1

Obiject-oriented programming
and data-structures

CS/ENGRD 2110
SUMMER 2018

Graph Algorithms

- Search
-1 Depth-first search
-1 Breadth-first search

- Shortest paths
- Dijkstra's algorithm

- Spanning trees
- Prim's algorithm
- Kruskal's algorithm

Shortest Path Problem

5
1 How do | efficiently find the shortest path from s to vin a graph?

Shortest Path Problem

How do | efficiently find the shortest path from s fo vin a graph?

What is the shortest path to fly from Svrljig (Serbia, Population: 7533) to
Stony River (Alaska, USA, Population: 52)

MMMMMM

oronina g

Bulgaria

Plovdiv.
........

Shortest Path Problem

1 Shortest path between Svrljig to D
Stony River requires 8 hops e - ERRE -

2= Choose departure to Stony River Return to Svrljig, Serbia Trip summary

Stops v Comnectingaiports v Price v Times v Aiines v More v

Flight insights

: bt SERRE i

Cheaper flights from $3,922 Explore price trends for 6-day Compare prices for airports near Fly in Business for $9,340
available on other dates 1rips to Stony River Stony River
SEE MORE SEE MORE SEE MORE SEE MORE

Best departing flights @

Total price includes taxes + fees for 1 adult. Additional bag fees and other fees may apply. Sortby: Ty
“ 10:25 AM - 1:40 PM" 37h 15m 8stops A $4,024
Air Serbia, British Airways, Alaska, Ravn Alaska - A.. BEG-SRV LHR, SEA, ANC, ANI, CHU, CKE round trip v
4 530AM-140 PM" 41h10m 8stops & $5,216
Lufthansa, Alaska, Ravn Alaska - United - Operated.. BEG-SRV FRA, SEA, ANC, ANI, CHU, CKD round trip v

° Track prices
Monitor the lowest price for this trip, and receive price alerts and travel tips by email

Other departing flights
‘ 6:40 AM - 1:40 PM" 41h Om 8stops A $13,064
Air Serbia, Delta, Ravn Alaska - KLM - Operated by .. BEG-SRV AMS, MSP, ANC, ANI, CHU, CK found trip s
‘ 6:40 AM - 1:40 PM" 41h 0m 8 stops & $13,064
Air Serbia, Delta, Ravn Alaska - KLM - Operated by .. BEG-SRV AMS, MSP, ANC, ANI, CHU, CK round trip v

- 6:40 AM - 1:40 PM*! 41h Om 8stons A $13.064

Shortest Path Problem

1 Shortest path between Svrljig to D
Stony River requires 8 hops i D R -

2= Choose departure to Stony River Return to Svrljig, Serbia Trip summary

O Google FlighTS CompuTed thisis a S ik

Flight insights

few milliseconds. Billions of
- Cheaper flights from $3,922 Explore price trends for 6-day Compare prices for airports near Fly in Business for $9,340

rices for
available on other dates 1rips to Stony River Stony River

possible paths!

Best departing flights @

Total price Includes taxes + fees for 1 adult, Additional bag fees and other fees may appy. sorthy: T
“ 10:25 AM - 1:40 PM" 37h 15m 8stops A $4,024
I IGV E W E S E E n : n G |g : riTh m _I_h O_I_ Air Serbia, British Airways, Alaska, Ravn Alaska - A.. BEG-SRV LHR, SEA, ANC, ANI, CHU, CKC round trip e
4 E%0AM-140 PM" 41h10m 8stops A $5216
’? Lufthansa, Alaska, Ravn Alaska - United - Operated.. BEG-SRV FRA, SEA, ANC, ANI, CHU, CKD round trip v
can con |pu’re the shortest pCI'H |
° Track prices 3
Monitor the lowest price for this trip, and receive price alerts and travel tips by email
Other departing flights
‘ 6:40 AM - 1:40 PM"' 41h Om 8 stops & $13,064
Air Serbia, Delta, Ravn Alaska - KLM - Operated by .. BEG-SRV AMS, MSP, ANC, AN, CHU, CK found trip s
l 6:40 AM - 1:40 PM"' 41h 0m 8 stops & $13,064
Air Serbia, Delta, Ravn Alaska - KLM - Operated by .. BEG-SRV AMS, MSP, ANC, ANI, CHU, CK found trip h

