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Hash Functions

◻ Requirements:

1) deterministic

2) return a number in [0..n]
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Which of the following functions f: Object -> int are hash functions:
a) f(x) = x
b) f(x) = x.hashCode() 
c) f(x) = &x
d) f(x) = 0



Hash Functions

◻ Requirements:

1) deterministic

2) return a number in [0..n]
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◻ Properties of a good hash:

1) fast

2) collision-resistant

3) evenly distributed

4) hard to invert



Example: hashCode()
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◻ Method defined in java.lang.Object

◻ Default implementation: uses memory address of the object
⬜ If you override equals, you must override hashCode!

◻ String overrides hashCode()
⬜ s.hashCode() = s[0] * 31^(n-1) + s[1]*31^(n-2) + … + s[n-1]



Example: SHA-256



Application: Error Detection

◻ Hash functions are used for error detection

◻ E.g., hash of uploaded file should be the same as hash of original file (if 
different, file was corrupted)
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Application: Integrity

◻ Hash functions are used to "sign" 
messages

◻ Provides integrity guarantees in 
presence of an attacker

◻ Principals share some secret sk

◻ Send (m, h(m,sk))



◻ Hash functions are used to store 
passwords

Application: Password Storage
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◻ Hash functions are used to store 
passwords

◻ Could store plaintext passwords

⬜ Problem: Password files get stolen

◻ Could store     (username, h(password))

⬜ Problem: password reuse

◻ Instead, store  

⬜ (username, s, h(password, s))

Application: Password Storage



Application: Hash Set
13

Data Structure add(val x) lookup(int i) find(val x)
ArrayList

LinkedList

TreeSet

HashSet

2 1 3 0

2 1 3 0
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Application: Hash Set
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Data Structure add(val x) lookup(int i) find(val x)
ArrayList

LinkedList

TreeSet

HashSet

2 1 3 0
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HashSet and HashMap

Map<K,V>{

  V put(K key, V value);

  V get(K key);

  V remove(K key);

}

Set<V>{

  boolean add(V value);

  boolean contains(V value);

  boolean remove(V value);

}



Recall: Array Lists

◻ Finding an element in an ArrayList takes constant time when we know the 
index in the element
⬜ O(1)

◻ Unfortunately, if I want to determine whether “Donkey” is the set,  I don’t know 
where “Donkey” could be”
⬜ So must search all the elements O(n)



Recall: Array Lists

◻ Finding an element in an ArrayList takes constant time when we know the 
index in the element
⬜ O(1)

◻ Unfortunately, if I want to determine whether “Donkey” is the set,  I don’t know 
where “Donkey” could be”
⬜ So must search all the elements O(n)

◻ Could hash functions somehow help us?
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◻ Finding an element in an array takes constant time when know which 
index is stored in.

◻ Recall that hash functions map objects to a number and are 
deterministic



Hash Tables

Hash 
functionCA

add(“CA”)

◻ Finding an element in an array takes constant time when know which 
index is stored in.

◻ Recall that hash functions map objects to a number and are 
deterministic



Hash Tables

Hash 
functionCA 5

CA

0 1 2 3 4 5
add(“CA”)

b

mod 6

NYMA

◻ Finding an element in an array takes constant time when know which 
index is stored in.

◻ Recall that hash functions map objects to a number and are 
deterministic



So what goes wrong?

hashIndex

k1

hashIndex

k2

0 1 2 3 4 5



Can we have perfect hash functions?

◻ Perfect hash functions map each value to a different index in the hash table



Can we have perfect hash functions?

◻ Perfect hash functions map each value to a different index in the hash table

◻ Impossible in practice

● don’t know size of the array

● Number of possible values far far exceeds the array size

⬜ Want array size proportional to actual number of keys, not number of 
possible keys

● no point in a perfect hash function if it takes too much time to compute



Can we have perfect hash functions?

◻ Perfect hash functions map each value to a different index in the hash table

◻ Impossible in practice

● don’t know size of the array

● Number of possible values far far exceeds the array size

⬜ Want array size proportional to actual number of keys, not number of 
possible keys

● no point in a perfect hash function if it takes too much time to compute

◻ All hash functions will have collisions



Graphically

Universe U of possible keys

K (actual 
keys)

h(k1) = h(k4)

h(k3)

h(k4)

K1K2

K3

K4

Want to minimise 
both the size of 
the array and the 
risk of collisions!



