Object-oriented programming and data-structures

CS/ENGRD 2110 SUMMER 2018

[^0]
Hash Functions

\square Requirements:

1) deterministic
2) return a number in [0..n]

Hash Functions

10 4
3
\square Requirements:

1) deterministic
2) return a number in [0..n]

Which of the following functions f : Object -> int are hash functions:
a) $f(x)=x$
b) $f(x)=x$. hashCode()
c) $f(x)=8 x$
d) $f(x)=0$

Hash Functions

Example: hashCode()

\square Method defined in java.lang.Objec \dagger
\square Default implementation: uses memory address of the object
\square If you override equals, you must override hashCode!
\square String overrides hashCode()s.hashCode() $=\mathrm{s}[0] * 31^{\wedge}(\mathrm{n}-1)+\mathrm{s}[1]^{*} 31^{\wedge}(\mathrm{n}-2)+\ldots+\mathrm{s}[\mathrm{n}-1]$

Example: SHA-256

Application: Error Detection

Submitted	Date	By	Size	MD5 What's this?
A6GUI	April 10, 2018 04:28PM	-	10.82 kB	ca62dd8fc1273f51baa6f507efac1d2b

\square Hash functions are used for error detection
\square E.g., hash of uploaded file should be the same as hash of original file (if different, file was corrupted)

Application: Integrity

\square Hash functions are used to "sign" messages
$\square \quad$ Provides integrity guarantees in presence of an attacker
\square Principals share some secret sk
\square Send ($\mathrm{m}, \mathrm{h}(\mathrm{m}, \mathrm{sk})$)

Application: Password Storage

\square Hash functions are used to store passwords

Application: Password Storage

\square Hash functions are used to store passwords
\square Could store plaintext passwords
\square Problem: Password files get stolen

Application: Password Storage

\square Hash functions are used to store passwords
\square Could store plaintext passwords
\square Problem: Password files get stolen
\square Could store (username, h(password))
\square Problem: password reuse

Application: Password Storage

\square Hash functions are used to store passwords
\square Could store plaintext passwords
\square Problem: Password files get stolen
\square Could store (username, h(password))
\square Problem: password reuse
\square Instead, store
\square (username, s, h(password, s))

Application: Hash Set

Data Structure	add(val x)	lookup(int i)	find(val x)
	$O(n)$	$O(1)$	$O(n)$
$\stackrel{\text { LinkedList }}{(1)} \rightarrow 3 \rightarrow(0)$	$O(1)$	$O(n)$	$O(n)$
TreeSet (1) ${ }^{2}$	$O(\log n)$		$O(\log n)$
HashSeta 3	$O(1)$		$O(1)$

Application: Hash Set

Data Structure	add(val x)	lookup(int i)	find(val x)
ArrayList	$O(n)$	$O(1)$	$O(n)$
$\stackrel{\text { LinkedList }}{2} \rightarrow(1) \rightarrow(0)$	$O(1)$	$O(n)$	$O(n)$
TreeSet 3	$O(\log n)$		$O(\log n)$
	$O(1)$		$O(1)$
Expected time Worst-case: $O(n)$			

HashSet and HashMap

Set<V>\{

boolean add(V value);
boolean contains(V value);

$\operatorname{Map}<K, V>\{$

V put(K key, V value);

V get(K key);

V remove(K key):

Recall: Array Lists

\square Finding an element in an ArrayList takes constant time when we know the index in the element
$\square \mathrm{O}(1)$
\square Unfortunately, if I want to determine whether "Donkey" is the set, I don't know where "Donkey" could be"
\square So must search all the elements $O(n)$

Recall: Array Lists

\square Finding an element in an ArrayList takes constant time when we know the index in the element
$\square \mathrm{O}(1)$
\square Unfortunately, if I want to determine whether "Donkey" is the set, I don't know where "Donkey" could be"
\square So must search all the elements $O(n)$
\square Could hash functions somehow help us?

Hash Tables

\square Finding an element in an array takes constant time when know which index is stored in.
$\square \quad$ Recall that hash functions map objects to a number and are deterministic

Hash Tables

\square Finding an element in an array takes constant time when know which index is stored in.
\square Recall that hash functions map objects to a number and are deterministic

function

Hash Tables

\square Finding an element in an array takes constant time when know which index is stored in.
\square Recall that hash functions map objects to a number and are deterministic

So what goes wrong?

Can we have perfect hash functions?

\square Perfect hash functions map each value to a different index in the hash table

Can we have perfect hash functions?

