1

Obiject-oriented programming
and data-structures

CS/ENGRD 2110
SUMMER 2018

CPU Central Processing Unit. Simplified view

The CPU is the part of the

computer that executes (
instructions. e
Java: x=x + 2; T
RiE=nN
Suppose variable x is at —] ot T .
Memory location 800, _’
Instructions at 10

Machine language:

10: load register 1, 800 : :
11: Add register 1, 2 Basic uniprocessor-CPU computer. Black

12: Store register 1, 800 lines indicate data flow, red lines indicate
control flow

Clock rate

(4

Clock rate “frequency at which CPU is running’
Higher the clock rate, the faster instructions
are executed.

First CPUs: 5-10 Hz (cycles per second)
Today MacBook Pro 3.5GHz

Your OS can control the
clock rate, slow it down when
idle, speed up when more
work to do

0000000

000000

00000

1| ¥y

+ Clock Speed (MHz) [~

11

Why multicore?
4

Moore's Law: Computer speeds and memory
densities nearly double each year

Transistors
Per Die

1010,
9 1965 Actual Data 2G gt

1
10° m MOS Arrays A MOS Logic 1975 Actual Data 256M 5121
108 1975 Projection 128M Itanium™

Memory Pentium® 4
107

Pentium® Il
A Microprocessor ™ — Pentium®ll
108 > Pentium®

105
104
103-
102
101

[1A L

1960 1965 1970 1975 1980 1985 1990/ 1995 20000 2005 2010

But a fast computer runs hot

Power dissipation rises as square of the
clock rate

Chips were heading toward melting
down!

Put more CPUs on a chip: with four CPUs
on one chip, even if we run each at half
speed we can perform more overall
computations!

Today: Not one CPU but many

Processing Unit is called a core.

Modern computers have “multiple cores” (processing units)
Instead of a single CPU (central processing unit) on the chip 5-10
common. Intel has prototypes with 80!

We often run many programs at the same time
Even with a single core (processing unit), your program may have more than

one thing “to do” at a time
Argues for having a way to do many things at once

Running processes on my laptop

>100 processes are competing for time. Here's some of them:

ncrooks@Koala: ~

&l ncrooks@Koala: ~ 174x46
top - 23:45:46 up 1 day, 10:12, 2 users, load average: 1,67, 1,41, 1,55

Tasks: 387 total, 2 running, 385 sleeping, © stopped, © zombie

%Cpu(s): 14,9 us, 1, 0,0 ni, 83,4 id, 0,2 wa, 0,0 hi, 0,0 si, 0,0 st

6 sy,
KiB Mem : 16208728 total, 2807888 free, 9454624 used, 3946216 buff/cache
KiB Swap: 16681980 total, 15191292 free, 1490688 used. 4173888 avail Mem

PID USER PR NI %CPU_%MEM TIME+ COMMAND
ncrooks 1324696 230636 chrome
ncrooks 1880824 522952 chrome
ncrooks 1221488 124884 chrome
ncrooks 1178324 95820 chrome
root 705852 136692 Xorg
ncrooks 1604464 112744 compiz
ncrooks 1140948 81624 chrome
ncrooks 2460288 589880 chrome
ncrooks 3994276 320116 chrome
message+ 44760 3348 dbus -daemon
root 525844 8688 NetworkManager
ncrooks 1126088 74340 chrome
ncrooks 1126600 72804 chrome
ncrooks 1126600 73092 chrome
ncrooks 787636 62556 /usr/bin/termin
ncrooks 8749748 0,989g SEVE]
ncrooks 1151208 92740 chrome
ncrooks 443772 30768 ibus-daemon
ncrooks 807516 100900 hud-service
ncrooks 1490036 48124 nautilus
ncrooks 854376 14420 nm-applet
ncrooks 1378708 230184 chrome
ncrooks 1132232 75544 chrome
ncrooks 1126088 72396 chrome
ncrooks 4602248 168640 skypeforlinux
ncrooks 1082100 80128 Franz
ncrooks 1126600 72476 chrome
ncrooks 1875580 113128 variety
ncrooks 1198472 162672 Franz
ncrooks 1914220 277452 soffice.bin
ncrooks 1454304 268880 chrome
root 185964 3696 systemd
root kthreadd
root kworker/0:@H
root mm_percpu_wq
root ksoftirqd/e
root rcu_sched
root rcu_bh
root migration/@