- 6:40 AM - 1:40 PM*! 41h Om 8stons A $13.064

What about BFS

1
BFS expands the graph in “layers”
First explores all nodes at distance 1 from the source
Next explores all nodes at distance 2 from the source, etc.

What about BFS

BFS expands the graph in “layers”
First explores all nodes at distance 1 from the source
Next explores all nodes at distance 2 from the source, efc.

But BFS only finds the path with the smallest number of hops

Instead, we want to consider weighted graphs

Weighted Graphs

In real graphs, want to assign weights to a graph
Price
Distance
Number of miles

The shortest path is the path with the lowest weight, not necessarily the
path with the smallest number of edges

Weighted Graphs

Roundtrp + 1passenger » Economy ~

1 Inreal graphs, want to
assign weights to a
graph
| Price

H
l:‘ D I STG n Ce Cheaper flights from $530 Explore price trends for 6-day Compare prices for airports near Fly in Premium Economy for
$1,235

available on other dates trips to Paris Paris
.
~1 Number of miles

Best departing flights @

Total price includes taxes + fees for 1 adult. Additional bag fees and other fees may apply. Sortby: T

1 The shortest path is the § (- oo 5
path with the lowest Lo o k.
weight, not necessarily s P e a8 .
the path with the wr I ot Sw

Q New York City < Q Pars 3 ThuAug9 < >

= Choose departure to Paris Return to New York City Trip summary

Stops v Comnectingairports v Price v Times w Ailines v More v

i

round trip
smallest number of o B T oam

edges ° Track prices B

Monitor the lowest price for this trip, and receive price alerts and travel tips by email

Weighted Graphs, formally

7 Aweighted directed graph G = (V,E,W)
7 Vis a(finite) set
] Eis aset of ordered pairs (u, v) where u,v € V
71 W s weight function that assigns edges to real-valued weights

Weighted Graphs, formally

]
A weighted directed graph G = (V,E,W)
Vis a (finite) set
Eis a set of ordered pairs (u, v) where u,v € V
W is weight function that assigns edges to real-valued weights

Recall that a path is a sequence of edges p = (v,,v,,v,,..V,)

The weight w(p) of a path p = (v,v,,v,,..v,) is the sum of the weights of
its constituent edges

. A'

w(p) = Z w(vi-1,v;)

i=1

Scoping the Problem

~1 Single Destination Shortest Paths Problem
| Find a shortest path between two vertices uand v

Scoping the Problem

Single Destination Shortest Paths Problem
Find a shortest path between two vertices uand v

All-pairs shortest path problem
Find a shortest path from u to v for every pair of vertices u and v
Can run case-above for all vertices u and v
But exists a more efficient algorithm (Floyd-Warshall Algorithm)
We do not look at this in this class!

Single-Source Shortest Path (SSSP)

Two algorithms:

Dijkstra's Algorithm

Bellman Ford Algorithm
Dijkstra’s algorithm has complexity O(V+E)
Bellman-Ford’s algorithm has complexity O(VE)

Dijkstra works only for positive edges. Bellman-Ford works for both
positive and negative edges.

In this class we will only look at Dijkstra’s algorithm!