Load Factor
26

Load factor



Collision Resolution

Two ways of handling collisions:

1. Chaining                                 2.  Open Addressing



Chaining

hashIndex 3New YorkNY

add(“NY”)
add(“CA”)
lookup("CA")

VA

0 1 2 3 4 5

Place all the elements that hash to the same slot 
into the same linked list
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Chaining

hashIndex 3

NY VA

0 1 2 3 4 5

New YorkCA

add(“NY”)
add(“CA”)
lookup("CA")

Place all the elements that hash to the same slot 
into the same linked list



Chaining

hashIndex 3

NY VA

0 1 2 3 4 5

New YorkCA

CA

add(“NY”)
add(“CA”)
lookup("CA")

Place all the elements 
that hash to the same slot 
into the same linked list



Chaining

hashIndex 3

NY VA

0 1 2 3 4 5

New YorkCA

CA
bucket/chain
(linked list)

add(“NY”)
add(“CA”)
lookup("CA")



Open Addressing

Probing: Find another available space in the array add(“CA”)

hashIndexCA 3

MA NY VA

0 1 2 3 4 5



Open Addressing

◻ All elements occupy the hash table itself

◻ Each entry contains either an element of the set or  NULL

◻ When searching for an element, systematically examine table slots until 
either we find the desired element, or know that the element is not in the set.

◻ No nodes are stored outside of the hash table, so table can fill up



Open Addressing

Probing:  Successively probe the hash table until we find an 
empty slot in which to put the key. add(“CA”)

hashIndexCA

MA NY

0 1 2 3 4 5
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Open Addressing

Probing:  Successively probe the hash table until we find an 
empty slot in which to put the key. add(“CA”)

hashIndexCA 3

MA NY CA VA

0 1 2 3 4 5



Different probing strategies

linear probing:
search the array in order, starting from h(x):
i, i+1, i+2, i+3 . . .

When a collision occurs, how do we search for an empty space?



Different probing strategies

linear probing:
search the array in order, starting from h(x):
i, i+1, i+2, i+3 . . .

When a collision occurs, how do we search for an empty space?

Problem of clustering:
problem where nearby 
hashes have very similar 
probe sequence so we get 
more collisions

Long runs of occupied slots build up, increasing the average search time

The bigger the cluster gets, the faster it grows!



Different probing strategies

When a collision occurs, how do we search for an empty space?

quadratic probing: search the array in 
nonlinear sequence:
i, i+12, i+22, i+32 . . .



Different probing strategies

When a collision occurs, how do we search for an empty space?

quadratic probing: search the array in 
nonlinear sequence:
i, i+12, i+22, i+32 . . .

Idea is to probe more widely 
separated cells, instead of 
those adjacent to the 
primary hash site.



Collision Resolution

Two ways of handling collisions:

1. Chaining                                 2.  Open Addressing



Load factor increases

Load factor
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Load factor increases

Load factor

◻ What happens  when the load factor increases?
⬜ For the chaining method?

■ Always possible to insert new elements, but the chains become 
longer.

■ Operations slowdown
⬜ For the open addressing?

■ Clustering causes operations to slowdown
■ Eventually impossible to insert



Resizing

Solution: Dynamic resizing



Resizing

◻ Double the size. 

◻ Reinsert / rehash all elements to 
new array

Solution: Dynamic resizing



Resizing

◻ Double the size. 

◻ Reinsert / rehash all elements to 
new array

◻ Why not simply copy into first 
half?

Solution: Dynamic resizing



Let's try it

element a b c d e

hashCode 0 9 17 11 19

Insert the following elements (in order) into an array of size 6:

0 1 2 3 4 5

a b c

d

e



Let's try it

element a b c d e

hashCode 0 9 17 11 19

Insert the following elements (in order) into an array of size 6:

0 1 2 3 4 5

a b cd e

Note: Using linear probing, no resizing



Let’s try it

element a b c d e

hashCode 0 9 17 11 19

Insert the following elements (in order) into an array of size 6:

0 1 2 3 4 5

What is the final state of the hash table if you use open 
addressing with quadratic probing (assume no resizing)?



Let's try it

element a b c d e

hashCode 0 9 17 11 19

Insert the following elements (in order) into an array of size 6:

0 1 2 3 4 5

a b cde

Note: Using quadratic probing, no resizing



Let's try it

element a b c d e

hashCode 0 9 17 11 19

Insert the following elements (in order) into an array of size 6:

0 1 2 3 4 5

a b c
0 1 2 3 4 5 6 7 8 9 10 11

a bc de

Note: Using quadratic probing, resizing if load > ½ 



Worst Case Time Complexity 
57

Collision Handling put(v) get(v) remove(v)

Chaining
Open Addressing



Worst Case Time Complexity 
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Collision Handling put(v) get(v) remove(v)

Chaining O(1) O(n) O(n)
Open Addressing O(n) O(n) O(n)

Weren’t hashsets designed to improve 
complexity? No better than a linked list!



Worst Case Time Complexity 
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Collision Handling put(v) get(v) remove(v)

Chaining O(1) O(n) O(n)
Open Addressing O(n) O(n) O(n)

Weren’t hashsets designed to improve 
complexity? No better than a linked list!

Hashsets are an example of a datastructure 
where we care about average time complexity, not 
worst time.



Recall:  Load Factor

Load factor



Gold Standard for Hash Function

◻ A good hash function satisfies (approximately) the assumption of 
simple uniform hashing:
⬜ Each key is equally likely to hash to any of the m slots, 

independently of where any other key has hashed to
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Gold Standard for Hash Function

◻ A good hash function satisfies (approximately) the assumption of 
simple uniform hashing:
⬜ Each key is equally likely to hash to any of the m slots, 

independently of where any other key has hashed to

◻ Unfortunately:

⬜ Hard to check

⬜ Rarely know the key distribution

62



Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?
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Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?

◻ Complexity of get/remove is:
⬜ The cost of computing the hash function
⬜ The cost of finding the element in the chain
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Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?

◻ Complexity of get/remove is:
⬜ The cost of computing the hash function O(1)
⬜ The cost of finding the element in the chain O (avg length of chain)
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Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?

◻ Complexity of get/remove is:
⬜ The cost of computing the hash function O(1)
⬜ The cost of finding the element in the chain O (avg length of chain)

◻ What is the average length of the chain?
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Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?

◻ Complexity of get/remove is:
⬜ The cost of computing the hash function O(1)
⬜ The cost of finding the element in the chain O (avg length of chain)

◻ What is the average length of the chain?
⬜ Assume uniform hashing: every entry equally likely to end up in a 

slot in the array
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Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?

◻ Complexity of get/remove is:
⬜ The cost of computing the hash function O(1)
⬜ The cost of finding the element in the chain O (avg length of chain)

◻ What is the average length of the chain?
⬜ Assume uniform hashing: every entry equally likely to end up in a 

slot in the array
⬜ If m slots and n entries, uniform distribution with probability n/m
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Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?

◻ Complexity of get/remove is:
⬜ The cost of computing the hash function O(1)
⬜ The cost of finding the element in the chain O (avg length of chain)

◻ What is the average length of the chain?
⬜ Assume uniform hashing: every entry equally likely to end up in a 

slot in the array
⬜ If m slots and n entries, uniform distribution with probability n/m
⬜ Length of chain is the expectation of a uniform distribution
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Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?

◻ Complexity of get/remove is:
⬜ The cost of computing the hash function O(1)
⬜ The cost of finding the element in the chain O (avg length of chain)

◻ What is the average length of the chain?
⬜ Assume uniform hashing: every entry equally likely to end up in a 

slot in the array
⬜ If m slots and n entries, uniform distribution with probability n/m
⬜ Length of chain is the expectation of a uniform distribution
⬜ Expectation is n/m, so expectation is ƛ

70



Average Time Complexity
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Collision Handling put(v) get(v) remove(v)

Chaining O(1) O(1 + ƛ) O(1 + ƛ)
Open Addressing

(Ignoring Resizing)



Average Complexity of OpenAddr

◻ How do we compute the average complexity of chaining?
⬜ Must compute the average number of probes.

72



Average Complexity of OpenAddr
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Average Complexity of OpenAddr

◻ How do we compute the average complexity of chaining?
⬜ Must compute the average number of probes.

◻ How many probes do we do?
⬜ We always have to probe the first location
⬜ With probability ƛ, first location is full, have to probe again
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Average Complexity of OpenAddr

◻ How do we compute the average complexity of chaining?
⬜ Must compute the average number of probes.

◻ How many probes do we do?
⬜ We always have to probe the first location
⬜ With probability ƛ, first location is full, have to probe again
⬜ With probability ƛ^2, second location is also have, have to probe 

yet again
⬜ ...
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Average Complexity of OpenAddr

◻ How do we compute the average complexity of chaining?
⬜ Must compute the average number of probes.

◻ How many probes do we do?
⬜ We always have to probe the first location
⬜ With probability ƛ, first location is full, have to probe again
⬜ With probability ƛ^2,  first two locations are full, have to probe yet 

again
⬜ …

◻ Expected number of probes = 1 + ƛ + ƛ^2 + ƛ^3 … = 1 / (1 - ƛ)

77



Average Time Complexity
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Collision Handling put(v) get(v) remove(v)

Chaining O(1) O(1 + ƛ) O(1 + ƛ)
Open Addressing O(1+ 1/1-ƛ) O(1+ 1/1-ƛ) O(1+ 1/1-ƛ)

(Ignoring Resizing)



Average Complexity Compared

Average
Complexity

Load Factor

Still no 
resizing!



Collision Resolution Summary

◻ store entries in separate chains 
(linked lists)

◻ can have higher load 
factor/degrades gracefully as 
load factor increases

◻ store all entries in table

◻ use linear or quadratic probing to 
place items

◻ uses less memory

◻ clustering can be a problem — 
need to be more careful with 
choice of hash function

Chaining Open Addressing

80



Ideal Load Factor

Load factor

0 1

waste of memory too slow

best range



Assume Constant Load Factor!
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Collision Handling put(v) get(v) remove(v)

Chaining O(1) O(1) O(1)
Open Addressing O(1) O(1) O(1)

If we assume constant load factor, then all 
operations take constant time.

But assuming constant load factor requires resizing 
the array, and this does not take constant time!



Amortised Analysis to the rescue!
83

◻ In an amortised analysis, the time required to perform a sequence of 
operations is averaged over all the operations

◻ Can be used to calculate the average cost of an operation



Amortised Analysis to the rescue!
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◻ Assume dynamic resizing with load factor ƛ = 1/2

◻ Most put operations take (expected) time O(1)

◻ If i = 2^j, put takes time O(i) 
⬜ Start with an array of size 2, and then double every time reaches half full

◻ Total time to perform n put operations is 
⬜ N * O(1) + O(2^0 + 2^1 + 2^2 + … + 2^j)

◻ Average time to perform 1 put operation is 
⬜ O(1) + O(1/ 2^j + 1/ 2^(j-1) + … + ¼ + ½ + 1) = O(1)



Amortised Analysis (with resize)
85

Collision Handling put(v) get(v) remove(v)

Chaining O(1) O(1) O(1)
Open Addressing O(1) O(1) O(1)



Can we do better?
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Collision Handling put(v) get(v) remove(v)

Chaining O(1) O(1) O(1)
Open Addressing O(1) O(1) O(1)

Can we somehow bound the worst case of put/get?



What if?
87

◻ We had more than just one hash function
⬜ Use two hash functions, and place the element in the bucket that is the 

least loaded
⬜ Second-Choice Hashing
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⬜ Second-Choice Hashing
⬜ Still insufficient to get past O(1 + ƛ)



What if?
89

◻ We had more than just one hash function
⬜ Use two hash functions to compute two buckets, and place the element 

in the bucket that is the least loaded
⬜ Second-Choice Hashing
⬜ Still insufficient to get past O(1 + ƛ)

◻ We could move keys after they’re placed
⬜ Still insufficient to bound the worst case lookup 
⬜ It does however reduce variance



Robin-Hood Hashing
90

◻ Variation of open-addressing where keys can be moved after 
they’re placed

◻ Key Idea: when a key is already present during an insertion that is 
closer to its “base” location than the new key, it is displaced to 
make room for new key
⬜ Decreases variance in the expected number of lookups

a b z x c d e



Robin-Hood Hashing
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◻ Variation of open-addressing where keys can be moved after 
they’re placed

◻ Key Idea: when a key is already present during an insertion that is 
closer to its “base” location than the new key, it is displaced to 
make room for new key
⬜ Decreases variance in the expected number of lookups

a b z x c d e

Probe count for e is 1



Robin-Hood Hashing
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◻ Variation of open-addressing where keys can be moved after 
they’re placed

◻ Key Idea: when a key is already present during an insertion that is 
closer to its “base” location than the new key, it is displaced to 
make room for new key
⬜ Decreases variance in the expected number of lookups

a b z x c d e

Try to insert u 



Robin-Hood Hashing
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◻ Variation of open-addressing where keys can be moved after 
they’re placed

◻ Key Idea: when a key is already present during an insertion that is 
closer to its “base” location than the new key, it is displaced to 
make room for new key
⬜ Decreases variance in the expected number of lookups

a b z x c d e

Try to insert u By the time reach e, u has a probe 
count of 4, e only of 1, so displace e 
to the right, and insert u at e’s spot



Cuckoo Hashing
94

◻ Cuckoo hashing combines both ideas

◻ Hashing scheme where
⬜ Lookups are worst-case O(1)
⬜ Deletions are worst-case O(1)
⬜ Insertions are expected O(1)

(Analysis is quite complicated, we won’t see it in class)



Cuckoo Hashing
95

◻ Maintains two tables, each of which has m elements

◻ Choose to hash functions h
1
 and h

2
 

◻ Maintains invariant:
⬜ every element will be either at position h

1
(x) in the 

first table or h
2
(x) in the second

h1(x)

h2(x)



Cuckoo Hashing
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◻ Lookups take time O(1) because only two locations 
must be checked

◻ Deletions take time O(1) because only tw locations must 
be checked

h1(x)

h2(x)



Cuckoo Hashing
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◻ To insert an element y, first try table 1:
⬜ If h

1
(y) is empty, place y there.

h1(y)



Cuckoo Hashing
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◻ To insert an element y, first try table 1:
⬜ If h

1
(y) is empty, place y there.

⬜ If h
1
(y) contains an element u, place y there but then 

try to place y into table 2

   uh1(y)



Cuckoo Hashing
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◻ To insert an element y, first try table 1:
⬜ If h

1
(y) is empty, place y there.

⬜ If h
1
(y) contains an element u, place y there but then 

try to place y into table 2

   u

h1(y)    y

h2(u)



Cuckoo Hashing
100

◻ What if table 2 had an element z at h
2
(u)?

  z

h1(y)    y

h2(u)  u



Cuckoo Hashing
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◻ What if table 2 had an element z at h
2
(u)?

⬜ Then evict z, and place h
2
(z) in the first table

  z

h1(y)    y

h2(u)  u



Cuckoo Hashing
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◻ What if table 2 had an element z at h
2
(u)?

⬜ Then evict z, and place h
2
(z) in the first table

◻ Keep going until detect that there is a cycle

  z

h1(y)    y

h2(u)  u



Cuckoo Hashing
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◻ What if table 2 had an element z at h
2
(u)?

⬜ Then evict z, and place h
2
(z) in the first table

◻ Keep going until detect that there is a cycle (revisit 
same sot with the same slot to insert)
⬜ At which point rehash the table choosing new hash 

functions h
1
 and h

2

  z

h1(y)    y

h2(u)  u



Cuckoo Hashing
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◻ What if table 2 had an element z at h
2
(u)?

⬜ Then evict z, and place h
2
(z) in the first table

◻ Keep going until detect that there is a cycle (revisit 
same sot with the same slot to insert)
⬜ At which point rehash the table choosing new hash 

functions h
1
 and h

2

  z

h1(y)    y

h2(u)  u

Proofs rely on bipartite 
graphs and strongly 
connected 
components!