\square Perfect hash functions map each value to a different index in the hash table
$\square \quad$ Impossible in practice

- don't know size of the array
- Number of possible values far far exceeds the array size
\square Want array size proportional to actual number of keys, not number of possible keys
- no point in a perfect hash function if it takes too much time to compute

Can we have perfect hash functions?

\square Perfect hash functions map each value to a different index in the hash table
$\square \quad$ Impossible in practice

- don't know size of the array
- Number of possible values far far exceeds the array size
\square Want array size proportional to actual number of keys, not number of possible keys
- no point in a perfect hash function if it takes too much time to compute
$\square \quad$ All hash functions will have collisions

Graphically

Want to minimise both the size of the array and the risk of collisions!

Load Factor

Load factor

$$
\stackrel{\text { or }}{\longrightarrow} \lambda=\frac{\# \text { of entries }}{\text { length of array }}
$$

Collision Resolution

Two ways of handling collisions:

1. Chaining

2. Open Addressing

Chaining

```
add("NY")
add("CA")
lookup("CA")
```


Place all the elements that hash to the same slot into the same linked list

Chaining

```
add("NY")
add("CA")
lookup("CA")
```


Place all the elements that hash to the same slot into the same linked list

Chaining

```
add("NY")
add("CA")
lookup("CA")
```

CA hashIndex 3

Place all the elements that hash to the same slot into the same linked list

Chaining

```
add("NY")
add("CA")
lookup("CA")
```


Place all the elements that hash to the same slot into the same linked list

Chaining

```
add("NY")
add("CA")
lookup("CA")
```

Place all the elements that hash to the same slot into the same linked list

Chaining

```
add("NY")
add("CA")
lookup("CA")
```

CA
hashIndex

Open Addressing

Probing: Find another available space in the array
add("CA")

Open Addressing

\square All elements occupy the hash table itself
\square Each entry contains either an element of the set or NULL
\square When searching for an element, systematically examine table slots until either we find the desired element, or know that the element is not in the set.
$\square \quad$ No nodes are stored outside of the hash table, so table can fill up

Open Addressing

Probing: Successively probe the hash table until we find an empty slot in which to put the key.

hashIndex

Open Addressing

Probing: Successively probe the hash table until we find an empty slot in which to put the key.
add("CA")

Open Addressing

Probing: Successively probe the hash table until we find an empty slot in which to put the key.
add("CA")

Different probing strategies

When a collision occurs, how do we search for an empty space?

linear probing.

search the array in order, starting from $\mathrm{h}(\mathrm{x})$:
$\mathrm{i}, \mathrm{i}+1, \mathrm{i}+2, i+3 \ldots$

Different probing strategies

When a collision occurs, how do we search for an empty space?

linear probing.

search the array in order, starting from $\mathrm{h}(\mathrm{x})$: i, i+1, ì+2, i+3...

Problem of clustering: problem where nearby hashes have very similar probe sequence so we get more collisions
\square
Long runs of occupied slots build up, increasing the average search time
The bigger the cluster gets, the faster it grows!

Different probing strategies

When a collision occurs, how do we search for an empty space?
quadratic probing. search the array in nonlinear sequence:
$\mathrm{i}, \mathrm{i}+\mathrm{l}^{2}, \mathrm{i}+\mathbf{2}^{2}, \mathrm{i}+\mathbf{3}^{2} \ldots$

Different probing strategies

When a collision occurs, how do we search for an empty space?
quadratic probing: search the array in nonlinear sequence:
$\mathrm{i}, \mathrm{i}+\mathrm{l}^{2}, \mathrm{i}+\mathbf{2}^{2}, \mathrm{i}+\mathbf{3}^{2} \ldots$

Idea is to probe more widely separated cells, instead of those adjacent to the primary hash site.

Collision Resolution

Two ways of handling collisions:

1. Chaining

2. Open Addressing

Load factor increases

Load factor

$$
\stackrel{\text { or }}{\longrightarrow} \lambda=\frac{\# \text { of entries }}{\text { length of array }}
$$

\square What happens when the load factor increases?

Load factor increases

Load factor

\square What happens when the load factor increases?
\square For the chaining method?

Load factor increases

Load factor

\square What happens when the load factor increases?
\square For the chaining method?

- Always possible to insert new elements, but the chains become longer.
- Operations slowdown

Load factor increases

Load factor

\square What happens when the load factor increases?
\square For the chaining method?

- Always possible to insert new elements, but the chains become longer.
- Operations slowdown
\square For the open addressing?

Load factor increases

Load factor

\square What happens when the load factor increases?
\square For the chaining method?