Single-Source Shortest Path (SSSP)

1 Two algorithms:
| Dijkstra's Algorithm
| Bellman Ford Algorithm

Single-Source Shortest Path (SSSP)

~ Two algorithms:
| Dijkstra's Algorithm
| Bellman Ford Algorithm

= Dijkstra’s algorithm has complexity O(V+E)

Single-Source Shortest Path (SSSP)

Two algorithms:
Dijkstra's Algorithm
Bellman Ford Algorithm
Dijkstra’s algorithm has complexity O(V+E)

Bellman-Ford’s algorithm has complexity O(VE)

Single-Source Shortest Path (SSSP)

Two algorithms:

Dijkstra's Algorithm

Bellman Ford Algorithm
Dijkstra’s algorithm has complexity O((V+E)IgV)
Bellman-Ford’s algorithm has complexity O(VE)

Dijkstra works only for positive edges. Bellman-Ford works for both
positive and negative edges.

In this class we will only look at Dijkstra’s algorithm!

Shortest Path - Definition

We define the shortest path
weight d(u,v) from u to v by:

_—

"U,-‘(p) — 7’]‘L2'.n.('u,.v(]')) T U~ ‘U) If there is a path from u to v
O Otherwise

A shortest path from vertex u to
vertex v is then defined as any
path p with weight p = 8(u,v)

Shortest Path - Definition

We define the shortest path
weight d(u,v) from u to v by:

_—

"U,-‘(p) — TI'L‘iTl-(‘Il,?(])) T U~ -U) If there is a path from u to v
O Otherwise

A shortest path from vertex u to
vertex v is then defined as any
path p with weight p = 8(u,v)

Shortest Path - Definition

We define the shortest path

weight d(u,v) from u to v by: o(u,v)="?
o(zv)=7
B S(z,u)="?

w(p) = — min(w(p) : u~» v) [Ifthereisapathfromutov

OO Otherwise

A shortest path from vertex u to
vertex v is then defined as any
path p with weight p = 8(u,v)

Shortest Path - Definition

We define the shortest path

weight d(u,v) from u to v by: o(u,v)=3
o(zv)=5
B O(z,u) = o0

w(p) = — min(w(p) : u~» v) [Ifthereisapathfromutov

OO Otherwise

A shortest path from vertex u to
vertex v is then defined as any
path p with weight p = 8(u,v)

What about brute-force?

What if we simply enumerated all paths between u and v, and picked
the one with the smallest weight?

How many paths between two nodes can there be in the worst-case?

What about brute-force?

What if we simply enumerated all paths between u and v, and picked
the one with the smallest weight?

How many paths between two nodes can there be in the worst-case?

O e e

Paths from O to 17

What about brute-force?

What if we simply enumerated all paths between u and v, and picked
the one with the smallest weight?

How many paths between two nodes can there be in the worst-case?

O e e

Paths from O to 1? 1

What about brute-force?

What if we simply enumerated all paths between u and v, and picked
the one with the smallest weight?

How many paths between two nodes can there be in the worst-case?

O e e

Paths from O to 1? 1
Paths from O to 27

What about brute-force?

What if we simply enumerated all paths between u and v, and picked
the one with the smallest weight?

How many paths between two nodes can there be in the worst-case?

O e e

Paths from O to 1? 1
Paths from 0 to 27 2

What about brute-force?

What if we simply enumerated all paths between u and v, and picked
the one with the smallest weight?

How many paths between two nodes can there be in the worst-case?

O e e

Paths from O to 1? 1
Paths from 0 to 27 2
Paths from 0 to 47: 4

What about brute-force?

1
What if we simply enumerated all paths between u and v, and picked
the one with the smallest weight?

How many paths between two nodes can there be in the worst-case?

O e e

Paths from 0 to 1?7 1
Paths from 0 to 2?7 2
Paths from 0 to 47: 4
Paths from 0 to 67: 8

What about brute-force?

1
What if we simply enumerated all paths between u and v, and picked
the one with the smallest weight?

How many paths between two nodes can there be in the worst-case?

O e e

Paths from 0 to 1?7 1
Paths from 0 to 2?7 2
Paths from 0 to 47: 4
Paths from 0 to 67: 8
Paths from O to 8?7 16

What about brute-force?

