
CS/ENGRD 2110
SUMMER 2018
Lecture 16: Concurrency

http://courses.cs.cornell.edu/cs2110/2018su

Object-oriented programming
and data-structures

1

CPU Central Processing Unit. Simplified view

The CPU is the part of the
computer that executes
instructions.
 Java: x= x + 2;

Suppose variable x is at
Memory location 800,
Instructions at 10
 Machine language:
 10: load register 1, 800
 11: Add register 1, 2
 12: Store register 1, 800

2

Basic uniprocessor-CPU computer. Black
lines indicate data flow, red lines indicate
control flow

Clock rate

◻ Clock rate “frequency at which CPU is running”
Higher the clock rate, the faster instructions

are executed.

◻ First CPUs: 5-10 Hz (cycles per second)
◻ Today MacBook Pro 3.5GHz

◻ Your OS can control the
clock rate, slow it down when
idle, speed up when more
work to do

3

Why multicore?

⬜ Moore’s Law: Computer speeds and memory
densities nearly double each year

4

But a fast computer runs hot

◻ Power dissipation rises as square of the
clock rate

◻ Chips were heading toward melting
down!

◻ Put more CPUs on a chip: with four CPUs
on one chip, even if we run each at half
speed we can perform more overall
computations!

5

Today: Not one CPU but many

Processing Unit is called a core.

◻ Modern computers have “multiple cores” (processing units)
⬜ Instead of a single CPU (central processing unit) on the chip 5-10

common. Intel has prototypes with 80!

◻ We often run many programs at the same time

◻ Even with a single core (processing unit), your program may have more than

one thing “to do” at a time
⬜ Argues for having a way to do many things at once

6

Running processes on my laptop
7

>100 processes are competing for time. Here’s some of them:

Programs can have several “threads of execution”

We often run many programs at the same time
And each program may have several “threads of execution”

8

Process graphics Process user inputs

Distributed Systems
9

A distributed system is one in which the failure of
a computer you didn't even know existed can
render your own computer

Modern systems like Google, Facebook run
applications that are distributed across
thousands of machines in large datacenters

My own personal record is 342 machines.

Abstract View

Machine 1 Machine 2 Machine 3

Program
Task 1

Task 2

Task 3

Abstract View

Machine 1 Machine 2 Machine 3

Core 1 Core 2

Program
Task 1

Task 2

Task 3

Abstract View

Machine 1 Machine 2 Machine 3

Core 1 Core 2

Program
Task 1

Task 2

Task 3

T
1

T
2

T
3

T
1

T
2

T
1

T
1

T
1

Concurrency

◻ Concurrency refers to a single program in which several processes, called
threads, are running simultaneously

⬜ Special problems arise

⬜ They see the same data and hence can interfere with each other, e.g.
one process modifies a complex structure like a heap while another is
trying to read it

■ In CS2110, we’ll look at:
● Race Conditions
● Deadlocks

◻ We’ll refer to any sequential execution chunk as a task

13

Thread

◻ A thread is an object that “independently computes”
⬜ Needs to be created, like any object
⬜ Then “started” --causes some method to be called. It runs side by side

with other threads in the same program; they see the same global data

◻ The actual executions could occur on different CPU cores, but don’t have to
⬜ We can also simulate threads by multiplexing a smaller number of cores

over a larger number of threads

14

Java Class Thread

◻ Threads are instances of class Thread
⬜ Can create many, but they do consume space & time

◻ The Java Virtual Machine creates the thread that executes your main
method.

◻ Threads have a priority
⬜ Higher priority threads are executed preferentially
⬜ By default, newly created threads have initial priority equal to the thread

that created it (but priority can be changed)

15

Java Class Thread

◻ Threads are objects in Java, just like everything else

◻ There’s two ways to create a thread:
⬜ By extending the class Thread
⬜ By implementing the interface Runnable

◻ Which one do you think is better?