- Always possible to insert new elements, but the chains become longer.
- Operations slowdown
\square For the open addressing?
- Clustering causes operations to slowdown
- Eventually impossible to insert

Resizing

Solution: Dynamic resizing

Resizing

Solution: Dynamic resizing

$\square \quad$ Double the size.
\square Reinsert / rehash all elements to new array

Resizing

Solution: Dynamic resizing

$\square \quad$ Double the size.
\square Reinsert / rehash all elements to new array
 half?

Let's try it

Insert the following elements (in order) into an array of size 6:

element	a	b	c	d	e
hashCode	0	9	17	11	19

Let's try it

Insert the following elements (in order) into an array of size 6:

element	a	b	c	d	e
hashCode	0	9	17	11	19

Note: Using linear probing, no resizing

Let's try it

Insert the following elements (in order) into an array of size 6:

element	a	b	c	d	e
hashCode	0	9	17	11	19

What is the final state of the hash table if you use open addressing with quadratic probing (assume no resizing)?

Let's try it

Insert the following elements (in order) into an array of size 6:

element	a	b	c	d	e
hashCode	0	9	17	11	19

Note: Using quadratic probing, no resizing

Let's try it

Insert the following elements (in order) into an array of size 6:

element	a	b	c	d	e
hashCode	0	9	17	11	19

Note: Using quadratic probing, resizing if load $>1 / 2$

Worst Case Time Complexity

Collision Handlling	put(v)	get(v)	remove(v)
Chaining			
Open Addressing			

Worst Case Time Complexity

Collision Handlling	put(v)	get(v)	remove(v)
Chaining	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
Open Addressing	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$

Weren't hashsets designed to improve complexity? No better than a linked list!

Worst Case Time Complexity

Collision Handlling	put(v)	get(v)	remove(v)
Chaining	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
Open Addressing	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$

Weren't hashsets designed to improve complexity? No better than a linked list!

Hashsets are an example of a datastructure where we care about average time complexity, not worst time.

Recall: Load Factor

Load factor

$$
\stackrel{\text { or }}{\longrightarrow} \lambda=\frac{\# \text { of entries }}{\text { length of array }}
$$

Gold Standard for Hash Function

\square A good hash function satisfies (approximately) the assumption of simple uniform hashing:
\square Each key is equally likely to hash to any of the m slots, independently of where any other key has hashed to

Gold Standard for Hash Function

\square A good hash function satisfies (approximately) the assumption of simple uniform hashing:
\square Each key is equally likely to hash to any of the m slots, independently of where any other key has hashed to
\square Unfortunately:
\square Hard to check
\square Rarely know the key distribution

Average Complexity of Chaining

\square How do we compute the average complexity of chaining?

Average Complexity of Chaining

\square How do we compute the average complexity of chaining?
\square Complexity of get/remove is:
\square The cost of computing the hash function
\square The cost of finding the element in the chain

Average Complexity of Chaining

\square How do we compute the average complexity of chaining?
\square Complexity of get/remove is:
\square The cost of computing the hash function $\mathrm{O}(1)$
\square The cost of finding the element in the chain O (avg length of chain)

Average Complexity of Chaining

\square How do we compute the average complexity of chaining?
\square Complexity of get/remove is:
\square The cost of computing the hash function O (1)
\square The cost of finding the element in the chain O (avg length of chain)
\square What is the average length of the chain?

Average Complexity of Chaining

\square How do we compute the average complexity of chaining?
\square Complexity of get/remove is:
\square The cost of computing the hash function O (1)
\square The cost of finding the element in the chain O (avg length of chain)
\square What is the average length of the chain?
\square Assume uniform hashing: every entry equally likely to end up in a slot in the array

Average Complexity of Chaining

\square How do we compute the average complexity of chaining?
\square Complexity of get/remove is:
\square The cost of computing the hash function $\mathrm{O}(1)$
\square The cost of finding the element in the chain O (avg length of chain)
\square What is the average length of the chain?
\square Assume uniform hashing: every entry equally likely to end up in a slot in the array
\square If m slots and n entries, uniform distribution with probability n / m

Average Complexity of Chaining

\square How do we compute the average complexity of chaining?
\square Complexity of get/remove is:
\square The cost of computing the hash function O (1)
\square The cost of finding the element in the chain O (avg length of chain)
\square What is the average length of the chain?
\square Assume uniform hashing: every entry equally likely to end up in a slot in the array
\square If m slots and n entries, uniform distribution with probability n / m
\square Length of chain is the expectation of a uniform distribution

Average Complexity of Chaining

\square How do we compute the average complexity of chaining?
\square Complexity of get/remove is:
\square The cost of computing the hash function O (1)
\square The cost of finding the element in the chain O (avg length of chain)
\square What is the average length of the chain?
\square Assume uniform hashing: every entry equally likely to end up in a slot in the array
\square If m slots and n entries, uniform distribution with probability n / m
\square Length of chain is the expectation of a uniform distribution
\square Expectation is n / m, so expectation is λ

Average Time Complexity

Collision Handlling	put(v)	get(v)	remove(v)
Chaining	$\mathrm{O}(1)$	$\mathrm{O}(1+\lambda)$	$\mathrm{O}(1+\lambda)$
Open Addressing			

(Ignoring Resizing)

Average Complexity of OpenAddr

\square How do we compute the average complexity of chaining?
\square Must compute the average number of probes.