1
What if we simply enumerated all paths between u and v, and picked
the one with the smallest weight?

How many paths between two nodes can there be in the worst-case?

O e e

Paths from O to 17 1 Order 27(n/2)
Paths from 0 to 27 2
Paths from 0 to 47: 4 Exponentially many paths

Paths from O to 67: 8
Paths from O to 8?7 16

Terminology

Terminology - Current Weight

9 Write d(u,v) to be the
current weight of node v: it
represents the current best
estimate of the shortest

1 path fromutov

5

u: source vertex

Terminology- Current Weight

9 Write d(u,v) to be the
current weight of node v: it
represents the current best
estimate of the shortest

1 path fromutov

5

u: source vertex

Terminology- Current Weight

5

u: source vertex

Write d(u,v) to be the
current weight of node v: it
represents the current best
estimate of the shortest
path fromutov

Initially, because don't
have an estimate, start
with e

Terminology- Current Weight

5

u: source vertex

Write d(u,v) to be the
current weight of node v: it
represents the current best
estimate of the shortest
path fromutov

Initially, because don't
have an estimate, start
with e

Goal: reduce d(u) until sure
that d(u) = &(u,v)

Terminology - Path Relaxation

9 As discover new paths, will
update estimates of what
is currently the shortest
path

5

u: source vertex

Terminology - Path Relaxation

9 As discover new paths, will
update estimates of what
is currently the shortest
path

5

u: source vertex

Terminology - Path Relaxation

9 As discover new paths, will
update estimates of what
is currently the shortest
path

5

u: source vertex

Terminology - Path Relaxation

9 As discover new paths, will
update estimates of what
is currently the shortest
path

5

u: source vertex

Terminology - Path Relaxation

5

u: source vertex

Path relaxation:

Given a new edge (u,v):

If d[u] + w(u,v) < d[v], tThen
we have discovered a
better way to get from s to
v, so update d[v] = d[u] +
w(u,Vv)

Terminology - Predecessor

Node y

9 Keep track of the
predecessor of a node:
the node u that precedes v
in the current estimate of

1 the shortest path

5

u: source vertex

Myl =x
Initially M[y] = null
During path relaxation, if

d[u] + w(u,v) < d[v], tThen
update Mv]l=u

General Structure of SSSP

- Initialisation
1 ForuinV:dvl=?MN[u] =7?
1 d[s]=7

General Structure of SSSP

- Initialisation
1 ForuinV:d[v] = M[u] = null
1 d[s]=0

General Structure of SSSP

Initialisation
ForuinV:d[v] = e M[u] = null
d[s]=0

Repeat until [When?]
Select some edge (u,v) [How?]
m Relax edge (u,v):
m if d[v]>d[u] + w[u,V]
m d[v] =d[u] + w[u,V]
m MNvl=u

General Structure of SSSP

Initialisation
ForuinV:d[v] = e M[u] = null
d[s]=0

Repeat until none of the edges can be relaxed
Select some edge (u,v) [How?]
m Relax edge (u,v):
m if d[v]>d[u] + w[u,V]
m d[v] =d[u] + w[u,V]
m MN[vl=u

General Structure of SSSP

- Initialisation
1 ForuinV:d[v] = M[u] = null
1 d[s]=0

- Repeat until none of the edges can be relaxed
| Select some edge (u,v) [How?]
m Relax edge (u,v):
m if d[v]>d[u] +w[u,V]

m d[v]=d[u] +wl[u,V]
m M[v]l=u

General Structure of SSSP

- Initialisation
1 ForuinV:d[v] = M[u] = null
1 d[s]=0

- Repeat until none of the edges can be relaxed

| Select some edge (u,v) [How?]
m Relax edge (u,v):
m if d[v]>d[u] +w[u,V]

m d[v]=d[u] +wl[u,V]
m M[v]l=u

General Structure of SSSP

- Initialisation
1 ForuinV:d[v] = M[u] = null
1 d[s]=0

- Repeat until none of the edges can be relaxed

| Select some edge (u,v) [How?]
m Relax edge (u,v):
m if d[v]>d[u] +w[u,V]

m d[v]=d[u] +wl[u,V]
m M[v]l=u

Worst-Case Iterations

Worst-Case Iterations

Worst-Case Iterations

Worst-Case Iterations

Worst-Case Iterations

Worst-Case Iterations

Worst-Case Iterations

Worst-Case Iterations

Keep going decrementing from 13 (initial value), until shortest path
value of 7

How many iterations does this take?