PO POPOPONNONAUVOARUAHWONORAUAUROOOUIN®O NS

PP PP PO PP POPOPOPORPOPOPOROROOOROO DD
CPPPPERARUWWWWWWWWWWWWWWNNNNNNNNDoWwWNo O

NN
° o

o¥-}
PP PO PO PO HHOPOHOOHO OO POPOPONWO OO WK

P PP PP PP PP PP PP PP PP OO OPOOOOOOOROH WO ®

P OHOPOPOOHINOUIWOOOPOOHOROOO D

o¥-

Programs can have several “threads of execution

We often run many programs at the same time
And each program may have several “threads of execution”

Process graphics Process user inputs

% L

Position: (477,2)

Distributed Systems

A distributed system is one in which the failure of
a computer you didn't even know existed can
render your own computer

Modern systems like Google, Facebook run

applications that are distributed across
thousands of machines in large datacenters

My own personal record is 342 machines.

Abstract View

@

Machine 1 Machine 2 Machine 3

Abstract View

Core 1 Core 2

Machine 1 Machine 2 Machine 3

Abstract View

Core 1 Core 2

Machine 1 Machine 2 Machine 3

Concurrency

Concurrency refers to a single program in which several processes, called
threads, are running simultaneously

Special problems arise

They see the same data and hence can interfere with each other, e.g.
one process modifies a complex structure like a heap while another is
trying to read it
m InCS2110, we'll look at:
e Race Conditions
e Deadlocks

We'll refer to any sequential execution chunk as a task

Thread

A thread is an object that “independently computes”
Needs to be created, like any object
Then “started” --causes some method to be called. It runs side by side
with other threads in the same program; they see the same global data

The actual executions could occur on different CPU cores, but dont have to
We can also simulate threads by multiplexing a smaller number of cores
over a larger number of threads

Java Class Thread

Threads are instances of class Thread
Can create many, but they do consume space & time

The Java Virtual Machine creates the thread that executes your main
method.

Threads have a priority
Higher priority threads are executed preferentially
By default, newly created threads have initial priority equal to the thread
that created it (but priority can be changed)

Java Class Thread

Threads are objects in Javaq, just like everything else

There's two ways to create a thread:
By extending the class Thread
By implementing the interface Runnable

Which one do you think is better?

Creating a new Thread (Method 1)

class MaxThread extends Thread {
private int[] array;

Call run () directly?
no new thread is used:
Calling thread will run it

MaxThread (int[] array) ({
this.array = array;

overrides

Thread. run () blic void run() ({

mputes max of array

MaxThread p= new MaxThread (array) ;

p.start() ; . Do this and
| Java invokes run () in new thread

Creating a new Thread (Method 2)

class MaxRun implements Runnable {
private int[] array;

MaxRun (int[] array) {
this.array = array ;

}

public void run() {
//compute max of an array

}

=

MaxRun p= new MaxRun (array) ;
new Thread(p) .start() ;

Threads can pause

When active, a thread is “runnable”. hent =
It may not actually be “running”. For that, a CPU must sche%t]le it.

Higher priority threads could run first.

A thread can pause
Call Thread.sleep(k) to sleep for k milliseconds

m Suspends the execution of a thread
Doing I/O (e.g. read file, wait for mouse input, open file) can cause thread

to pause
Java has a form of locks associated with objects. When threads lock an

object, one succeeds at a time.

A thread can offer another thread the CPU
Call yield()

Thread States

blocked

runnable

Notification acquired

waiting

terminated

waiting

How do | wait for threads to finish?

Calling join() on a thread will cause
another thread to wait until the first
thread is finished

Can be used to determine when the
output of a computation is ready!
For instance, let's modify our run
method to store the final max value
in fo an additional result array that is
shared across all threads

Want to know when it's safe to check
the result!

How do | wait for threads to finish?

