
CS/ENGRD 2110
SUMMER 2018
Lecture 15: Hashing

http://courses.cs.cornell.edu/cs2110/2018su

Object-oriented programming
and data-structures

1

Hash Functions

◻ Requirements:

1) deterministic

2) return a number in [0..n]

01

3
4 1

Hash Functions

◻ Requirements:

1) deterministic

2) return a number in [0..n]

01

3
4 1

Which of the following functions f: Object -> int are hash functions:
a) f(x) = x
b) f(x) = x.hashCode()
c) f(x) = &x
d) f(x) = 0

Hash Functions

◻ Requirements:

1) deterministic

2) return a number in [0..n]

01

3
4 1

◻ Properties of a good hash:

1) fast

2) collision-resistant

3) evenly distributed

4) hard to invert

Example: hashCode()
5

◻ Method defined in java.lang.Object

◻ Default implementation: uses memory address of the object
⬜ If you override equals, you must override hashCode!

◻ String overrides hashCode()
⬜ s.hashCode() = s[0] * 31^(n-1) + s[1]*31^(n-2) + … + s[n-1]

Example: SHA-256

Application: Error Detection

◻ Hash functions are used for error detection

◻ E.g., hash of uploaded file should be the same as hash of original file (if
different, file was corrupted)

7

Application: Integrity

◻ Hash functions are used to "sign"
messages

◻ Provides integrity guarantees in
presence of an attacker

◻ Principals share some secret sk

◻ Send (m, h(m,sk))

◻ Hash functions are used to store
passwords

Application: Password Storage

◻ Hash functions are used to store
passwords

◻ Could store plaintext passwords

⬜ Problem: Password files get stolen

Application: Password Storage

◻ Hash functions are used to store
passwords

◻ Could store plaintext passwords

⬜ Problem: Password files get stolen

◻ Could store (username, h(password))

⬜ Problem: password reuse

Application: Password Storage

◻ Hash functions are used to store
passwords

◻ Could store plaintext passwords

⬜ Problem: Password files get stolen

◻ Could store (username, h(password))

⬜ Problem: password reuse

◻ Instead, store

⬜ (username, s, h(password, s))

Application: Password Storage

Application: Hash Set
13

Data Structure add(val x) lookup(int i) find(val x)
ArrayList

LinkedList

TreeSet

HashSet

2 1 3 0

2 1 3 0

2
1 3

 3 1 2
 0 1 2 3

Application: Hash Set
14

Data Structure add(val x) lookup(int i) find(val x)
ArrayList

LinkedList

TreeSet

HashSet

2 1 3 0

2 1 3 0

21

3
 3 1 2

 0 1 2 3

HashSet and HashMap

Map<K,V>{

 V put(K key, V value);

 V get(K key);

 V remove(K key);

}

Set<V>{

 boolean add(V value);

 boolean contains(V value);

 boolean remove(V value);

}

Recall: Array Lists

◻ Finding an element in an ArrayList takes constant time when we know the
index in the element
⬜ O(1)

◻ Unfortunately, if I want to determine whether “Donkey” is the set, I don’t know
where “Donkey” could be”
⬜ So must search all the elements O(n)

Recall: Array Lists

◻ Finding an element in an ArrayList takes constant time when we know the
index in the element
⬜ O(1)

◻ Unfortunately, if I want to determine whether “Donkey” is the set, I don’t know
where “Donkey” could be”
⬜ So must search all the elements O(n)

◻ Could hash functions somehow help us?

Hash Tables

◻ Finding an element in an array takes constant time when know which
index is stored in.

◻ Recall that hash functions map objects to a number and are
deterministic

Hash Tables

Hash
functionCA

add(“CA”)

◻ Finding an element in an array takes constant time when know which
index is stored in.

◻ Recall that hash functions map objects to a number and are
deterministic

Hash Tables

Hash
functionCA 5

CA

0 1 2 3 4 5
add(“CA”)

b

mod 6

NYMA

◻ Finding an element in an array takes constant time when know which
index is stored in.

◻ Recall that hash functions map objects to a number and are
deterministic

So what goes wrong?

hashIndex

k1

hashIndex

k2

0 1 2 3 4 5

Can we have perfect hash functions?

◻ Perfect hash functions map each value to a different index in the hash table

Can we have perfect hash functions?

◻ Perfect hash functions map each value to a different index in the hash table

◻ Impossible in practice

● don’t know size of the array

● Number of possible values far far exceeds the array size

⬜ Want array size proportional to actual number of keys, not number of
possible keys

● no point in a perfect hash function if it takes too much time to compute

Can we have perfect hash functions?