Worst-Case Iterations

Keep going decrementing from 13 (initial value), until shortest path
value of 7

How many iterations does this take? 2*n/2 ...
We have an exponential algorithm! (Again!)

Need to find some way to “intelligently” select the edges.

Dijkstra's algorithm

We need a way to bound the number of times that we relax edges

Dijkstra’s algorithm does this by greedily selecting the vertex v with
the smallest d(u,v) and relaxing its neighbouring edges.

We'll see how this is sufficient to guarantee that d(u,v)=8(u,v) once all
vertices have been processed

It only requires 1 pass on all the vertices (V) and all the edges (E)!

The algorithm itself is surprisingly simple. The proof is harder.

Dijkstra's algorithm

Maintains a set S of vertices whose final shortest path weights from
source s have already been determined, and a set Q of vertices
whose shortest path weights are not yet known.

Algorithm repeatedly selects the vertex vin Q with the minimum

shortest path estimate.
Addsvto S.
Relaxes all the edges leaving v.

We'll show in the proof that, at the point where we add vto S d(u,v) =&
(uyv)

Dijkstra's algorithm

Dijkstra's algorithm

Dijkstra's algorithm

Initialisation

d[s,s] =7
dis,t]=7?
dis,x] =7

Dijkstra's algorithm

Initialisation

d[s,s] =0
d[s,t] = o0
d[s,x] = o0

Dijkstra's algorithm

X S

o

‘ L— Initialisation
b 2 AN als.s] =9
d[s,t] = o0

d[s,x] = o0

Dijkstra's algorithm

Initialisation

dls,s]=0 T[s] =null
d[s,f] =0 T[t] = null
dls,x]=c0 T[Xx] =null

Dijkstra's algorithm

X S

o

‘ L— Initialisation
b X " Place all node V in Q.

Dijkstra's algorithm

Pick node with smallest d[s,Vv]
and place itin S

Dijkstra's algorithm

s:0

Pick node with smallest d[s,Vv]
and place itin S

Dijkstra's algorithm

s:0

Pick node with smallest d[s,Vv]
and place itin S

Relax all of its edges

Dijkstra's algorithm

s:0

Pick node with smallest d[s,Vv]
and place itin S

Relax all of its edges

Dijkstra's algorithm

s:0,y:5

Pick node with smallest d[s,Vv]
and place itin S

Relax all of its edges

Dijkstra's algorithm

s:0,y:5

Pick node with smallest d[s,Vv]
and place itin S

Relax all of its edges

Dijkstra's algorithm

s:0,y:5z7

Pick node with smallest d[s,Vv]
and place itin S

Relax all of its edges

Dijkstra's algorithm

s:0,y:5z7

Pick node with smallest d[s,Vv]
and place itin S

Relax all of its edges

Dijkstra's algorithm

s:0,v:5,27,1.8

Pick node with smallest d[s,Vv]
and place itin S

Relax all of its edges

Dijkstra's algorithm

s:0,v:5,27,1.8

Pick node with smallest d[s,Vv]
and place itin S

Relax all of its edges

Dijkstra's algorithm

s:0,v:5,z.7,1.8,x9

Pick node with smallest d[s,Vv]
and place itin S

Relax all of its edges

Dijkstra's algorithm

s:0,v:5,z.7,1.8,x9

Pick node with smallest d[s,Vv]
and place itin S

Relax all of its edges

Dijkstra's algorithm

d[s,s] =
ForvinV:
d[s,Vv]= o
M[v] = null
S=0
Q=V
whileQ # @
u = FindMinimum from Q
S=SU{u}

