Object-oriented programming and data-structures

CS/ENGRD 2110 SUMMER 2018

[^0]
Graph Algorithms

- Search
\square Depth-first search
\square Breadth-first search
- Shortest paths
\square Dijkstra's algorithm
- Spanning trees
\square Prim's algorithm
Kruskal's algorithm

Recall: Trees

\square A undirected graph is a tree if there is exactly one simple path between any pair of vertices.

Recall: Trees

\square A undirected graph is a tree if there is exactly one simple path between any pair of vertices.

What's the root? It doesn't matter. Any vertex can be root

Facts about trees

\square A tree must necessarily be:
\square Connected

- A graph is connected when there is a path between every pair of vertices
\square \#E = \#V-1
\square No cycles

Spanning Trees

$\square \quad$ A spanning tree of a connected undirected graph (V, E) is a subgraph ($\mathrm{V}, \mathrm{E}^{\prime}$) that is a tree

```
- Same set of vertices V
- E' \subseteq E
- (V, E') is a tree
```


- Same set of vertices V
- Maximal set of edges that contains no cycle

```
- Same set of vertices V
- Minimal set of edges that connect all vertices
```

Three equivalent definitions

Applications of spanning trees

\square Spanning trees represent the minimum set of edges such that all the nodes in the graph are connected
\square Useful for telecommunication applications!

- How can I connect everyone in my business using the fewest cables
\square Useful for wiring on chips
- How can I arrange my components such that they can all talk to each other with the fewest cables.

Finding a spanning tree (V1)

\square
Recall

- Same set of vertices V
- Maximal set of edges that contains no cycle
\square Define an iterative algorithm that, when discovering a cycle in the graph, removes an edge from that cycle, until no cycles exist.

Finding a spanning tree (V1)

\square
Recall

- Same set of vertices V
- Maximal set of edges that contains no cycle
\square Define an iterative algorithm that, when discovering a cycle in the graph, removes an edge from that cycle, until no cycles exist.

Start with the whole graph - it is connected

- While there is a cycle:

Pick an edge of a cycle and throw it out

- the graph is still connected (why?)

Finding a spanning tree (V1)

\square
Recall

- Same set of vertices V
- Maximal set of edges that contains no cycle
\square Define an iterative algorithm that, when discovering a cycle in the graph, removes an edge from that cycle, until no cycles exist.

Start with the whole graph - it is connected

- While there is a cycle:

Pick an edge of a cycle and throw it out

- the graph is still connected (why?)

Finding a spanning tree (V1)

\square
Recall

- Same set of vertices V
- Maximal set of edges that contains no cycle
\square Define an iterative algorithm that, when discovering a cycle in the graph, removes an edge from that cycle, until no cycles exist.

Start with the whole graph - it is connected

- While there is a cycle:

Pick an edge of a cycle and throw it out

- the graph is still connected (why?)

Finding a spanning tree (V1)

\square
Recall

- Same set of vertices V
- Maximal set of edges that contains no cycle
\square Define an iterative algorithm that, when discovering a cycle in the graph, removes an edge from that cycle, until no cycles exist.

Start with the whole graph - it is connected

- While there is a cycle:

Pick an edge of a cycle and throw it out

- the graph is still connected (why?)

Could have removed a different edge. There can be multiple spanning trees!

Finding a spanning tree (V2)

\square Recall

- Same set of vertices V
- Minimal set of edges that connect all vertices
$\square \quad$ Define a set \mathbf{A} that maintains following invariant:
\square A is a subset of some spanning tree (nodes in A are connected)
$\square \quad$ At each step, determine an edge (u, v) that can add to A without violating invariant
$\square A \cup\{(u, v)\}$ is also a subset of a spanning tree
\square Call this edge a safe edge

Finding a spanning tree (V2)

Finding a spanning tree (V2)

\square Recall

- Same set of vertices V
- Minimal set of edges that connect all vertices
$A=\varnothing$
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree
Find an edge (u, v) that is safe for A $A=A \cup\{(u, v)\}$
return A