◻ Perfect hash functions map each value to a different index in the hash table

◻ Impossible in practice

● don’t know size of the array

● Number of possible values far far exceeds the array size

⬜ Want array size proportional to actual number of keys, not number of
possible keys

● no point in a perfect hash function if it takes too much time to compute

◻ All hash functions will have collisions

Graphically

Universe U of possible keys

K (actual
keys)

h(k1) = h(k4)

h(k3)

h(k4)

K1K2

K3

K4

Want to minimise
both the size of
the array and the
risk of collisions!

Load Factor
26

Load factor

Collision Resolution

Two ways of handling collisions:

1. Chaining 2. Open Addressing

Chaining

hashIndex 3New YorkNY

add(“NY”)
add(“CA”)
lookup("CA")

VA

0 1 2 3 4 5

Place all the elements that hash to the same slot
into the same linked list

Chaining

hashIndex 3New YorkNY

add(“NY”)
add(“CA”)
lookup("CA")

VA

0 1 2 3 4 5

NY

Place all the elements that hash to the same slot
into the same linked list

Chaining

hashIndex 3New YorkCA

add(“NY”)
add(“CA”)
lookup("CA")

NY VA

0 1 2 3 4 5

Place all the elements that hash to the same slot
into the same linked list

Chaining

hashIndex 3

NY VA

0 1 2 3 4 5

New YorkCA

add(“NY”)
add(“CA”)
lookup("CA")

Place all the elements that hash to the same slot
into the same linked list

Chaining

hashIndex 3

NY VA

0 1 2 3 4 5

New YorkCA

CA

add(“NY”)
add(“CA”)
lookup("CA")

Place all the elements
that hash to the same slot
into the same linked list

Chaining

hashIndex 3

NY VA

0 1 2 3 4 5

New YorkCA

CA
bucket/chain
(linked list)

add(“NY”)
add(“CA”)
lookup("CA")

Open Addressing

Probing: Find another available space in the array add(“CA”)

hashIndexCA 3

MA NY VA

0 1 2 3 4 5

Open Addressing

◻ All elements occupy the hash table itself

◻ Each entry contains either an element of the set or NULL

◻ When searching for an element, systematically examine table slots until
either we find the desired element, or know that the element is not in the set.

◻ No nodes are stored outside of the hash table, so table can fill up

Open Addressing

Probing: Successively probe the hash table until we find an
empty slot in which to put the key. add(“CA”)

hashIndexCA

MA NY

0 1 2 3 4 5

Open Addressing

Probing: Successively probe the hash table until we find an
empty slot in which to put the key. add(“CA”)

hashIndexCA 3

MA NY VA

0 1 2 3 4 5

Open Addressing

Probing: Successively probe the hash table until we find an
empty slot in which to put the key. add(“CA”)

hashIndexCA 3

MA NY CA VA

0 1 2 3 4 5

Different probing strategies

linear probing:
search the array in order, starting from h(x):
i, i+1, i+2, i+3 . . .

When a collision occurs, how do we search for an empty space?

Different probing strategies

linear probing:
search the array in order, starting from h(x):
i, i+1, i+2, i+3 . . .

When a collision occurs, how do we search for an empty space?

Problem of clustering:
problem where nearby
hashes have very similar
probe sequence so we get
more collisions

Long runs of occupied slots build up, increasing the average search time

The bigger the cluster gets, the faster it grows!

Different probing strategies

When a collision occurs, how do we search for an empty space?

quadratic probing: search the array in
nonlinear sequence:
i, i+12, i+22, i+32 . . .

Different probing strategies

When a collision occurs, how do we search for an empty space?

quadratic probing: search the array in
nonlinear sequence:
i, i+12, i+22, i+32 . . .

Idea is to probe more widely
separated cells, instead of
those adjacent to the
primary hash site.

Collision Resolution

Two ways of handling collisions:

1. Chaining 2. Open Addressing

Load factor increases

Load factor

◻ What happens when the load factor increases?

Load factor increases

Load factor

◻ What happens when the load factor increases?
⬜ For the chaining method?

Load factor increases

Load factor

◻ What happens when the load factor increases?
⬜ For the chaining method?

■ Always possible to insert new elements, but the chains become
longer.

■ Operations slowdown

Load factor increases

Load factor

◻ What happens when the load factor increases?
⬜ For the chaining method?

■ Always possible to insert new elements, but the chains become
longer.

■ Operations slowdown
⬜ For the open addressing?

Load factor increases

Load factor

◻ What happens when the load factor increases?
⬜ For the chaining method?

■ Always possible to insert new elements, but the chains become
longer.

