
   radius 

Rectangle
   area()
   perim()
   width
   height

Create a class shape that defines area() and 
perim() functions, and have every subclass 
extend Shape and override those methods.

What’s wrong here?



◻ Inheritance allows types to be specialised
⬜ Minimise code re-use
⬜ Allows multiple specialised types (ex: instructor, student) to be used 

everywhere the base class can be used.

◻ Inheritance can 
⬜ force a family of derived classes to implement specific functionality
⬜ But there isn’t really a convenient default behaviour for the base 

class.

Inheritance - Recap



◻ Program specification mandates any class that is a Shape should 
implement area() and perimeter()
⬜ But area() and perimeter() of a Shape doesn’t really make sense 

◻ Instead, want to force all Shapes to implement their own area() and 
perimeter() 

◻ Shape is an abstract type with certain desired functionality
⬜ Square, Circle, etc. are concrete instantiations of that type

Abstraction



◻ Most OOP languages support a notion of abstract classes
⬜ Abstract classes can contain method stubs (methods without a body)
⬜ Abstract classes cannot be instantiated

■ Why?

◻ Java uses keyword abstract
⬜ class abstract Shape {

int x ; int y;
int getXPosition() { return x;}
abstract int area();

} 

Abstract classes to the rescue

Syntax:
If a method has keyword 
abstract in its declaration, 
use a semicolon instead of 
a method body



◻ Examples so far suggest that a class can inherit from a single base class

◻ Sometimes, want to inherit from multiple base classes
⬜ Meet the graduate student

■ Can be both a Student and an Instructor
⬜ What can we do?

Multiple Inheritance



◻ Multiple inheritance introduces the diamond problem

◻ Definition: Ambiguity that arises when a class inherits from two classes 
that define and implement the same method.

Diamond Inheritance Problem

class Instructor  extends Person {
int salary;
int getSalary();
void dance() { System.out.println(“Let’s boogie”);}

}

class Student  extends Person {
int gpa;
int getGpa();
void dance() { System.out.println(“Let’s cha-cha”);}

}

GraduateStudent inherits from both Instructor and Student. 
Should she boogie or cha-cha?



Interfaces to the rescue

◻ Java mandates that every class can inherit from at most one class 
(possibly abstract)
⬜ Instead, it introduce “special classes” that can do multiple 

inheritance: interfaces

◻ Definition Interfaces are special classes that have
⬜ no state (cannot define any fields)
⬜ all methods are abstract

◻ Interfaces define functionality only, a contract that any concrete types 
must satisfy



Interfaces to the rescue

◻ Java uses interface keyword to define an interface

◻ Classes must implement an interface

public interface A {
public int myMethod();

}

public class B implements A  {
public int myMethod();

}



Revisiting the Graduate Student

◻ A graduate student can teach
⬜ Implements a Teaching interface with 

method getSalary()

◻ A graduate student can study
⬜ Implements a Study interface with a 

method getGPA();

◻ A graduate student is still a Person 
(hopefully)
⬜ Extends class Person, inherit fields 

name, DoB

class GraduateStudent extends 
Person implements Teaching, 
Study {

...
}



Interfaces vs Abstract Classes

◻ Not going to lie, they are similar. Hard to determine which one to use at times
⬜ We’ll see next lecture two examples of Java Interfaces
⬜ Rule of thumb: when it doubt, start with an interface

◻ View interfaces as:
⬜ what something can do/defines an abstract data type/contract to fullfill
⬜ force high-level of abstraction in code

◻ View abstract classes as:
⬜ represents something
⬜ allows sharing common code between subclasses

◻ What should Shape be? Interface or abstract class?



◻ Recall: inheritance allows us to use derived types everywhere we want to 
use a base type.

◻ Consider  a method:
⬜ Want to calculate the sum of the areas of all the shapes in the 

drawing
⬜ But area() is an abstract method and all shapes implement different 

area methods. What can we do?

Manipulating derived types

public int sumAreas(Shape[] allShapes)



◻ Explicitly try casting  each 
individual shape to the 
appropriate type
⬜ instanceof keyword

◻ Downsides:
⬜  Cumbersome to write, 

error-prone
⬜ Every time add a new 

Shape, have to modify 
that function

First attempt - Casting

public int sumAreas(Shape[] allShapes) {

int sum  = 0;

int nbShapes = allShapes.length;

for (int i = 0 ; i < nbShapes ; i++ {

Shape s = shape[i];

if (s instanceof Circle) {

Circle c = (Circle) s;

sum+= c.area();

} else if (s instanceof Triangle) {

Triangle t = (Triangle) s;

} else { … }

   }

}

}



◻ Definition:  a language's ability to process objects of various types and 
classes through a single, uniform interface

◻ Java polymorphism calls the appropriate method for the type of the 
object that is referred to in each variable rather than the method that is 
defined by the variable's type
⬜ Shape s = new Circle(); s.area() will call the circle area method.

◻ Polymorphism 
⬜ separates the interface and implementation
⬜ allows the programmer to program at the interface only

Polymorphism to the rescue
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◻ Magic of polymorphism

◻ Only need to worry about 
the spec of Shapes (they all 
implement an area() 
method). Not about any 
specifics of the Shape
⬜ Better modularity
⬜ Less buggy

Second attempt

public int sumAreas(Shape[] allShapes) {

int sum  = 0;

int nbShapes = allShapes.length;

for (int i = 0 ; i < nbShapes ; i++ {

Shape s = shape[i];

sum+= s.area();

} 

return sum;

}



◻ Java uses dynamic polymorphism
⬜ Run the method in the child 
⬜ Must be down at runtime since that is when you know the child’s 

type.
◻ Alternative is static polymorphism

⬜ Decide at compile-time.
⬜ Since don’t know what true type will be, just run the method in the 

parent type.

◻ Dynamic polymorphism much more practical, but has a performance 
overhead
⬜ Java only does dynamic
⬜ C++ offers developers the choice

Static vs Dynamic Polymorphism



◻ May all seem similar
⬜  Modularity
⬜ Encapsulation
⬜ Abstraction 
⬜ Polymorphism

◻ All sides of the same coin: enable clean, easy to reason about with 
minimal bugs, where each object has well-defined functionality and 
exposes only the minimal information necessary to other components of 
the system.

Principles of OO Recap



abstraction

abstract class

interface

implements

extends

polymorphism

subtyping

abstract data type
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