But how to determine what a safe edge is? (One must exist by our loop invariant: A is a subset of a spanning tree T)

Definition: Cuts

$\square \quad$ A cut $(S, V-S)$ of an undirected graph $G=(V, E)$ is a partition of V.
\square We say that an edge $(u, v) \in$ crosses the cut $(S, V-S)$ if one of its endpoints is in S and the other is in V -S
\square A cut respects a set A of edges if no edge in A crosses the cut

Definition: Cuts

$\square \quad$ A cut $(S, V-S)$ of an undirected graph $G=(V, E)$ is a partition of V.
\square We say that an edge $(u, v) \in$ crosses the cut $(S, V-S)$ if one of its endpoints is in S and the other is in V-S
\square A cut respects a set A of edges if no edge in A crosses the cut

Definition: Cuts

$\square \quad A$ cut $(S, V-S)$ of an undirected graph $G=(V, E)$ is a partition of V.
\square We say that an edge $(u, v) \in$ crosses the cut $(S, V-S)$ if one of its endpoints is in S and the other is in V-S
$\square \quad$ A cut respects a set A of edges if no edge in A crosses the cut

Blue edge crosses the cut as it connects a black node to a beige node

Definition: Cuts

$\square \quad A$ cut $(S, V-S)$ of an undirected graph $G=(V, E)$ is a partition of V.
\square We say that an edge $(u, v) \in$ crosses the cut $(S, V-S)$ if one of its endpoints is in S and the other is in V-S
$\square \quad$ A cut respects a set A of edges if no edge in A crosses the cut

Blue edge crosses the cut as it connects a black node to a beige node

Cut respects the set A of green edges.

Finding a spanning tree (V2)

\square Recal

- Same set of vertices V
- Minimal set of edges that connect all vertices
$A=\varnothing$
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree Find an edge (u, v) that is safe for A $A=A \cup\{(u, v)\}$
return A

Let $G=(V, E)$ be a connected, undirected graph. Let A be a subset of E that is included in some spanning tree for G. Let ($\mathrm{S}, \mathrm{V}-\mathrm{S}$) be any cut of G that respects A, and let (u, v) be an edge crossing (S,V-S), then edge (u, v) is safe for A

Finding a spanning tree (V2)

\square
Recall

- Same set of vertices V
- Minimal set of edges that connect all vertices
$A=\varnothing$
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree
Find an edge (u, v) that is safe for A $A=A \cup\{(u, v)\}$
return A

Finding a spanning tree (V2)

Recall

- Same set of vertices V
- Minimal set of edges that connect all vertices
$A=\varnothing$
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree Find an edge (u, v) that is safe for A $A=A \cup\{(u, v)\}$
return A

Finding a spanning tree (V2)

Recall

- Same set of vertices V
- Minimal set of edges that connect all vertices
$A=\varnothing$
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree Find an edge (u, v) that is safe for A $A=A \cup\{(u, v)\}$
return A

Finding a spanning tree (V2)

Recall

- Same set of vertices V
- Minimal set of edges that connect all vertices
$A=\varnothing$
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree Find an edge (u, v) that is safe for A $A=A \cup\{(u, v)\}$
return A

Finding a spanning tree (V2)

Recall

- Same set of vertices V
- Minimal set of edges that connect all vertices
$A=\varnothing$
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree
Find an edge (u, v) that is safe for A $A=A \cup\{(u, v)\}$
return A

Finding a spanning tree (V2)

Recall

- Same set of vertices V
- Minimal set of edges that connect all vertices
$A=\varnothing$
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree Find an edge (u, v) that is safe for A $A=A \cup\{(u, v)\}$
return A

Finding a spanning tree (V2)

Recall

- Same set of vertices V
- Minimal set of edges that connect all vertices
$A=\varnothing$
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree Find an edge (u, v) that is safe for A $A=A \cup\{(u, v)\}$
return A

Finding a spanning tree (V2)

Recall

- Same set of vertices V
- Minimal set of edges that connect all vertices
$A=\varnothing$
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree Find an edge (u, v) that is safe for A $A=A \cup\{(u, v)\}$
return A