■ Operations slowdown
⬜ For the open addressing?

■ Clustering causes operations to slowdown
■ Eventually impossible to insert

Resizing

Solution: Dynamic resizing

Resizing

◻ Double the size.

◻ Reinsert / rehash all elements to
new array

Solution: Dynamic resizing

Resizing

◻ Double the size.

◻ Reinsert / rehash all elements to
new array

◻ Why not simply copy into first
half?

Solution: Dynamic resizing

Let's try it

element a b c d e

hashCode 0 9 17 11 19

Insert the following elements (in order) into an array of size 6:

0 1 2 3 4 5

a b c

d

e

Let's try it

element a b c d e

hashCode 0 9 17 11 19

Insert the following elements (in order) into an array of size 6:

0 1 2 3 4 5

a b cd e

Note: Using linear probing, no resizing

Let’s try it

element a b c d e

hashCode 0 9 17 11 19

Insert the following elements (in order) into an array of size 6:

0 1 2 3 4 5

What is the final state of the hash table if you use open
addressing with quadratic probing (assume no resizing)?

Let's try it

element a b c d e

hashCode 0 9 17 11 19

Insert the following elements (in order) into an array of size 6:

0 1 2 3 4 5

a b cde

Note: Using quadratic probing, no resizing

Let's try it

element a b c d e

hashCode 0 9 17 11 19

Insert the following elements (in order) into an array of size 6:

0 1 2 3 4 5

a b c
0 1 2 3 4 5 6 7 8 9 10 11

a bc de

Note: Using quadratic probing, resizing if load > ½

Worst Case Time Complexity
57

Collision Handling put(v) get(v) remove(v)

Chaining
Open Addressing

Worst Case Time Complexity
58

Collision Handling put(v) get(v) remove(v)

Chaining O(1) O(n) O(n)
Open Addressing O(n) O(n) O(n)

Weren’t hashsets designed to improve
complexity? No better than a linked list!

Worst Case Time Complexity
59

Collision Handling put(v) get(v) remove(v)

Chaining O(1) O(n) O(n)
Open Addressing O(n) O(n) O(n)

Weren’t hashsets designed to improve
complexity? No better than a linked list!

Hashsets are an example of a datastructure
where we care about average time complexity, not
worst time.

Recall: Load Factor

Load factor

Gold Standard for Hash Function

◻ A good hash function satisfies (approximately) the assumption of
simple uniform hashing:
⬜ Each key is equally likely to hash to any of the m slots,

independently of where any other key has hashed to

61

Gold Standard for Hash Function

◻ A good hash function satisfies (approximately) the assumption of
simple uniform hashing:
⬜ Each key is equally likely to hash to any of the m slots,

independently of where any other key has hashed to

◻ Unfortunately:

⬜ Hard to check

⬜ Rarely know the key distribution

62

Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?

63

Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?

◻ Complexity of get/remove is:
⬜ The cost of computing the hash function
⬜ The cost of finding the element in the chain

64

Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?

◻ Complexity of get/remove is:
⬜ The cost of computing the hash function O(1)
⬜ The cost of finding the element in the chain O (avg length of chain)

65

Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?

◻ Complexity of get/remove is:
⬜ The cost of computing the hash function O(1)
⬜ The cost of finding the element in the chain O (avg length of chain)

◻ What is the average length of the chain?

66

Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?

◻ Complexity of get/remove is:
⬜ The cost of computing the hash function O(1)
⬜ The cost of finding the element in the chain O (avg length of chain)

◻ What is the average length of the chain?
⬜ Assume uniform hashing: every entry equally likely to end up in a

slot in the array

67

Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?

◻ Complexity of get/remove is:
⬜ The cost of computing the hash function O(1)
⬜ The cost of finding the element in the chain O (avg length of chain)

◻ What is the average length of the chain?
⬜ Assume uniform hashing: every entry equally likely to end up in a

slot in the array
⬜ If m slots and n entries, uniform distribution with probability n/m

68

Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?

◻ Complexity of get/remove is:
⬜ The cost of computing the hash function O(1)
⬜ The cost of finding the element in the chain O (avg length of chain)

◻ What is the average length of the chain?
⬜ Assume uniform hashing: every entry equally likely to end up in a

slot in the array
⬜ If m slots and n entries, uniform distribution with probability n/m
⬜ Length of chain is the expectation of a uniform distribution

69

Average Complexity of Chaining

◻ How do we compute the average complexity of chaining?

◻ Complexity of get/remove is:
⬜ The cost of computing the hash function O(1)
⬜ The cost of finding the element in the chain O (avg length of chain)

◻ What is the average length of the chain?
⬜ Assume uniform hashing: every entry equally likely to end up in a

slot in the array
⬜ If m slots and n entries, uniform distribution with probability n/m
⬜ Length of chain is the expectation of a uniform distribution
⬜ Expectation is n/m, so expectation is ƛ

70

Average Time Complexity
71

Collision Handling put(v) get(v) remove(v)

Chaining O(1) O(1 + ƛ) O(1 + ƛ)
Open Addressing

(Ignoring Resizing)

Average Complexity of OpenAddr

◻ How do we compute the average complexity of chaining?
⬜ Must compute the average number of probes.

72

Average Complexity of OpenAddr

◻ How do we compute the average complexity of chaining?
⬜ Must compute the average number of probes.

◻ How many probes do we do?

73

Average Complexity of OpenAddr

◻ How do we compute the average complexity of chaining?
⬜ Must compute the average number of probes.

◻ How many probes do we do?
⬜ We always have to probe the first location

74

Average Complexity of OpenAddr

◻ How do we compute the average complexity of chaining?
⬜ Must compute the average number of probes.

◻ How many probes do we do?
⬜ We always have to probe the first location
⬜ With probability ƛ, first location is full, have to probe again

75

Average Complexity of OpenAddr

◻ How do we compute the average complexity of chaining?
⬜ Must compute the average number of probes.

◻ How many probes do we do?
⬜ We always have to probe the first location
⬜ With probability ƛ, first location is full, have to probe again
⬜ With probability ƛ^2, second location is also have, have to probe

yet again
⬜ ...

76

Average Complexity of OpenAddr

◻ How do we compute the average complexity of chaining?
⬜ Must compute the average number of probes.

◻ How many probes do we do?
⬜ We always have to probe the first location
⬜ With probability ƛ, first location is full, have to probe again
⬜ With probability ƛ^2, first two locations are full, have to probe yet

again
⬜ …

◻ Expected number of probes = 1 + ƛ + ƛ^2 + ƛ^3 … = 1 / (1 - ƛ)

77

Average Time Complexity
78

Collision Handling put(v) get(v) remove(v)

Chaining O(1) O(1 + ƛ) O(1 + ƛ)
Open Addressing O(1+ 1/1-ƛ) O(1+ 1/1-ƛ) O(1+ 1/1-ƛ)

(Ignoring Resizing)

Average Complexity Compared

Average
Complexity

Load Factor

Still no
resizing!

Collision Resolution Summary

◻ store entries in separate chains
(linked lists)

◻ can have higher load
factor/degrades gracefully as
load factor increases

◻ store all entries in table

◻ use linear or quadratic probing to
place items

◻ uses less memory

◻ clustering can be a problem —
need to be more careful with
choice of hash function

Chaining Open Addressing

80

Ideal Load Factor

Load factor

0 1

waste of memory too slow

best range

Assume Constant Load Factor!
82

Collision Handling put(v) get(v) remove(v)

Chaining O(1) O(1) O(1)
Open Addressing O(1) O(1) O(1)

If we assume constant load factor, then all
operations take constant time.

But assuming constant load factor requires resizing
the array, and this does not take constant time!

Amortised Analysis to the rescue!
83

◻ In an amortised analysis, the time required to perform a sequence of
operations is averaged over all the operations

◻ Can be used to calculate the average cost of an operation

Amortised Analysis to the rescue!
84

◻ Assume dynamic resizing with load factor ƛ = 1/2

◻ Most put operations take (expected) time O(1)

◻ If i = 2^j, put takes time O(i)
⬜ Start with an array of size 2, and then double every time reaches half full

◻ Total time to perform n put operations is
⬜ N * O(1) + O(2^0 + 2^1 + 2^2 + … + 2^j)

◻ Average time to perform 1 put operation is
⬜ O(1) + O(1/ 2^j + 1/ 2^(j-1) + … + ¼ + ½ + 1) = O(1)

Amortised Analysis (with resize)
85

Collision Handling put(v) get(v) remove(v)

Chaining O(1) O(1) O(1)
Open Addressing O(1) O(1) O(1)

Can we do better?
86

Collision Handling put(v) get(v) remove(v)

Chaining O(1) O(1) O(1)
Open Addressing O(1) O(1) O(1)

Can we somehow bound the worst case of put/get?

What if?
87

◻ We had more than just one hash function
⬜ Use two hash functions, and place the element in the bucket that is the

least loaded
⬜ Second-Choice Hashing

What if?
88

◻ We had more than just one hash function
⬜ Use two hash functions to compute two buckets, and place the element

in the bucket that is the least loaded
⬜ Second-Choice Hashing
⬜ Still insufficient to get past O(1 + ƛ)

What if?
89

◻ We had more than just one hash function
⬜ Use two hash functions to compute two buckets, and place the element

in the bucket that is the least loaded
⬜ Second-Choice Hashing
⬜ Still insufficient to get past O(1 + ƛ)

◻ We could move keys after they’re placed
⬜ Still insufficient to bound the worst case lookup
⬜ It does however reduce variance

Robin-Hood Hashing
90

◻ Variation of open-addressing where keys can be moved after
they’re placed

◻ Key Idea: when a key is already present during an insertion that is
closer to its “base” location than the new key, it is displaced to
make room for new key
⬜ Decreases variance in the expected number of lookups

a b z x c d e

Robin-Hood Hashing
91

◻ Variation of open-addressing where keys can be moved after
they’re placed

◻ Key Idea: when a key is already present during an insertion that is
closer to its “base” location than the new key, it is displaced to
make room for new key
⬜ Decreases variance in the expected number of lookups

a b z x c d e

Probe count for e is 1

Robin-Hood Hashing
92

◻ Variation of open-addressing where keys can be moved after
they’re placed

◻ Key Idea: when a key is already present during an insertion that is
closer to its “base” location than the new key, it is displaced to
make room for new key
⬜ Decreases variance in the expected number of lookups

a b z x c d e

Try to insert u

Robin-Hood Hashing
93

◻ Variation of open-addressing where keys can be moved after
they’re placed

◻ Key Idea: when a key is already present during an insertion that is
closer to its “base” location than the new key, it is displaced to
make room for new key
⬜ Decreases variance in the expected number of lookups

a b z x c d e

Try to insert u By the time reach e, u has a probe
count of 4, e only of 1, so displace e
to the right, and insert u at e’s spot

Cuckoo Hashing
94

◻ Cuckoo hashing combines both ideas

◻ Hashing scheme where
⬜ Lookups are worst-case O(1)
⬜ Deletions are worst-case O(1)
⬜ Insertions are expected O(1)

(Analysis is quite complicated, we won’t see it in class)

Cuckoo Hashing
95

◻ Maintains two tables, each of which has m elements

◻ Choose to hash functions h
1
 and h

2

◻ Maintains invariant:
⬜ every element will be either at position h

1
(x) in the

first table or h
2
(x) in the second

h1(x)

h2(x)

Cuckoo Hashing
96

◻ Lookups take time O(1) because only two locations
must be checked

◻ Deletions take time O(1) because only tw locations must
be checked

h1(x)

h2(x)

Cuckoo Hashing
97

◻ To insert an element y, first try table 1:
⬜ If h

1
(y) is empty, place y there.

h1(y)

Cuckoo Hashing
98

◻ To insert an element y, first try table 1:
⬜ If h

1
(y) is empty, place y there.

⬜ If h
1
(y) contains an element u, place y there but then

try to place y into table 2

 uh1(y)

Cuckoo Hashing
99

◻ To insert an element y, first try table 1:
⬜ If h

1
(y) is empty, place y there.

⬜ If h
1
(y) contains an element u, place y there but then

try to place y into table 2

 u

h1(y) y

h2(u)

Cuckoo Hashing
100

◻ What if table 2 had an element z at h
2
(u)?

 z

h1(y) y

h2(u) u

Cuckoo Hashing
101

◻ What if table 2 had an element z at h
2
(u)?

⬜ Then evict z, and place h
2
(z) in the first table

 z

h1(y) y

h2(u) u

Cuckoo Hashing
102

◻ What if table 2 had an element z at h
2
(u)?

⬜ Then evict z, and place h
2
(z) in the first table

◻ Keep going until detect that there is a cycle

 z

h1(y) y

h2(u) u

Cuckoo Hashing
103

◻ What if table 2 had an element z at h
2
(u)?

⬜ Then evict z, and place h
2
(z) in the first table

◻ Keep going until detect that there is a cycle (revisit
same sot with the same slot to insert)
⬜ At which point rehash the table choosing new hash

functions h
1
 and h

2

 z

h1(y) y

h2(u) u

Cuckoo Hashing
104

◻ What if table 2 had an element z at h
2
(u)?

⬜ Then evict z, and place h
2
(z) in the first table

◻ Keep going until detect that there is a cycle (revisit
same sot with the same slot to insert)
⬜ At which point rehash the table choosing new hash

functions h
1
 and h

2

 z

h1(y) y

h2(u) u

Proofs rely on bipartite
graphs and strongly
connected
components!