Average Complexity of OpenAddr

\square How do we compute the average complexity of chaining?
\square Must compute the average number of probes.
\square How many probes do we do?

Average Complexity of OpenAddr

\square How do we compute the average complexity of chaining?
\square Must compute the average number of probes.
\square How many probes do we do?
\square We always have to probe the first location

Average Complexity of OpenAddr

\square How do we compute the average complexity of chaining?
\square Must compute the average number of probes.
\square How many probes do we do?
\square We always have to probe the first location
\square With probability λ, first location is full, have to probe again

Average Complexity of OpenAddr

\square How do we compute the average complexity of chaining?Must compute the average number of probes.
\square How many probes do we do?
\square We always have to probe the first location
\square With probability λ, first location is full, have to probe again
\square With probability $\star^{\wedge} 2$, second location is also have, have to probe yet again
\square ...

Average Complexity of OpenAddr

\square How do we compute the average complexity of chaining?Must compute the average number of probes.
\square How many probes do we do?
\square We always have to probe the first location
\square With probability λ, first location is full, have to probe again
\square With probability $\lambda^{\wedge} 2$, first two locations are full, have to probe yet again
\square...
\square Expected number of probes $=1+\lambda+\lambda^{\wedge} 2+\lambda^{\wedge} 3 \ldots=1 /(1-\lambda)$

Average Time Complexity

Collision Handlling	put(v)	get(v)	remove(v)
Chaining	$\mathrm{O}(1)$	$\mathrm{O}(1+\lambda)$	$\mathrm{O}(1+\lambda)$
Open Addressing	$\mathrm{O}(1+1 / 1-\lambda)$	$\mathrm{O}(1+1 / 1-\lambda)$	$O(1+1 / 1-\lambda)$

(Ignoring Resizing)

Average Complexity Compared

Collision Resolution Summary

Chaining

\square store entries in separate chains (linked lists)
\square can have higher load factor/degrades gracefully as load factor increases

Open Addressing

\square store all entries in table
\square use linear or quadratic probing to place items
\square uses less memory
$\square \quad$ clustering can be a problem need to be more careful with choice of hash function

Ideal Load Factor

Load factor

$$
\stackrel{\text { or }}{\longrightarrow} \lambda=\frac{\# \text { of entries }}{\text { length of array }}
$$

Assume Constant Load Factor!

Collision Handling	put(v)	get(v)	remove(v)
Chaining	$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(1)$
Open Addressing	$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(1)$

If we assume constant load factor, then all operations take constant time.

But assuming constant load factor requires resizing the array, and this does not take constant time!

Amortised Analysis to the rescue!

$\square \quad$ In an amortised analysis, the time required to perform a sequence of operations is averaged over all the operations
\square Can be used to calculate the average cost of an operation

VS.

Amortised Analysis to the rescue!

\square Assume dynamic resizing with load factor $\lambda=1 / 2$
$\square \quad$ Most put operations take (expected) time O(1)

- If $\mathrm{i}=2^{\wedge} \mathrm{i}$, put takes time $\mathrm{O}(\mathrm{i})$
\square Start with an array of size 2, and then double every time reaches half full
\square Total time to perform n put operations is
$\square \mathrm{N}^{*} \mathrm{O}(1)+\mathrm{O}\left(2^{\wedge} 0+2^{\wedge} 1+2^{\wedge} 2+\ldots+2^{\wedge} \mathrm{j}\right)$
\square Average time to perform 1 put operation is
$\square O(1)+O\left(1 / 2^{\wedge} \mathrm{j}+1 / 2^{\wedge}(\mathrm{j}-1)+\ldots+1 / 4+1 / 2+1\right)=O(1)$

Amortised Analysis (with resize)

Collision Handlling	put(v)	get(v)	remove(v)
Chaining	$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(1)$
Open Addressing	$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(1)$

Can we do better?

Collision Handlling	put(v)	get(v)	remove(v)
Chaining	$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(1)$
Open Addressing	$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(1)$

Can we somehow bound the worst case of put/get?

What if?

\square We had more than just one hash function
\square Use two hash functions, and place the element in the bucket that is the least loaded
\square Second-Choice Hashing

What if?

\square We had more than just one hash function
\square Use two hash functions to compute two buckets, and place the element in the bucket that is the least loaded
\square Second-Choice Hashing
\square Still insufficient to get past O(1+ \quad)

What if?

\square We had more than just one hash function
\square Use two hash functions to compute two buckets, and place the element in the bucket that is the least loaded
\square Second-Choice Hashing
\square Still insufficient to get past O(1 + オ)
\square We could move keys after they're placed
\square Still insufficient to bound the worst case lookup
\square It does however reduce variance

Robin-Hood Hashing

$\square \quad$ Variation of open-addressing where keys can be moved after they're placed
\square Key Idea: when a key is already present during an insertion that is closer to its "base" location than the new key, it is displaced to make room for new key
\square Decreases variance in the expected number of lookups

a	b	z	x	c	d	e			

Robin-Hood Hashing

$\square \quad$ Variation of open-addressing where keys can be moved after they're placed
\square Key Idea: when a key is already present during an insertion that is closer to its "base" location than the new key, it is displaced to make room for new key
\square Decreases variance in the expected number of lookups

Robin-Hood Hashing

$\square \quad$ Variation of open-addressing where keys can be moved after they're placed
\square Key Idea: when a key is already present during an insertion that is closer to its "base" location than the new key, it is displaced to make room for new key
\square Decreases variance in the expected number of lookups

Robin-Hood Hashing

$\square \quad$ Variation of open-addressing where keys can be moved after they're placed
\square Key Idea: when a key is already present during an insertion that is closer to its "base" location than the new key, it is displaced to make room for new key
\square Decreases variance in the expected number of lookups

Cuckoo Hashing

\square Cuckoo hashing combines both ideas
\square Hashing scheme where
\square Lookups are worst-case O(1)
\square Deletions are worst-case O(1)
\square Insertions are expected O(1)
(Analysis is quite complicated, we won't see it in class)

Cuckoo Hashing

$\square \quad$ Maintains two tables, each of which has m elements
\square Choose to hash functions h_{1} and h_{2}
\square Maintains invariant:
\square every element will be either at position $h_{1}(x)$ in the first table or $h_{2}(x)$ in the second

Cuckoo Hashing

$\square \quad$ Lookups take time $O(1)$ because only two locations must be checked
\square Deletions take time O(1) because only tw locations mus \dagger be checked

Cuckoo Hashing

\square To insert an element y, first try table 1:
\square If $h_{1}(y)$ is empty, place y there.

Cuckoo Hashing

$\square \quad$ To insert an element y, first try table 1:
\square If $h_{1}(y)$ is empty, place y there.
\square If $h_{1}(y)$ contains an element u, place y there but then try to place y into table 2

Cuckoo Hashing

$\square \quad$ To insert an element y, first try table 1:
\square If $h_{1}(y)$ is empty, place y there.
\square If $h_{1}(y)$ contains an element u, place y there but then try to place y into table 2

$h_{2}(u)$

Cuckoo Hashing

$\square \quad$ What if table 2 had an element \mathbf{z} at $h_{2}(\mathrm{u})$?

Cuckoo Hashing

$\square \quad$ What if table 2 had an element \mathbf{z} at $h_{2}(u)$?
\square Then evict z, and place $h_{2}(z)$ in the first table

Cuckoo Hashing

$\square \quad$ What if table 2 had an element \mathbf{z} at $h_{2}(u)$?
\square Then evict z, and place $h_{2}(z)$ in the first table
\square Keep going until detect that there is a cycle

Cuckoo Hashing

$\square \quad$ What if table 2 had an element \mathbf{z} at $h_{2}(u)$?
\square Then evict z, and place $h_{2}(z)$ in the first table
\square Keep going until detect that there is a cycle (revisit same sot with the same slot to insert)
\square At which point rehash the table choosing new hash functions h_{1} and h_{2}

Cuckoo Hashing

$\square \quad$ What if table 2 had an element \mathbf{z} at $h_{2}(u)$?
\square Then evict z, and place $h_{2}(z)$ in the first table

Proofs rely on bipartite graphs and strongly connected
components!
$\square \quad$ Keep going until detect that there is a cycle (revisit same sot with the same slot to insert)
\square At which point rehash the table choosing new hash functions h_{1} and h_{2}

[^0]: Lecture 15: Hashing
 http://courses.cs.cornell.edu/cs2110/2018su