Finding a spanning tree (V2)

Recall

- Same set of vertices V
- Minimal set of edges that connect all vertices
$A=\varnothing$
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree Find an edge (u, v) that is safe for A $A=A \cup\{(u, v)\}$
return A

Minimum Spanning Tree

$\square \quad$ In a weighted graph, want to find the minimum spanning tree
\square (Recall that there can be multiple spanning trees)
\square Want to find the spanning tree with the minimum weight
\square Formally: finding the minimum spanning tree for a graph is finding the spanning tree whose weight $w(T)$ is minimised.

$$
\left.\square \quad w(T)=\sum_{(u, v) \in T} w(u, v)\right)
$$

Definition: Cuts

$\square \quad A$ cut $(S, V-S)$ of an undirected graph $G=(V, E)$ is a partition of V.
\square We say that an edge $(u, v) \in$ crosses the cut $(S, V-S)$ if one of its endpoints is in S and the other is in V-S
$\square \quad$ A cut respects a set A of edges if no edge in A crosses the cut
\square An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut

Algorithms of Kruskal and Prim

$\square \quad$ Greedy algorithms that use a specific rule to determine a safe edge
\square Kruskal's algorithm

- The set A is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components
\square Prim's algorithm
- The set A forms a single tree.
- The safe edge added to A is always a least-weight edge connecting the tree to a vertex not in the tree

Kruskal's Algorithm

\square Kruskal's algorithm

- The set \mathbf{A} is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The set \mathbf{A} is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The set A is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm
■ The set A is a forest whose vertices are all those of the given graph

- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm
■ The set A is a forest whose vertices are all those of the given graph

- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The set \mathbf{A} is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm
■ The set A is a forest whose vertices are all those of the given graph

- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The set \mathbf{A} is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The set \mathbf{A} is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The set \mathbf{A} is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The set \mathbf{A} is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The set \mathbf{A} is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The set \mathbf{A} is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The set \mathbf{A} is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The $\operatorname{set} \mathbf{A}$ is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The $\operatorname{set} \mathbf{A}$ is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The $\operatorname{set} \mathbf{A}$ is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The $\operatorname{set} \mathbf{A}$ is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The $\operatorname{set} \mathbf{A}$ is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The $\operatorname{set} \mathbf{A}$ is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The $\operatorname{set} \mathbf{A}$ is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The $\operatorname{set} \mathbf{A}$ is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The $\operatorname{set} \mathbf{A}$ is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Kruskal's Algorithm

\square Kruskal's algorithm

- The $\operatorname{set} \mathbf{A}$ is a forest whose vertices are all those of the given graph
- The same edge added to A is always a least-weight edge in the graph that connects two distinct components

Disjoint-Set Datastructures

\square An easy way to express Kruskal's algorithm is in terms of disioint-set data structure
\square A disioint set data structure maintains a collection $S=\left\{S_{1}, S_{2}, \ldots, S_{3}\right\}$ of disjoint sets
\square Each set is identified by a representative, which is some member in the set \square Some applications care which member we choose, others don't.
\square Disjoint set data structures define three operations
\square Make-Set(x)
\square Union (x, y)
\square Find-Set(x)

Disjoint-Set Datastructures

$\square \quad$ Disjoint set data structures define three operations
\square Make-Set(x)

- Creates a new set whose only member (and thus representative) is x. Since the sets are disjoint, we require that x not already be in some other set
\square Union (x, y)
- Merges the sets that contain x and $y\left(S_{x}\right.$ and $\left.S_{y}\right)$ into a new set that is the union of these two sets. The new representative of this set is either the representative of x, or of y.
\square Find-Set(x)
■ Returns a reference to the representative of the (unique) set containing x

Kruskal's Algorithm

$A=\varnothing$
For each vertex v in G.V:
Make-Set(v)
// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
For each edge (u, v) in G.E, taken in increasing order by weight w:
If FIND-SET(u) \neq FIND-SET(v)
$\mathrm{A}=\mathrm{A} \mathrm{U}\{(\mathrm{u}, \mathrm{v})\}$
UNION(u,v)
Return A

Kruskal's Algorithm

$A=\varnothing$
For each vertex v in G.V:
Make-Set(v)

Initialises set A to the empty set and creates $|\mathrm{V}|$ trees, one containing each vertex
// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
For each edge (u, v) in G.E, taken in increasing order by weight w:
If FIND-SET(u) \neq FIND-SET(v)

$$
\begin{aligned}
& \mathrm{A}=\mathrm{A} \mathrm{U}\{(\mathrm{u}, \mathrm{v})\} \\
& \mathrm{UNION}(\mathrm{u}, \mathrm{v})
\end{aligned}
$$

Return A

Kruskal's Algorithm

$A=\varnothing$
For each vertex v in G.V:
Make-Set(v)
Initialises set A to the empty set and creates $|\mathrm{V}|$ trees, one containing each vertex

// Inv: A is a subset of the minimum spanning tree

Sort the edges of G.E into increasing order by weight w For each edge (u, v) in G.E, taken in increasing order by weight w:

If FIND-SET(u) \neq FIND-SET(v)

$$
\begin{aligned}
& \mathrm{A}=\mathrm{A} \mathrm{U}\{(\mathrm{u}, \mathrm{v})\} \\
& \mathrm{UNION}(\mathrm{u}, \mathrm{v})
\end{aligned}
$$

Return A

Checks, for each edge (u,) whether the endpoints u and v belong to the same tree already. If they do, then the edge (u, v) cannot be added to the forest without creating a cycle, and the edge is discarded. Otherwise, the two vertices belong to different trees.

In this case, adds edge into (u,v)

Kruskal’s Algorithm - Complexity

$A=\varnothing$
For each vertex v in G.V:
Make-Set(v)
// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
For each edge (u, v) in G.E, taken in increasing order by weight w:
If FIND-SET(u) \neq FIND-SET(v)

$$
\begin{aligned}
& \mathrm{A}=\mathrm{A} \mathrm{U}\{(\mathrm{u}, \mathrm{v})\} \\
& \mathrm{UNION}(\mathrm{u}, \mathrm{v})
\end{aligned}
$$

Return A

Kruskal’s Algorithm - Complexity

$A=\varnothing$
For each vertex v in G.V:

> |V| * Make-Set (V)

Make-Set(v)
// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
For each edge (u, v) in G.E, taken in increasing order by weight w:
If FIND-SET(u) \neq FIND-SET(v)

$$
\begin{aligned}
& \mathrm{A}=\mathrm{A} \operatorname{U}\{(\mathrm{u}, \mathrm{v})\} \\
& \mathrm{UNION}(\mathrm{u}, \mathrm{v})
\end{aligned}
$$

Return A

Kruskal’s Algorithm - Complexity

$A=\varnothing$
For each vertex v in G.V:
Make-Set(v)
// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w

> |V| * Make-Set (V)

For each edge (u, v) in G.E, taken in increasing order by weight w:
If FIND-SET(u) \neq FIND-SET(v)

$$
\begin{aligned}
& \mathrm{A}=\mathrm{A} \mathrm{U}\{(\mathrm{u}, \mathrm{v})\} \\
& \mathrm{UNION}(\mathrm{u}, \mathrm{v})
\end{aligned}
$$

Return A

Kruskal’s Algorithm - Complexity

$A=\varnothing$
For each vertex v in G.V:
Make-Set(v)
// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
|V| * Make-Set (V)

For each edge (u, v) in G.E, taken in increasing order by weight w :
If FIND-SET(u) \neq FIND-SET(v)

$$
\begin{aligned}
& \mathrm{A}=\mathrm{A} \mathrm{U}\{(\mathrm{u}, \mathrm{v})\} \\
& \mathrm{UNION}(\mathrm{u}, \mathrm{v})
\end{aligned}
$$

```
|E| * (Find-Set + Union)
```

Return A

Kruskal’s Algorithm - Complexity

$A=\varnothing$
For each vertex v in G.V:
Make-Set(v)
// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
|V| * Make-Set (V)

For each edge (u, v) in G.E, taken in increasing order by weight w :
If FIND-SET(u) $=$ FIND-SET(v)

$$
\begin{array}{ll}
A=A \operatorname{U}\{(\mathrm{u}, \mathrm{v})\} & |E| *(\text { Find-Set + Union }) \\
\mathrm{UNION}(\mathrm{u}, \mathrm{v})
\end{array}
$$

Return A

With the right disjoint-set datastructure, end up with $\mathrm{O}(\mathrm{E} \log \mathrm{V})$

Prim's algorithm

Prim's algorithm

- The set A forms a single tree
- The safe edge added to A is always a least-weight edge connecting the tree to a vertex not in the tree
- Algorithm starts from an arbitrary root vertex r and grows until tree spans all vertices in V
- Each step adds to the tree A a light edge that connects A to an isolated vertex (one on which no edge of A is incident)

Prim's algorithm

Prim's algorithm

- All vertices that are not in the tree reside in a min-priority queue Q based on a key attribute v.key
- v.key is the minimum weight of an edge connecting v to a vertex in \mathbf{A}

■ v.key $=\infty$ if there is no such edge

- Attribute v.r names the parent of v in the tree.

■ $v . \pi=$ null if no such parent exists

Prim's algorithm

a (∞, nil)
b (∞, nil)
$c(\infty$, nil $)$
$d(\infty$, nil $)$
e (∞, nil)
$f(\infty$, nil)
$g(\infty$, nil $)$
h (∞, nil)
i (∞, nil)

Prim's algorithm

a (∞, nil)
b (∞, nil)
$c(\infty$, nil $)$
$d(\infty$, nil $)$
e (∞, nil)
$f(\infty$, nil)
$g(\infty$, nil $)$
$h(\infty$, nil)
i (∞, nil)

Start with arbitrary root. Here a. Set a.key=0

Prim's algorithm

a (0,nil)
b (∞, nil)
$c(\infty$, nil $)$
$d(\infty$, nil $)$
e (∞, nil)
$f(\infty$, nil)
$g(\infty$, nil)
h (∞, nil)
i (∞, nil)

Start with arbitrary root. Here a. Set a.key=0

Prim's algorithm

$$
\text { a }(0, \text { nil })
$$

Extract minimum of Q and add it to minimum spanning tree.

Prim's algorithm

For each outgoing edge (a, v) of a :
If v is in Q and $w(a, v)<v$.key

$$
\text { Update } v . \pi=a
$$

$$
v . k e y=w(u, v)
$$

Prim's algorithm

b (4, a)
$h(8, a)$
$c(\infty$, nil $)$
$d(\infty$, nil)
e (∞, nil)
$f(\infty$, nil $)$
$g(\infty$, nil)
i (∞, nil)

For each outgoing edge (a, v) of a :
If v is in Q and $w(a, v)<v$. key
Update v. $\pi=a$
v.key $=w(u, v)$

Prim's algorithm

Extract minimum of Q and add it to minimum spanning tree.

b (4, a)

Prim's algorithm

For each outgoing edge (a, v) of a :
If v is in Q and $w(a, v)<v$.key
Update $v . \pi=a$
$\mathrm{v} . \mathrm{key}=\mathrm{w}(\mathrm{u}, \mathrm{v})$

Prim's algorithm

c (8,b)

Extract minimum of Q and add it to minimum spanning tree.

Prim's algorithm

For each outgoing edge (a, v) of a : If v is in Q and $w(a, v)<v$. key

$$
\text { Update v. } \pi=a
$$

$$
c(8, b)
$$

$$
\text { v.key }=w(u, v)
$$

Prim's algorithm

For each outgoing edge (a, v) of a : If v is in Q and $w(a, v)<v$. key

Update $v . \pi=a$
$\mathrm{v} . \mathrm{key}=\mathrm{w}(\mathrm{u}, \mathrm{v})$