For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
// Have discovered a shorter path
d[n] = d[u] + w(u,n)
// Update Predecessor of n
MNin] =
Updatenin Q
Else:
/1 Already knew of a better path

Complexity

d[s,s]=0 Relax(u,n):
ForvinV: If d[n] > d[u] + w(u,n):
d[s,v]= e // Have discovered a shorter path
M[v] = null d[n] = d[u] + w(u,n)
S=2 /! Update Predecessor of n
Q=V MN[n]=u
whileQ # @ Updatenin Q
u = FindMinimum from Q Else:
S=SU{u} /1 Already knew of a better path

For each neighbour n of u:
Relax(u,n)

Complexity

d[s,s]=0
ForvinV:
d[s,v]= =
M[v] = null
S=9 Loop runs O(V)
Q=V times
whileQ # @
u = FindMinimum from Q
S=SU{u}
For each neighbour n of u:
Relax(u,n)

At most relax
O(E) times

Relax(u,n):
If d[n] > d[u] + w(u,n):
// Have discovered a shorter path
d[n] = d[u] + w(u,n)
// Update Predecessor of n
Mn]=u
Updatenin Q
Else:
/1 Already knew of a better path

Complexity

d[s,s]=0 Relax(u,n):
Forvin V: Call insert into Q If d[n] > d[u] + w(u,n):
d[s,v]= o O(V) times // Have discovered a shorter path
M[v] = null d[n] = d[u] + w(u,n)
S=2 Call /! Update Predecessor of n
Q=V FindMinimum M[n] = u
while Q # @ O(V) times Updatenin Q
u = FindMinimum from Q Else:
S=SU{u} /1 Already knew of a better path
For each neighbour n of u:
Relax(u,n)

Call Relax O(E)
times.

Complexity - Priority Queue!

d[s,s]1=0
ForvinV:
d[s,Vv]= o
M[v] = null
S=0
Q =Insert(V,Q)
whileQ # @
u = Extract-Min(Q)
S=SU{u}

Call insert into Q
O(V) times

Call Extract-Min
O(V) times

For each neighbour n of u:

Relax(u,n)

Call
DecreaseKey
O(E) times.

Relax(u,n):
If d[n] > d[u] + w(u,n):
// Have discovered a shorter path
d[n] = d[u] + w(u,n)
// Update Predecessor of n
Mn]=u
DecreaseKey(Q,n)
Else:
/1 Already knew of a better path

Complexity - Priority Queue!

d[s,s]1=0
ForvinV:
d[s,Vv]= o
M[v] = null
S=0
Q =Insert(V,Q)
whileQ # @
u = Extract-Min(Q)
S=SU{u}

Call insert into Q
O(V) times

Call Extract-Min
O(V) times

For each neighbour n of u:

Relax(u,n)

Call
DecreaseKey
O(E) times.

Relax(u,n):
If d[n] > d[u] + w(u,n):
// Have discovered a shorter path
d[n] = d[u] + w(u,n)
// Update Predecessor of n
Mn]=u
DecreaseKey(Q,n)
Else:
/1 Already knew of a better path

Insert(v,Q): O(Ig V)

Extract-Min: O(Ig V)

Decrease-Key: O(lg V)

Complexity - Priority Queue!

d[s,s]=0 Relax(u,n):
Forvin V: Call insert into Q If d[n] > d[u] + w(u,n):
d[s,v]= o O(V) times // Have discovered a shorter path
M[v] = null d[n] = d[u] + w(u,n)
S=9 Call Extract-Min /1 Update Predecessor of n
Q =Insert(V,Q O(V) times M[n]=u
whileQ z @ DecreaseKey(Q,n)
u = Extract-Min(Q) