
CS/ENGRD 2110
SUMMER 2018
Lecture 14: Spanning Trees

http://courses.cs.cornell.edu/cs2110/2018su

Object-oriented programming
and data-structures

1

◻ Search

⬜ Depth-first search

⬜ Breadth-first search

◻ Shortest paths

⬜ Dijkstra's algorithm

◻ Spanning trees

⬜ Prim's algorithm

⬜ Kruskal's algorithm

Graph Algorithms

Recall: Trees
◻ A undirected graph is a tree if there is exactly one simple path between

any pair of vertices.

Recall: Trees
◻ A undirected graph is a tree if there is exactly one simple path between

any pair of vertices.

What’s the root? It doesn’t
matter. Any vertex can be
root

Facts about trees
◻ A tree must necessarily be:

⬜ Connected
■ A graph is connected when there is a path between every pair of

vertices

⬜ #E = #V - 1

⬜ No cycles

Spanning Trees
◻ A spanning tree of a connected undirected graph (V,E) is a subgraph (V,E’)

that is a tree
• Same set of vertices V

• E' ⊆ E

• (V, E') is a tree

• Same set of vertices V

• Maximal set of edges that contains no cycle

• Same set of vertices V

• Minimal set of edges that connect all vertices

Three equivalent definitions

Applications of spanning trees
◻ Spanning trees represent the minimum set of edges such that all the

nodes in the graph are connected

⬜ Useful for telecommunication applications!
■ How can I connect everyone in my business using the fewest cables

⬜ Useful for wiring on chips
■ How can I arrange my components such that they can all talk to

each other with the fewest cables.

Finding a spanning tree (V1)
◻ Recall

◻ Define an iterative algorithm that, when discovering a cycle in the graph,
removes an edge from that cycle, until no cycles exist.

• Same set of vertices V

• Maximal set of edges that contains no cycle

Finding a spanning tree (V1)
◻ Recall

◻ Define an iterative algorithm that, when discovering a cycle in the graph,
removes an edge from that cycle, until no cycles exist.

• Same set of vertices V

• Maximal set of edges that contains no cycle

Start with the whole graph – it is connected
• While there is a cycle:

 Pick an edge of a cycle and throw it out
 – the graph is still connected (why?)

Finding a spanning tree (V1)
◻ Recall

◻ Define an iterative algorithm that, when discovering a cycle in the graph,
removes an edge from that cycle, until no cycles exist.

• Same set of vertices V

• Maximal set of edges that contains no cycle

Start with the whole graph – it is connected
• While there is a cycle:

 Pick an edge of a cycle and throw it out
 – the graph is still connected (why?)

Finding a spanning tree (V1)
◻ Recall

◻ Define an iterative algorithm that, when discovering a cycle in the graph,
removes an edge from that cycle, until no cycles exist.

• Same set of vertices V

• Maximal set of edges that contains no cycle

Start with the whole graph – it is connected
• While there is a cycle:

 Pick an edge of a cycle and throw it out
 – the graph is still connected (why?)

Finding a spanning tree (V1)
◻ Recall

◻ Define an iterative algorithm that, when discovering a cycle in the graph,
removes an edge from that cycle, until no cycles exist.

• Same set of vertices V

• Maximal set of edges that contains no cycle

Start with the whole graph – it is connected
• While there is a cycle:

 Pick an edge of a cycle and throw it out
 – the graph is still connected (why?)

Could have
removed a
different edge.
There can be
multiple spanning
trees!

Finding a spanning tree (V2)
◻ Recall

◻ Define a set A that maintains following invariant:
⬜ A is a subset of some spanning tree (nodes in A are connected)

◻ At each step, determine an edge (u,v) that can add to A without violating
invariant
⬜ A U {(u,v)} is also a subset of a spanning tree
⬜ Call this edge a safe edge

• Same set of vertices V

• Minimal set of edges that connect all vertices

Finding a spanning tree (V2)
◻ Recall • Same set of vertices V

• Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree

Find an edge (u,v) that is safe for A
A = A U {(u,v)}

return A

Finding a spanning tree (V2)
◻ Recall • Same set of vertices V

• Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree

Find an edge (u,v) that is safe for A
A = A U {(u,v)}

return A

But how to determine what a safe edge is?
(One must exist by our loop invariant: A is a
subset of a spanning tree T)

Definition: Cuts
◻ A cut (S,V-S) of an undirected graph G = (V,E) is a partition of V.

◻ We say that an edge (u,v) ∈ crosses the cut (S,V-S) if one of its endpoints is
in S and the other is in V-S

◻ A cut respects a set A of edges if no edge in A crosses the cut

Definition: Cuts
◻ A cut (S,V-S) of an undirected graph G = (V,E) is a partition of V.