Prim's algorithm

$f(4, c)$
$h(8, a)$
$d(7, c)$
$e(\infty$, nil $)$
$g(\infty$, nil $)$

i $(2, \mathrm{c})$

Prim's algorithm

Prim's algorithm

Prim's algorithm

$\mathrm{f}(4, \mathrm{c})$
$g(6, i)$
$h(7, i)$
$d(7, c)$
e (∞, nil)

Prim's algorithm

Prim's algorithm

Prim's algorithm

Prim's algorithm

$\mathrm{h}(1, \mathrm{~g})$

Prim's algorithm

Prim's algorithm

d (7, c)

Prim's algorithm

Prim's algorithm

Prim's algorithm

e (9,d)

Prim's algorithm

At each step of the algorithm, the vertices in the tree determine a cut of the graph, and a light edge crossing the cut is added to the tree

Prim's algorithm

Do Prim and Kruskal generate the same minimum spanning tree?

Prim's algorithm

```
For each \(\mathrm{u} \in\) G.v:
    u.key \(=\infty\)
    u. \(\pi=\) nil
r.key \(=0\)
\(\mathrm{Q}=\mathrm{G} . \mathrm{V}\)
while \(\mathrm{Q} \neq \varnothing\)
    \(\mathrm{u}=\mathrm{EXTRACT}-\mathrm{MIN}(\mathrm{Q})\)
    for each edge ( \(\mathrm{u}, \mathrm{v}\) ):
        If \(v \in Q\) and \(w(u, v)<v . k e y\)
                \(\mathrm{v} . \pi=\mathrm{u}\)
                v.key \(=\mathrm{w}(\mathrm{u}, \mathrm{v})\)
                DECREASE-KEY(Q,v,v.key)
```


Prim's algorithm

```
For each \(u \in\) G.v:
    u.key \(=\infty\)
    u. \(\pi=\) nil
r.key \(=0\)
\(\mathrm{Q}=\mathrm{G} . \mathrm{V}\)
while \(\mathrm{Q} \neq \varnothing\)
    \(\mathrm{u}=\mathrm{EXTRACT}-\mathrm{MIN}(\mathrm{Q})\)
    for each edge ( \(\mathrm{u}, \mathrm{v}\) ):
        If \(v \in Q\) and \(w(u, v)<v . k e y\)
                \(\mathrm{v} . \pi=\mathrm{u}\)
                v.key \(=\mathrm{w}(\mathrm{u}, \mathrm{v})\)
                DECREASE-KEY(Q,v,v.key)
```

$$
\mathrm{u} . \pi=\mathrm{nil}
$$

r.key $=0$
while $\mathrm{Q} \neq \varnothing$
for each edge (u, v):

$$
\begin{aligned}
& \text { If } v \in Q \text { and } w(u, v)<v . k e y \\
& \quad v . \pi=u \\
& \text { v.key }=w(u, v) \\
& \text { DECREASE-KEY(Q,v,v.key })
\end{aligned}
$$

The vertices already placed into the minimum spanning tree are those in V-Q

For all vertices $v \in Q$, if $v . \pi$ is not null, then v.key $<\infty$ and v.key is the weight of a light edge ($v, v . \pi$) connecting v to some vertex already placed into the minimum spanning tree

Prim's algorithm - Complexity

```
For each \(u \in\) G.v:
    u.key \(=\infty\)
    u. \(\pi=\) nil
r.key \(=0\)
\(\mathrm{Q}=\mathrm{G} . \mathrm{V}\)
while \(\mathrm{Q} \neq \varnothing\)
    \(\mathrm{u}=\mathrm{EXTRACT}-\mathrm{MIN}(\mathrm{Q})\)
    for each edge ( \(\mathrm{u}, \mathrm{v}\) ):
        If \(v \in Q\) and \(w(u, v)<v . k e y\)
            \(\mathrm{v} . \pi=\mathrm{u}\)
                v.key \(=\mathrm{w}(\mathrm{u}, \mathrm{v})\)
                DECREASE-KEY(Q,v,v.key)
```


Prim's algorithm - Complexity

For each $\mathbf{u} \in$ G.v

$$
\text { u.key }=\infty
$$

$$
\mathrm{u} . \pi=\mathrm{nil}
$$

r.key $=0$
$\mathrm{Q}=\mathrm{G} . \mathrm{V}$
while $\mathrm{Q} \neq \varnothing$
$\mathrm{u}=$ EXTRACT-MIN(Q)
for each edge (u, v):
If $v \in Q$ and $w(u, v)<$ v.key
$\mathrm{v} . \pi=\mathrm{u}$
v.key $=\mathrm{w}(\mathrm{u}, \mathrm{v})$

DECREASE-KEY(Q,v,v.key)
|E| * Decrease-Key(Q)
|V| * Extract-Min(Q)

Prim's algorithm - Complexity

For each $u \in G . v$

$$
\text { u.key = } \infty
$$

$$
\mathrm{u} . \pi=\mathrm{nil}
$$

r.key $=0$
$\mathrm{Q}=\mathrm{G} . \mathrm{V}$
while $\mathrm{Q} \neq \varnothing$
$\mathrm{u}=$ EXTRACT-MIN(Q)
for each edge (u, v):
If $v \in Q$ and $w(u, v)<v . k e y$
$\mathrm{v} . \pi=\mathrm{u}$
v.key $=\mathrm{w}(\mathrm{u}, \mathrm{v})$

DECREASE-KEY(Q,v,v.key) |E| * Decrease-Key(Q)
$\mathrm{O}(\mathrm{Vlog} \mathrm{V}+\mathrm{Elog} \mathrm{V})$ if use min-heap, $\mathrm{O}(\mathrm{Vlog} \mathrm{V}+\mathrm{E})$ if use Fibonacci heaps

Taking a step back ..

\square Greedy algorithm: An algorithm that uses the heuristic of making the locally optimal choice at each stage with the hope of finding the global optimum.

Taking a step back ..

\square Greedy algorithm: An algorithm that uses the heuristic of making the locally optimal choice at each stage with the hope of finding the global optimum.
\square Dijkstra's shortest-path algorithm makes a locally optimal choice: choosing the node in Q with minimum d value and moving it to the A set.
\square We proved that this leads to the global optimum.

Taking a step back ..

\square Greedy algorithm: An algorithm that uses the heuristic of making the locally optimal choice at each stage with the hope of finding the global optimum.
\square Dijkstra's shortest-path algorithm makes a locally optimal choice: choosing the node in Q with minimum d value and moving it to the A set.
\square We proved that this leads to the global optimum.
\square Similarly, Prim's and Kruskal's locally optimum choices of adding a minimum-weight edge also yield the global optimum: a minimum spanning tree.

Taking a step back ..

\square Greedy algorithm: An algorithm that uses the heuristic of making the locally optimal choice at each stage with the hope of finding the global optimum.
\square Dijkstra's shortest-path algorithm makes a locally optimal choice: choosing the node in Q with minimum d value and moving it to the A set.
\square We proved that this leads to the global optimum.
\square Similarly, Prim's and Kruskal's locally optimum choices of adding a minimum-weight edge also yield the global optimum: a minimum spanning tree.
$\square \quad$ BUT: Greediness does not always work!

Taking a step back ..

$\square \quad$ Prim, BFS, DFS all share a similar code structure
$\square \quad$ Breadth-first-search (bfs)
\square best: next in queue
\square update: $\mathrm{D}[\mathrm{w}]=\mathrm{D}[\mathrm{v}]+1$
\square Dijkstra's algorithm
\square best: next in priority queue
\square update: $D[\mathrm{w}]=\min (D[\mathrm{w}], \mathrm{D}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w}))$
\square Prim's algorithm
\square best: next in priority queue
\square update: $\mathrm{D}[\mathrm{w}]=\min (\mathrm{D}[\mathrm{w}], \mathrm{c}(\mathrm{v}, \mathrm{w}))$
while (a vertex is unmarked) $\{$
$\mathrm{v}=$ best unmarked vertex
mark v;
for (each wadj to v)

```
    update D[w];
```

\}

[^0]: Lecture 14: Spanning Trees
 http://courses.cs.cornell.edu/c\$2110/2018su