16

Creating a new Thread (Method 1)
17

class MaxThread extends Thread {
 private int[] array;

 MaxThread(int[] array) {
 this.array = array;
 }

 @Override public void run() {
 //ccomputes max of array
 ...
 }
}

MaxThread p= new MaxThread(array);
p.start();

overrides
Thread.run()

Call run() directly?
no new thread is used:
Calling thread will run it

Do this and
Java invokes run() in new thread

Creating a new Thread (Method 2)
18

class MaxRun implements Runnable {
private int[] array;

 MaxRun(int[] array) {
 this.array = array ;
 }

 public void run() {
 //compute max of an array
 ...
 }
}

MaxRun p= new MaxRun(array);
new Thread(p).start();

Threads can pause

◻ When active, a thread is “runnable”.
⬜ It may not actually be “running”. For that, a CPU must schedule it.

Higher priority threads could run first.

◻ A thread can pause
⬜ Call Thread.sleep(k) to sleep for k milliseconds

■ Suspends the execution of a thread
⬜ Doing I/O (e.g. read file, wait for mouse input, open file) can cause thread

to pause
⬜ Java has a form of locks associated with objects. When threads lock an

object, one succeeds at a time.

◻ A thread can offer another thread the CPU
⬜ Call yield()

19

Thread States
20

How do I wait for threads to finish?

◻ Calling join() on a thread will cause
another thread to wait until the first
thread is finished

◻ Can be used to determine when the
output of a computation is ready!
⬜ For instance, let’s modify our run

method to store the final max value
in to an additional result array that is
shared across all threads

◻ Want to know when it’s safe to check
the result!

21

How do I wait for threads to finish?

◻ Calling join() on a thread will cause
another thread to wait until the first
thread is finished

◻ Can be used to determine when the
output of a computation is ready!
⬜ For instance, let’s modify our run

method to store the final max value
in to an additional result array that is
shared across all threads

◻ Want to know when it’s safe to check
the result!

22

MaxRun p1= new MaxRun(array1, result, 0);
MaxRun p2= new MaxRun(array2, result, 1);
MaxRun p3= new MaxRun(array3, result, 2);
MaxRun p4= new MaxRun(array4, result, 3);
Thread t1 = new Thread(p1).start();
Thread t2 = new Thread(p2).start();
Thread t3 = new Thread(p3).start();
Thread t4 = new Thread(p4).start();
t1.join();
t2.join();
t3.join();
t4.join();

System.out.println(“Result “ +
result[0] + “ “ + result[1] + “ “ …);

How do I wait for threads to finish?

◻ Calling join() on a thread will cause
another thread to wait until the first
thread is finished

◻ Can be used to determine when the
output of a computation is ready!
⬜ For instance, let’s modify our run

method to store the final max value
in to an additional result array that is
shared across all threads

◻ Want to know when it’s safe to check
the result!

23

MaxRun p1= new MaxRun(array1, result, 0);
MaxRun p2= new MaxRun(array2, result, 1);
MaxRun p3= new MaxRun(array3, result, 2);
MaxRun p4= new MaxRun(array4, result, 3);
Thread t1 = new Thread(p1).start();
Thread t2 = new Thread(p2).start();
Thread t3 = new Thread(p3).start();
Thread t4 = new Thread(p4).start();
t1.join();
t2.join();
t3.join();
t4.join();

System.out.println(“Result “ +
result[0] + “ “ + result[1] + “ “ …);

Memory Consistency Errors

◻ Threads often operate on shared data

◻ If not careful, however, concurrent access to shared data can break
the correctness of the program

◻ Race conditions arise both
⬜ at the memory level

■ memory consistency errors
⬜ At the program level

■ Invariants can be violated due to concurrent updates

24

What if threads share data?

◻ Threads often operate on shared data

◻ If not careful, however, concurrent access to shared data can break
the correctness of the program

◻ Race conditions arise both
⬜ at the memory level

■ memory consistency errors
⬜ At the program level

■ Invariants can be violated due to concurrent updates

◻ Code is said to be thread-safe if it remains correct when accessed
concurrently

25

Race conditions
26

◻ A race condition arises if two or more processes access the same
variables or objects concurrently and at least one does updates

◻ If the updates are not atomic, the end state can be inconsistent
⬜ An operation is atomic if it happens “all at once” without being

interrupted by other events.

Race conditions
27

◻ A race condition arises if two or more processes access the same
variables or objects concurrently and at least one does updates

◻ If the updates are not atomic, the end state can be inconsistent
⬜ An operation is atomic if it happens “all at once” without being

interrupted by other events.

◻ Very few operations in modern systems are atomic !

Race conditions

x = x + 1
System.out.println(x);

x = x + 1
System.out.println(x);

Thread t1 Thread t2

28

◻ Suppose x is initially 5

◻ What do you think will be the end value?

Race conditions

◻ LOAD x

◻ ADD 1
◻
◻ STORE x

◻ ...
◻ LOAD x
◻ ADD 1
◻ STORE x

Thread t1 Thread t2

29

◻ Suppose x is initially 5

◻ ... after finishing, x = 6! We “lost” an update

Race conditions

◻ LOAD x

◻ ADD 1
◻
◻ STORE x

◻ ...
◻ LOAD x
◻ ADD 1
◻ STORE x

Thread t1 Thread t2

30

◻ Suppose x is initially 5

◻ Machine level implementation of increment is not atomic!

Race conditions

◻ LOAD x

◻ ADD 1
◻
◻ STORE x

◻ ...
◻ LOAD x
◻ ADD 1
◻ STORE x

Thread t1 Thread t2

31

◻ Suppose x is initially 5

◻ Second store happens after first store -> we lost an update!

Program Correctness Errors

◻ What if we want to insert a new element to a linked list?

32

Program Correctness Errors

◻ What if we want to insert a new element to a linked list?

33

void add(V v) { // to tail
 Node newNode = new Node(v);
 If (tail!=null) {

tail.next = newNode;
newNode.prev = tail;
tail = newNode;

 } else {
head = new Node(v);
tail = head;

 }

}

V poll() { // from head
 V v = null;
 If (head!=null) {

 if (head == tail) { // list is one el
tail = tail.prev;

 }
 elif (head.next == tail) { list is two el

tail.prev = null
 }
 v = head.value;
 head = head.next;
 if (head!=null) {

head.prev = null;
 }

 }
 return v;
}

Program Correctness Errors

◻ What if we want to insert a new element to a linked list?

34

void add(V v) { // to tail
 Node newNode = new Node(v);
 If (tail!=null) {

tail.next = newNode;
newNode.prev = tail;
tail = newNode;

 } else {
head = new Node(v);
tail = head);

 }

}

V poll() { // from head
 V v = null;
 If (head!=null) {

 if (head == tail) { // list is one el
tail = tail.prev;

 }
 elif (head.next == tail) { list is two el

tail.prev = null
 }
 v = head.value;
 head = head.next;
 if (head!=null) {

head.prev = null;
 }

 }
 return v;
}What could go wrong?

Race conditions

◻ Race conditions are bad news
⬜ Race conditions can cause many kinds of bugs, not just the example we

see here!
⬜ Common cause for “blue screens”: null pointer exceptions, damaged

data structures
⬜ Concurrency makes proving programs correct much harder!

35

Race conditions
36

Race conditions
37

Synchronization

◻ To prevent race conditions, one often requires a process to

“acquire” resources before accessing them, and only one process

can “acquire” a given resource at a time.

◻ This process is called synchronization

◻ Different languages provide more/less native support for

synchronisation. Java provides

⬜ Synchronized primitive

⬜ Locks

⬜ Semaphores (don’t look at this here)

38

Synchronized Keyword

◻ Synchronized keyword in Java acquires exclusive ownership of a
given resource

◻ Exists in two contexts:
⬜ Synchronized methods
⬜ Synchronized blocks

◻ Every object in Java has an intrinsic lock (or monitor lock)

39

Synchronized Methods

◻ To make a method synchronized,
simply add the synchronized keyword
to its declaration

40

synchronized void add(V v) { // to tail
 Node newNode = new Node(v);
 If (tail!=null) {

tail.next = newNode;
newNode.prev = tail;
tail = newNode;

 } else {
head = new Node(v);
tail = head;

 }

}

Synchronized Methods

◻ To make a method synchronized,
simply add the synchronized keyword
to its declaration

◻ A synchronized method acquires
exclusive ownership of the current
instance of the object (monitor lock)
⬜ Ownership lasts from the beginning

of the method until the end

◻ No two synchronized methods on the
same object can execute concurrently

41

synchronized void add(V v) { // to tail
 Node newNode = new Node(v);
 If (tail!=null) {

tail.next = newNode;
newNode.prev = tail;
tail = newNode;

 } else {
head = new Node(v);
tail = head;

 }

}

Synchronized Methods

◻ Synchronized methods are great when
modify only a single object

◻ And when are ok with locking the entire
object during execution
⬜ Ex: currently locking the entire

linked list, even if looking at different
nodes

42

synchronized void add(V v) { // to tail
 Node newNode = new Node(v);
 If (tail!=null) {

tail.next = newNode;
newNode.prev = tail;
tail = newNode;

 } else {
head = new Node(v);
tail = head;

 }

}

Synchronized Blocks

◻ Unlike synchronized methods,
synchronized blocks must specify the
object that they wish to lock

◻ As in synchronized methods,
⬜ Might have to wait if other thread

has acquired object.
⬜ While this thread is executing the

synchronized block, the object is
locked. No other thread can obtain
the lock.

43

void add(V v) { // to tail
 Node newNode = new Node(v);
 synchronized (this) {
 If (tail!=null) {

tail.next = newNode;
newNode.prev = tail;
tail = newNode;

 } else {
head = new Node(v);
tail = head;

 }
 }
}

Revisiting the DLL

◻ What if we added a third method: traverse, that prints out all the nodes
of the DLL
⬜ Can we achieve better performance using synchronized blocks?

44

Revisiting the DLL

◻ What if we added a third method: traverse, that prints out all the nodes
of the DLL
⬜ Can we achieve better performance using synchronized blocks?

◻ What if we locked individual nodes in the DLL instead of locking the
DLL itself?
⬜ How should we lock those?

45

Revisiting the DLL (head/tail not null)
46

void add(V v) { // to tail
 Node newNode = new Node(v);
 synchronized(head) {

synchronized(tail) {
 If (tail!=null) {

tail.next = newNode;
newNode.prev = tail;
tail = newNode;

 } else {
head = tail;
tail = new Node(v);

 }
 }
 }
}

V poll() { // from head
 synchronized (head) {

synchronized (tail) {
 V v = null;
 If (head!=null) {

 if (head == tail) { // list is one el
tail = tail.prev;

 }
 elif (head.next == tail) { list is two el

tail.prev = null
 }
 v = head.value;
 head = head.next;
 if (head!=null) {

head.prev = null;
 }

 } }}
 return v;
}

What happens if null?
47

◻ Null objects will throw a null pointer exceptions when calling
synchronized

◻ But if we don’t call synchronize, two threads could try to set head to
non-null concurrently!

◻ What can we do?!

What happens if null?
48

◻ Null objects will throw a null pointer exceptions when calling
synchronized

◻ But if we don’t call synchronize, two threads could try to set head to
non-null concurrently!

◻ What can we do?!
⬜ One option: make add/poll acquire a lock on the linked list to check

whether head/tail is null
⬜ If not null, acquire lock on object, then release lock on linked list.

What happens if null?
49

◻ Null objects will throw a null pointer exceptions when calling
synchronized

◻ But if we don’t call synchronize, two threads could try to set head to
non-null concurrently!

◻ What can we do?!
⬜ One option: make add/poll acquire a lock on the linked list to check

whether head/tail is null
⬜ If not null, acquire lock on object, then release lock on linked list.
⬜ BUT synchronized blocks can only be nested

What happens if null?
50

◻ Null objects will throw a null pointer exceptions when calling
synchronized

◻ But if we don’t call synchronize, two threads could try to set head to
non-null concurrently!

◻ What can we do?!
⬜ One option: make add/poll acquire a lock on the linked list to check

whether head/tail is null
⬜ If not null, acquire lock on object, then release lock on linked list.
⬜ Better option, use Java Locks, that can never be null

Java Locks
51

◻ Lock objects work very much like the
implicit locks used by synchronized
code. As with implicit locks, only one
thread can own a Lock object at a time

◻ Benefits:
⬜ decide when to acquire/release lock
⬜ Can “give up” on trying to acquire

lock

◻ Lots of different types of lock in
java.util.concurrent.locks
⬜ Read up!

private Lock headLock = new
ReentrantLock();

headLock.lock();
If (head ! = null) {

head.lock();
headLock.unlock();

}
else {

Node n = new Node<E>(e);
n.lock();
head = n;
headLock.unlock();

}

With great power …

◻ … Comes great responsibility

◻ Current locking, as we’ve seen, is hard!
⬜ Hard to understand what/when we should lock

◻ Locking in the wrong order can lead to deadlocks
⬜ What if we synchronize/lock first on head then on tail in one

method, but on tail then on head in another method?

52

Deadlock

◻ To prevent race conditions, one often requires a process to “acquire”
resources before accessing them, and only one process can “acquire” a
given resource at a time.

◻ But if processes have to acquire two or more resources at the same time in
order to do their work, deadlock can occur. This is the subject of the next
slides.

53

Dining philosopher problem
54

Five philosophers sitting
at a table.

Each repeatedly does
this:
 1. think
 2. eat.

Need TWO forks to eat
spaghetti!

Dining philosopher problem
55

Five philosophers sitting
at a table.

Each repeatedly does
this:
 1. think
 2. Eat.

Only brought 5 forks!

Need TWO forks to eat
spaghetti!

Dining philosopher problem
56

Five philosophers sitting
at a table.

To eat, they first pick up
the left fork, then the
right fork, then eat, then
put the left fork down,
then put the right fork
down.

Need TWO forks to eat
spaghetti!

Dining philosopher problem
57

Five philosophers sitting
at a table.

At one point they all pick
up their left fork!

Need TWO forks to eat
spaghetti!

Dining philosopher problem
58

Five philosophers sitting
at a table.

At one point they all pick
up their left fork!

We have a deadlock!

Need TWO forks to eat
spaghetti!

Dining philosopher problem
59

Simple solution to
deadlock:
Number the forks. Pick
up smaller one first
 1. think
 2. eat (2 forks)
eat is then:
 pick up smaller fork
 pick up bigger fork
 pick up food, eat
 put down bigger fork
 put down smaller fork

1

2

4

3

5

Correct Locking is Hard!

◻ Locking objects in different orders in different functions will cause
deadlock!

◻ Exceptions that occur in the middle of the program may cause locks
to not be released

◻ Insufficient locking may lead to race conditions!

60

Good practices

◻ Prefer the use of Lock locks over synchronized.

◻ When in doubt, use a lock for the whole method!
⬜ Only optimise when you need to
⬜ Correct code is always faster than incorrect code :-)

◻ Always acquire locks at the beginning of the method unless a good
reason not to

◻ Always try to release locks in a finally clause

61

Thread Coordination

◻ Threads often have to coordinate their actions
⬜ Example 1: Thread 1 (thread that monitors user input) must notify

thread 2 (the GUI thread) that there are new characters to draw.
Thread 2 is waiting for Thread 1’s notification.

⬜ Example 2: producer/consumer pattern

62

Option 1: Busy waiting
63

while (dll.isEmpty()) {
// Do nothing

}
// If exited the loop, means
// element was in thread
V v = dll.poll();

Loop until condition is satisfied.
Only then do you exit the loop

Option 1: Busy waiting
64

while (dll.isEmpty()) {
// Do nothing

}
// If exited the loop, means
// element was in thread
V v = dll.poll();

Loop until condition is satisfied.
Only then do you exit the loop

Inefficient. Not necessary to
constantly re-check condition.
Keeping thread busy for no
reason

Option 2: Guarded Blocks on Objects
65

synchronized(this) {
while (dll.isEmpty()) {
// Do nothing

this.wait();
 }

V v = dll.poll();
}

Suspend the current thread until
condition is satisfied by calling
Object.wait()

The invocation of wait does not
return until another thread has
issued a notification that some
special event may have occurred
— though not necessarily the event
this thread is waiting for:

Option 2: Guarded Blocks on Objects
66

synchronized(dll) {
while (dll.isEmpty()) {
// Do nothing

dll.wait();
 }

V v = dll.poll();
}

Calling wait() blocks the current
thread. Thread releases the monitor
lock of the dll object. It will
re-acquire it when receiving the
notification

Option 2: Guarded Blocks on Objects
67

synchronized(dll) {
while (dll.isEmpty()) {
// Do nothing

dll.wait();
 }

V v = dll.poll();
}

Calling wait() blocks/suspends the
current thread. Thread releases the
monitor lock of the dll object. It will
re-acquire it when receiving the
notification

Option 2: Guarded Blocks on Objects
68

synchronized(dll) {
while (dll.isEmpty()) {
// Do nothing

dll.wait();
 }

V v = dll.poll();
}

One should always invoke wait
inside a loop that tests for the
condition being waited for. Threads
can be woken up for a number of
reasons. Notification may not be for
the particular condition that current
thread was waiting for.

Option 2: Guarded Blocks on Objects
69

synchronized(dll) {
while (dll.isEmpty()) {
// Do nothing

dll.wait();
 }

V v = dll.poll();
}

Notifications are sent using the
notify or notifyAll keywords

notifyAll wakes up all threads
waiting on that lock that something
important happened.

notify() wakes up a single thread.
synchronized(dll) {

dll.insert(v);
dll.notifyAll();

}

Option 3: Guarded Blocks with Locks
70

dllLock.lock();
while (dll.isEmpty()){

hasElement.await();
}
V v = dll.poll();
dllLock.unlock();

Locks are associated with
Conditions that support await and
notify/notifyAll methods.

Can associate as many conditions
per locks as desired

Main benefit: more flexibility. Make it
explicit what condition you are
awaiting on

dllLock.lock();
dll.insert(v);
hasElement.notifyAll();
dllLock.unlock();

 Lock lock = new
 ReentrantLock();

 Condition hasElement =
lock.newCondition();

Java Concurrent Collections

◻ BlockingDeque<E>
⬜ A Deque that additionally supports blocking operations that wait for the

deque to become non-empty when retrieving an element, and wait for

space to become available in the deque when storing an element.

◻ BlockingQueue<E>
⬜ A Queue that additionally supports operations that wait for the queue to

become non-empty when retrieving an element, and wait for space to

become available in the queue when storing an element.

◻ ConcurrentMap<K,V>
⬜ A Map providing thread safety and atomicity guarantees.

71

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingDeque.html
https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html

Concurrency

◻ Brief overview of concurrency in Java!

◻ More formal treatment in higher level courses.

◻ Remember: monitor locks, synchronized, wait, notify/All, conditions, race
conditions, deadlocks

72