◻ We say that an edge (u,v) ∈ crosses the cut (S,V-S) if one of its endpoints is
in S and the other is in V-S

◻ A cut respects a set A of edges if no edge in A crosses the cut

V-S

S

Definition: Cuts
◻ A cut (S,V-S) of an undirected graph G = (V,E) is a partition of V.

◻ We say that an edge (u,v) ∈ crosses the cut (S,V-S) if one of its endpoints is
in S and the other is in V-S

◻ A cut respects a set A of edges if no edge in A crosses the cut

V-S

S

Blue edge crosses the cut
as it connects a black node
to a beige node

Definition: Cuts
◻ A cut (S,V-S) of an undirected graph G = (V,E) is a partition of V.

◻ We say that an edge (u,v) ∈ crosses the cut (S,V-S) if one of its endpoints is
in S and the other is in V-S

◻ A cut respects a set A of edges if no edge in A crosses the cut

V-S

S

Blue edge crosses the cut
as it connects a black node
to a beige node

Cut respects the set A of
green edges.

Finding a spanning tree (V2)
◻ Recall • Same set of vertices V

• Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree

Find an edge (u,v) that is safe for A
A = A U {(u,v)}

return A

Let G = (V,E) be a connected, undirected graph.
Let A be a subset of E that is included in some
spanning tree for G. Let (S,V-S) be any cut of G
that respects A, and let (u,v) be an edge
crossing (S,V-S), then edge (u,v) is safe for A

Finding a spanning tree (V2)
◻ Recall • Same set of vertices V

• Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree

Find an edge (u,v) that is safe for A
A = A U {(u,v)}

return A

Finding a spanning tree (V2)
◻ Recall • Same set of vertices V

• Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree

Find an edge (u,v) that is safe for A
A = A U {(u,v)}

return A

Finding a spanning tree (V2)
◻ Recall • Same set of vertices V

• Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree

Find an edge (u,v) that is safe for A
A = A U {(u,v)}

return A

Finding a spanning tree (V2)
◻ Recall • Same set of vertices V

• Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree

Find an edge (u,v) that is safe for A
A = A U {(u,v)}

return A

Finding a spanning tree (V2)
◻ Recall • Same set of vertices V

• Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree

Find an edge (u,v) that is safe for A
A = A U {(u,v)}

return A

Finding a spanning tree (V2)
◻ Recall • Same set of vertices V

• Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree

Find an edge (u,v) that is safe for A
A = A U {(u,v)}

return A

Finding a spanning tree (V2)
◻ Recall • Same set of vertices V

• Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree

Find an edge (u,v) that is safe for A
A = A U {(u,v)}

return A

Finding a spanning tree (V2)
◻ Recall • Same set of vertices V

• Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree

Find an edge (u,v) that is safe for A
A = A U {(u,v)}

return A

Finding a spanning tree (V2)
◻ Recall • Same set of vertices V

• Minimal set of edges that connect all vertices

A = ∅
// Inv: A is a subset of a spanning tree T
While A does not form a spanning tree

Find an edge (u,v) that is safe for A
A = A U {(u,v)}

return A

Minimum Spanning Tree
◻ In a weighted graph, want to find the minimum spanning tree

⬜ (Recall that there can be multiple spanning trees)

◻ Want to find the spanning tree with the minimum weight

◻ Formally: finding the minimum spanning tree for a graph is finding the
spanning tree whose weight w(T) is minimised.

⬜

Definition: Cuts
◻ A cut (S,V-S) of an undirected graph G = (V,E) is a partition of V.

◻ We say that an edge (u,v) ∈ crosses the cut (S,V-S) if one of its endpoints is
in S and the other is in V-S

◻ A cut respects a set A of edges if no edge in A crosses the cut

◻ An edge is a light edge crossing a cut if its weight is the minimum of any
edge crossing the cut

V
-
S

S

Algorithms of Kruskal and Prim
◻ Greedy algorithms that use a specific rule to determine a safe edge

⬜ Kruskal’s algorithm
■ The set A is a forest whose vertices are all those of the given graph
■ The same edge added to A is always a least-weight edge in the

graph that connects two distinct components

⬜ Prim’s algorithm
■ The set A forms a single tree.
■ The safe edge added to A is always a least-weight edge connecting

the tree to a vertex not in the tree

Kruskal’s Algorithm
◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Kruskal’s Algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

◻ Kruskal’s algorithm

■ The set A is a forest whose vertices are all those of the given graph

■ The same edge added to A is always a least-weight edge in the
graph that connects two distinct components

Disjoint-Set Datastructures
◻ An easy way to express Kruskal’s algorithm is in terms of disjoint-set data

structure

◻ A disjoint set data structure maintains a collection S={S
1
, S

2
, …, S

3
} of

disjoint sets

◻ Each set is identified by a representative, which is some member in the set
⬜ Some applications care which member we choose, others don’t.

◻ Disjoint set data structures define three operations
⬜ Make-Set(x)
⬜ Union(x,y)
⬜ Find-Set(x)

Disjoint-Set Datastructures
◻ Disjoint set data structures define three operations

⬜ Make-Set(x)
■ Creates a new set whose only member (and thus representative) is x.

Since the sets are disjoint, we require that x not already be in some other
set

⬜ Union(x,y)
■ Merges the sets that contain x and y (S

x
 and S

y
) into a new set that is the

union of these two sets. The new representative of this set is either the
representative of x, or of y.

⬜ Find-Set(x)
■ Returns a reference to the representative of the (unique) set containing x

Kruskal’s Algorithm

A = ∅

For each vertex v in G.V:
Make-Set(v)

// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
For each edge (u,v) in G.E, taken in increasing order by weight w:

If FIND-SET(u) ≠ FIND-SET(v)
A = A U{(u,v)}
UNION(u,v)

Return A

Kruskal’s Algorithm

A = ∅

For each vertex v in G.V:
Make-Set(v)

// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
For each edge (u,v) in G.E, taken in increasing order by weight w:

If FIND-SET(u) ≠ FIND-SET(v)
A = A U{(u,v)}
UNION(u,v)

Return A

Initialises set A to the empty set and creates
|V| trees, one containing each vertex

Kruskal’s Algorithm

A = ∅

For each vertex v in G.V:
Make-Set(v)

// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
For each edge (u,v) in G.E, taken in increasing order by weight w:

If FIND-SET(u) ≠ FIND-SET(v)
A = A U{(u,v)}
UNION(u,v)

Return A

Initialises set A to the empty set and creates
|V| trees, one containing each vertex

Checks, for each edge (u,) whether the
endpoints u and v belong to the same
tree already. If they do, then the edge
(u,v) cannot be added to the forest
without creating a cycle, and the edge is
discarded. Otherwise, the two vertices
belong to different trees.

In this case, adds edge into (u,v)

Kruskal’s Algorithm - Complexity

A = ∅

For each vertex v in G.V:
Make-Set(v)

// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
For each edge (u,v) in G.E, taken in increasing order by weight w:

If FIND-SET(u) ≠ FIND-SET(v)
A = A U{(u,v)}
UNION(u,v)

Return A

Kruskal’s Algorithm - Complexity

A = ∅

For each vertex v in G.V:
Make-Set(v)

// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
For each edge (u,v) in G.E, taken in increasing order by weight w:

If FIND-SET(u) ≠ FIND-SET(v)
A = A U{(u,v)}
UNION(u,v)

Return A

|V| * Make-Set (V)

Kruskal’s Algorithm - Complexity

A = ∅

For each vertex v in G.V:
Make-Set(v)

// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
For each edge (u,v) in G.E, taken in increasing order by weight w:

If FIND-SET(u) ≠ FIND-SET(v)
A = A U{(u,v)}
UNION(u,v)

Return A

|V| * Make-Set (V)

O(E * log E)

Kruskal’s Algorithm - Complexity

A = ∅

For each vertex v in G.V:
Make-Set(v)

// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
For each edge (u,v) in G.E, taken in increasing order by weight w:

If FIND-SET(u) ≠ FIND-SET(v)
A = A U{(u,v)}
UNION(u,v)

Return A

|V| * Make-Set (V)

O(E * log E)

|E| * (Find-Set + Union)

Kruskal’s Algorithm - Complexity

A = ∅

For each vertex v in G.V:
Make-Set(v)

// Inv: A is a subset of the minimum spanning tree
Sort the edges of G.E into increasing order by weight w
For each edge (u,v) in G.E, taken in increasing order by weight w:

If FIND-SET(u) ≠ FIND-SET(v)
A = A U{(u,v)}
UNION(u,v)

Return A

|V| * Make-Set (V)

O(E * log E)

|E| * (Find-Set + Union)

With the right disjoint-set datastructure, end up with O(E log V)

Prim’s algorithm

◻ Prim’s algorithm

■ The set A forms a single tree

■ The safe edge added to A is always a least-weight edge connecting
the tree to a vertex not in the tree

■ Algorithm starts from an arbitrary root vertex r and grows until tree
spans all vertices in V

■ Each step adds to the tree A a light edge that connects A to an
isolated vertex (one on which no edge of A is incident)

Prim’s algorithm

◻ Prim’s algorithm

■ All vertices that are not in the tree reside in a min-priority queue Q based
on a key attribute v.key

■ v.key is the minimum weight of an edge connecting v to a vertex in A
■ v.key= ∞ if there is no such edge

■ Attribute v.π names the parent of v in the tree.
■ v.π = null if no such parent exists

a (∞,nil)
b (∞,nil)
c (∞,nil)
d (∞,nil)
e (∞,nil)
f (∞, nil)
g (∞, nil)
h (∞, nil)
i (∞, nil)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

a (∞,nil)
b (∞,nil)
c (∞,nil)
d (∞,nil)
e (∞,nil)
f (∞, nil)
g (∞, nil)
h (∞, nil)
i (∞, nil)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

Start with arbitrary root. Here a. Set a.key=0

a (0,nil)
b (∞,nil)
c (∞,nil)
d (∞,nil)
e (∞,nil)
f (∞, nil)
g (∞, nil)
h (∞, nil)
i (∞, nil)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

Start with arbitrary root. Here a. Set a.key=0

b (∞,nil)
c (∞,nil)
d (∞,nil)
e (∞,nil)
f (∞, nil)
g (∞, nil)
h (∞, nil)
i (∞, nil)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

Extract minimum of Q and add it to minimum
spanning tree.

a (0,nil)

b (∞,nil)
c (∞,nil)
d (∞,nil)
e (∞,nil)
f (∞, nil)
g (∞, nil)
h (∞, nil)
i (∞, nil)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

For each outgoing edge (a,v) of a:
If v is in Q and w(a,v) < v.key

Update v.π = a
v.key = w(u,v)

a (0,nil)

b (4,a)
h (8, a)
c (∞,nil)
d (∞,nil)
e (∞,nil)
f (∞, nil)
g (∞, nil)
i (∞, nil)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

For each outgoing edge (a,v) of a:
If v is in Q and w(a,v) < v.key

Update v.π = a
v.key = w(u,v)

h (8, a)
c (∞,nil)
d (∞,nil)
e (∞,nil)
f (∞, nil)
g (∞, nil)
i (∞, nil)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

Extract minimum of Q and add it to minimum
spanning tree.

b (4,a)

c (8,b)
h (8, a)
d (∞,nil)
e (∞,nil)
f (∞, nil)
g (∞, nil)
i (∞, nil)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

For each outgoing edge (a,v) of a:
If v is in Q and w(a,v) < v.key

Update v.π = a
v.key = w(u,v)

h (8, a)
d (∞,nil)
e (∞,nil)
f (∞, nil)
g (∞, nil)
i (∞, nil)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

Extract minimum of Q and add it to minimum
spanning tree.

c (8,b)

h (8, a)
d (7,c)
e (∞,nil)
f (4, c)
g (∞, nil)
i (2, c)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

c (8,b)

For each outgoing edge (a,v) of a:
If v is in Q and w(a,v) < v.key

Update v.π = a
v.key = w(u,v)

i (2, c)
f (4, c)
h (8, a)
d (7,c)
e (∞,nil)
g (∞, nil)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

For each outgoing edge (a,v) of a:
If v is in Q and w(a,v) < v.key

Update v.π = a
v.key = w(u,v)

f (4, c)
h (8, a)
d (7,c)
e (∞,nil)
g (∞, nil)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

i (2,c)

f (4, c)
h (7, i)
d (7,c)
e (∞,nil)
g (6, i)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

f (4, c)
g (6, i)
h (7, i)
d (7,c)
e (∞,nil)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

g (6, i)
h (7, i)
d (7,c)
e (∞,nil)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

f(4,c)

g (2, f)
h (7, i)
d (7,c)
e (10,f)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

h (7, i)
d (7,c)
e (10,f)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

g(2,f)

h (1, g)
d (7,c)
e (10,f)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

d (7,c)
e (10,f)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

h(1,g)

d (7,c)
e (10,f)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

e (10,f)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

d (7,c)

e (10,f)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

e (9,d)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

e (9,d)

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

At each step of the algorithm,
the vertices in the tree
determine a cut of the graph,
and a light edge crossing the cut
is added to the tree

Prim’s algorithm

a

b

h

c

i

g f

d

e

4

8

11

7

1 2

4

78

14

9

10

2

6

Do Prim and Kruskal generate
the same minimum spanning
tree?

For each u ∊ G.v:
u.key = ∞
u.π = nil

r.key = 0
Q = G.V
while Q ≠ ∅

u = EXTRACT-MIN(Q)
for each edge (u,v):

If v ∊ Q and w(u,v) < v.key
v.π = u
 v.key = w(u,v)
DECREASE-KEY(Q,v,v.key)

Prim’s algorithm

For each u ∊ G.v:
u.key = ∞
u.π = nil

r.key = 0
Q = G.V
while Q ≠ ∅

u = EXTRACT-MIN(Q)
for each edge (u,v):

If v ∊ Q and w(u,v) < v.key
v.π = u
 v.key = w(u,v)
DECREASE-KEY(Q,v,v.key)

Prim’s algorithm

The vertices already placed into
the minimum spanning tree are
those in V-Q

For all vertices v ∊ Q, if v.π is not
null, then v.key < ∞ and v.key is
the weight of a light edge (v,v.π)
connecting v to some vertex
already placed into the
minimum spanning tree

For each u ∊ G.v:
u.key = ∞
u.π = nil

r.key = 0
Q = G.V
while Q ≠ ∅

u = EXTRACT-MIN(Q)
for each edge (u,v):

If v ∊ Q and w(u,v) < v.key
v.π = u
 v.key = w(u,v)
DECREASE-KEY(Q,v,v.key)

Prim’s algorithm - Complexity

For each u ∊ G.v:
u.key = ∞
u.π = nil

r.key = 0
Q = G.V
while Q ≠ ∅

u = EXTRACT-MIN(Q)
for each edge (u,v):

If v ∊ Q and w(u,v) < v.key
v.π = u
 v.key = w(u,v)
DECREASE-KEY(Q,v,v.key)

Prim’s algorithm - Complexity

|V| * Insert(Q,v)

|V| * Extract-Min(Q)

|E| * Decrease-Key(Q)

For each u ∊ G.v:
u.key = ∞
u.π = nil

r.key = 0
Q = G.V
while Q ≠ ∅

u = EXTRACT-MIN(Q)
for each edge (u,v):

If v ∊ Q and w(u,v) < v.key
v.π = u
 v.key = w(u,v)
DECREASE-KEY(Q,v,v.key)

Prim’s algorithm - Complexity

|V| * Insert(Q,v)

|V| * Extract-Min(Q)

|E| * Decrease-Key(Q)

O(VlogV + ElogV) if use min-heap, O(VlogV + E) if use Fibonacci heaps

Taking a step back ..
◻ Greedy algorithm: An algorithm that uses the heuristic of making the locally

optimal choice at each stage with the hope of finding the global optimum.

Taking a step back ..
◻ Greedy algorithm: An algorithm that uses the heuristic of making the locally

optimal choice at each stage with the hope of finding the global optimum.

◻ Dijkstra’s shortest-path algorithm makes a locally optimal choice: choosing

the node in Q with minimum d value and moving it to the A set.

⬜ We proved that this leads to the global optimum.

Taking a step back ..
◻ Greedy algorithm: An algorithm that uses the heuristic of making the locally

optimal choice at each stage with the hope of finding the global optimum.

◻ Dijkstra’s shortest-path algorithm makes a locally optimal choice: choosing

the node in Q with minimum d value and moving it to the A set.

⬜ We proved that this leads to the global optimum.

◻ Similarly, Prim’s and Kruskal’s locally optimum choices of adding a

minimum-weight edge also yield the global optimum: a minimum spanning

tree.

Taking a step back ..
◻ Greedy algorithm: An algorithm that uses the heuristic of making the locally

optimal choice at each stage with the hope of finding the global optimum.

◻ Dijkstra’s shortest-path algorithm makes a locally optimal choice: choosing

the node in Q with minimum d value and moving it to the A set.

⬜ We proved that this leads to the global optimum.

◻ Similarly, Prim’s and Kruskal’s locally optimum choices of adding a

minimum-weight edge also yield the global optimum: a minimum spanning

tree.

◻ BUT: Greediness does not always work!

Taking a step back ..
◻ Prim, BFS, DFS all share a similar code structure

◻ Breadth-first-search (bfs)

⬜ best: next in queue

⬜ update: D[w] = D[v]+1

◻ Dijkstra’s algorithm

⬜ best: next in priority queue

⬜ update: D[w] = min(D[w], D[v]+c(v,w))

◻ Prim’s algorithm

⬜ best: next in priority queue

⬜ update: D[w] = min(D[w], c(v,w))

while (a vertex is unmarked) {

 v= best unmarked vertex

 mark v;

 for (each w adj to v)

 update D[w];

}