COlllng iOinO ona ThreOd Wl” cause MaxRun pl= new MaxRun (arrayl, result, 0);

another thread to wait until the first MaxRun p2= new MaxRun(array2, result, 1);
) .. MaxRun p3= new MaxRun (array3, result, 2);
ThreGd IS flﬂlShed MaxRun p4= new MaxRun (array4, result, 3);

Thread tl = new Thread(pl) .start();
. Thread t2 = new Thread(p2) .start();
Can be used to determine when the Thread t3 = new Thread(p3) .start () ;
output of a computation is ready! LSRR, (8 O eseere ([P « SRS &
]] tl.join() ;
For instance, let's modify our run t2.90in() ;

method to store the final max value |3 32128)
in fo an additional result array that is

System.out.println(“Result “ +
shared across all threads] 0 B et o S

Want to know when it's safe to check

the result!

How do | wait for threads to finish?

COlllng iOinO ona ThreOd Wl” cause MaxRun pl= new MaxRun (arrayl, result, 0);

another thread to wait until the first MaxRun p2= new MaxRun(array2, result, 1);
) .. MaxRun p3= new MaxRun (array3, result, 2);
ThreGd IS flﬂlShed MaxRun p4= new MaxRun (array4, result, 3);

Thread tl = new Thread(pl) .start();
. Thread t2 = new Thread(p2) .start();
Can be used to determine when the Thread t3 = new Thread(p3) .start () ;
output of a computation is ready! LSRR, (8 O eseere ([P « SRS &
]] tl.join() ;
For instance, let's modify our run t2.90in() ;

method to store the final max value |3 32128)
in fo an additional result array that is

System.out.println(“Result “ +
shared across all threads] 0 B et o S

Want to know when it's safe to check

the result!

Memory Consistency Errors

Threads often operate on shared data

If not careful, however, concurrent access to shared data can break
the correctness of the program

Race conditions arise both
at the memory level
B memory consistency errors
At the program level
m |nvariants can be violated due to concurrent updates

What if threads share data?

Threads often operate on shared data

If not careful, however, concurrent access to shared data can break
the correctness of the program

Race conditions arise both
at the memory level
B memory consistency errors
At the program level
m |nvariants can be violated due to concurrent updates

Code is said to be thread-safe if it remains correct when accessed
concurrently

Race conditions
26|

1 Arace condition arises if two or more processes access the same
variables or objects concurrently and at least one does updates

o If the updates are not atomic, the end state can be inconsistent
An operation is atomic if it happens “all at once” without being
interrupted by other events.

Race conditions

1 Arace condition arises if two or more processes access the same
variables or objects concurrently and at least one does updates

o If the updates are not atomic, the end state can be inconsistent
An operation is atomic if it happens “all at once” without being

interrupted by other events.

1 Very few operations in modern systems are atomic !

Race conditions

-2
1 Suppose xis initially 5

Thread t1 Thread 12

X=X+ 1 X=X+ 1
System.out.printin(x); System.out.printin(x);

1 What do you think will be the end value?

Race conditions

-
5 Suppose xis initially 5

- LOAD x

. LOADX
- ADD 1 - ADD 1
0 - STORE x
- STORE X

. .. affer finishing, x = 6! We “lost” an update

Race conditions

-3
5 Suppose xis initially 5

Thread t1 Thread 12

- LOAD x

. LOAD X
- ADD 1 - ADD 1
0 - STORE x
- STORE X

1 Machine level implementation of increment is not atomic!

Race conditions

T
5 Suppose xis initially 5

Thread t1 Thread 12

- LOAD x 0 e

- LOAD x
- ADD 1 - ADD 1
0 - STORE x
- STORE X

1 Second store happens after first store -> we lost an update!

Program Correctness Errors

-3 £
o What if we want to insert a new element to a linked list?

Program Correctness Errors

33
- What if we want to insert a new element to a linked list?

V poll() { // from head
V v = null;

void add (Vv v) { // to tail If (head!=null) {

Node néwNode = new Node (V) ; if (head == tail) { // list is one el

If (tail!=null) { tail = tail.prev;
tail.next = newNode; }
femlesiaoprey = Ealls elif (head.next == tail) { list is two el
tail = newNode; tail.prev = null

} else { }
head = new Node (v) ; v = head.value;
tail = head; head = head.next;

) if (head!=null) {

head.prev = null;
:)
}

return v;

}

Program Correctness Errors

34
- What if we want to insert a new element to a linked list?

V poll() { // from head
V v = null;

void add (Vv v) { // to tail If (head!=null) {

Node néwNode = new Node (V) ; if (head == tail) { // list is one el

If (tail!=null) { tail = tail.prev;
tail.next = newNode; }
femlesiaoprey = Ealls elif (head.next == tail) { list is two el
tail = newNode; tail.prev = null

} else { }
head = new Node (v) ; v = head.value;
tail = head); head = head.next;

) if (head!=null) {

head.prev = null;
})
}

return v;

What could go wrong? }

Race conditions

Race conditions are bad news
Race conditions can cause many kinds of bugs, not just the example we
see here!
Common cause for “blue screens”: null pointer exceptions, damaged
data structures
Concurrency makes proving programs correct much harder!

Race conditions

Thijs Maas
0 Interested in the challenges between blockchains and the law—founder of

www.lawandblockchain.eu
Nov 8,2017 - 6 min read

Yes, this kid really just deleted $300
MILLION by messing around with
Ethereum's smart contracts,

IoNS

Race cond

siivs MR

R]

e kAR

R,

sraphdgeeprie-nsn-gl
CEESTEANANNERNER

PRI | T S

Synchronization

To prevent race conditions, one often requires a process to
“acquire” resources before accessing them, and only one process
can “acquire” a given resource at a time.

This process is called synchronization

Different languages provide more/less native support for
synchronisation. Java provides
[1] Synchronized primitive
[] Locks
[] Semaphores (don't look at this here)

Synchronized Keyword

Synchronized keyword in Java acquires exclusive ownership of a
given resource

Exists in fwo contfexts:
Synchronized methods
Synchronized blocks

Every object in Java has an intrinsic lock (or monitor lock)

Synchronized Methods

[

To make a method synchronized,
simply add the synchronized keyword
to its declaration

synchronized void add (v v) { // to
Node newNode = new Node (V) ;
If (tail'!=null) {
tail.next = newNode;
newNode.prev = tail;

tail
} else {

head

tail

newNode;

new Node (v) ;
head;

tail

Synchronized Methods

To make a method synchronized,
simply add the synchronized keyword
to its declaration

A synchronized method acquires

exclusive ownership of the current

instance of the object (monitor lock)
Ownership lasts from the beginning
of the method until the end

No two synchronized methods on the
same object can execute concurrently

synchronized void add (Vv v) { // to

Node newNode = new Node (V) ;

If (tail!=null) {
tail.next = newNode;
newNode.prev = tail;
tail = newNode;

} else {
head
tail

new Node (v) ;
head;

tail

Synchronized Methods

Synchronized methods are great when
modify only a single object

synchronized void add (Vv v) { // to tail

And when are ok with locking the entire Node newNode = new Node (v) ;
object during execution If (taill=null) |
. . tail.next = newNode;
[] Ex:currently locking the entire newNode.prev = tail;
linked list, even if looking at different } elset?ll = newNode;
nodes head = new Node (V) ;

tail = head;

Synchronized Blocks

Unlike synchronized methods,
synchronized blocks must specify the
object that they wish to lock

0 Asinsynchronized methods,

[1 Might have to wait if other thread
has acquired object.

[] While this thread is executing the
synchronized block, the object is
locked. No other thread can obtain
the lock.

void add(v v) { // to tail
Node newNode = new Node (V) ;
synchronized (this) {
If (tail!=null) {
tail.next = newNode;
newNode.prev = tail;

tail = newNode;
} else {
head new Node (v) ;

tail head;

Revisiting the DLL

What if we added a third method: traverse, that prints out all the nodes
of the DLL
Can we achieve better performance using synchronized blocks?

Revisiting the DLL

What if we added a third method: traverse, that prints out all the nodes
of the DLL
Can we achieve better performance using synchronized blocks?

What if we locked individual nodes in the DLL instead of locking the
DLL itself?
[1 How should we lock those?

Revisiting the DLL (head/tail not null)

V poll() { // from head
synchronized (head) {

void add(V v) { // to tail synchronized (tail) {
Node newNode = new Node (V) ; W v = molils
synchronized (head) { If (head!=null) {
synchroplzed(tall) { if (head == tail) { // list is one el
If (tail!=null) { tail = tail.prev;
tail.next = newNode; }
acEieds prev = talls elif (head.next == tail) { list is two el
tail = newNode; tail.prev = null
} else { }
hegd = tail; v = head.value;
tail = new Node (V) ; head = head.next;
J if (head!=null) {

}} head.prev = null;
}
}) o))

return v;

What happens if null?

Null objects will throw a null pointer exceptions when calling
synchronized

But if we don't call synchronize, two threads could try to set head to
non-null concurrently!

What can we do?!

What happens if null?

Null objects will throw a null pointer exceptions when calling
synchronized

But if we don't call synchronize, two threads could try to set head to
non-null concurrently!

What can we do?!

[1 One option: make add/poll acquire a lock on the linked list fo check
whether head/tail is null

[1 If not null, acquire lock on object, then release lock on linked list.

What happens if null?

Null objects will throw a null pointer exceptions when calling
synchronized

But if we don't call synchronize, two threads could try to set head to
non-null concurrently!

What can we do?!

[1 One option: make add/poll acquire a lock on the linked list fo check
whether head/tail is null

[1 If not null, acquire lock on object, then release lock on linked list.

[BUT synchronized blocks can only be nested

What happens if null?

Null objects will throw a null pointer exceptions when calling
synchronized

But if we don't call synchronize, two threads could try to set head to
non-null concurrently!

What can we do?!

[1 One option: make add/poll acquire a lock on the linked list fo check
whether head/tail is null

[1 If not null, acquire lock on object, then release lock on linked list.
[] Better option, use Java Locks, that can never be null

Java Locks

Lock objects work very much like the

implicit locks used by synchronized private Lock headLock = new
code. As with implicit locks, only one ReentrantLock () ;

thread can own a Lock object at a time

Benefits: headLock.lock() ;
decide when to acquire/release lock If (head ! = null) {
" " . . head.lock () ;
Can “give up” on trying fo acquire headLock . unlock () ;
lock }
else {
Lots of different types of lock in iofici o Node<E>{(e) s

Java.util.concurrent.locks head = n;
[] Read up! headLock.unlock () ;

With great power ...

... Comes great responsibility

Current locking, as we've seen, is hard!
Hard to understand what/when we should lock

Locking in the wrong order can lead to deadlocks
What if we synchronize/lock first on head then on tail in one
method, but on tail then on head in another method?

Deadlock

To prevent race conditions, one often requires a process to “acquire”
resources before accessing them, and only one process can “acquire” a
given resource at a time.

But if processes have to acquire two or more resources at the same time in
order to do their work, deadlock can occur. This is the subject of the next
slides.

Dining philosopher problem

P

Five philosophers sitting
at a table.

Each repeatedly does
this:

1. think

2. eat.

Need TWO forks to eat
spaghettil

Dining philosopher problem

P

Five philosophers sitting
at a table.

Each repeatedly does
this:

1. think

2. Eat.

Only brought 5 forks!

Need TWO forks to eat
spaghettil

Dining philosopher problem

"

A

Five philosophers sitting
at a table.

To eat, they first pick up
the left fork, then the
right fork, then eat, then
put the left fork down,
then put the right fork
down.

Need TWO forks to eat
spaghettil

Dining philosopher problem

P

Five philosophers sitting
at a table.

At one point they all pick
up their left fork!

Need TWO forks to eat
spaghettil

Dining philosopher problem

P

Five philosophers sitting
at a table.

At one point they all pick
up their left fork!

We have a deadlock!

Need TWO forks to eat
spaghettil

Dining philosopher problem

-
A

Simple solution to
deadlock:
Number the forks. Pick
up smaller one first
1. think
2. eat (2 forks)
eat is then:
pick up smaller fork
pick up bigger fork
pick up food, eat
put down bigger fork
put down smaller fork

Correct Locking is Hard!

Locking objects in different orders in different functions will cause
deadlock!

Exceptions that occur in the middle of the program may cause locks
to not be released

Insufficient locking may lead to race conditions!

Good practices

Prefer the use of Lock locks over synchronized.
When in doubt, use a lock for the whole method!
Only optimise when you need to

Correct code is always faster than incorrect code :-)

Always acquire locks at the beginning of the method unless a good
reason not fo

Always try to release locks in a finally clause

Thread Coordination

Threads often have to coordinate their actions
Example 1: Thread 1 (thread that monitors user input) must notify
thread 2 (the GUI thread) that there are new characters to draw.
Thread 2 is waiting for Thread 1's notification.

Example 2: producer/consumer pattern
Blocking Queue

N

Producer-Thread Consumer-Thread
Put element in the queue and wait till space Retrieve element from the queue and wait

is availableif queue is full. till element is available if queue is empty.

Option 1: Busy waiting

N

Loop until condition is satisfied.
Only then do you exit the loop

Option 1: Busy waiting

while (dll.isEmpty())

}

// If exited the loop, means
// element was in thread

V v

// Do nothing

= dll.poll();

{

Loop until condition is satisfied.
Only then do you exit the loop

Inefficient. Not necessary to
constantly re-check condition.
Keeping thread busy for no
reason

Option 2: Guarded Blocks on Objects

synchronized (this) ({
while
// Do nothing

this.wait();

}
V v

(dll.isEmpty())

dll.poll();

{

Suspend the current thread until
condition is satisfied by calling
Object.wait()

The invocation of wait does not
return until another thread has
issued a notification that some
special event may have occurred
— though not necessarily the event
this thread is waiting for:

Option 2: Guarded Blocks on Objects

66|
Calling wait() blocks the current
synchronized (d1l) { thread. Thread releases the monitor
while (dll.isEmpty()) f lock of the dll object. It will
// Do nothing . .
SHAL e () - re-acquire it when receiving the
notification

}
Vv =dll.poll();

Option 2: Guarded Blocks on Objects

synchronized (dll) {
while
// Do nothing

dll.wait();

}
V v

(dll.isEmpty())

dll.poll();

{

Calling wait() blocks/suspends the
current thread. Thread releases the
monitor lock of the dll object. It will
re-acquire it when receiving the
notification

Option 2: Guarded Blocks on Objects

synchronized (dll) {

while (dll.isEmpty()) {

// Do nothing
dll.wait();

}
V v

dll.poll();

One should always invoke wait
inside a loop that tests for the
condition being waited for. Threads
can be woken up for a number of
reasons. Notification may not be for
the particular condition that current
thread was waiting for.

Option 2: Guarded Blocks on Objects

synchronized (dll) {
while (dll.isEmpty())
// Do nothing
dll.wait();

}
Vv =dll.poll();

synchronized (dll) {
dll.insert (v);
dll.notifyAll () ;

{

Notifications are sent using the
notify or notifyAll keywords

notifyAll wakes up all threads
waiting on that lock that something

important happened.

notify() wakes up a single thread.

Option 3: Guarded Blocks with Locks

Lock lock = new
ReentrantLock () ;
Condition hasElement =
lock.newCondition() ;

dllLock.lock () ;

while (dll.isEmpty()) {
hasElement.await () ;

}

V v = dll.poll();

dllLock.unlock() ;

dllLock.lock() ;
dll.insert (v);
hasElement.notifyAll () ;
dllLock.unlock() ;

Locks are associated with
Conditions that support await and
notify/notifyAll methods.

Can associate as many conditions
per locks as desired

Main benefit: more flexibility. Make it
explicit what condition you are
awaifing on

Java Concurrent Collections

2 T I EEEE—————

0 BlockingDeque<E>
" | A Deque that additionally supports blocking operations that wait for the

deque to become non-empty when retrieving an element, and wait for
space to become available in the deque when storing an element.

o BlockingQueue<E>
" | A Queue that additionally supports operations that wait for the queue to

become non-empty when retrieving an element, and wait for space to
become available in the queue when storing an element.

0 ConcurrentMap<K,V>
| A Map providing thread safety and atomicity guarantees.

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingDeque.html
https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html

Concurrency

- /D2‘-|b~~~—nnW
-1 Brief overview of concurrency in Javal!

-1 More formal treatment in higher level courses.

= Remember: monitor locks, synchronized, wait, notify/All, conditions, race
conditions, deadlocks

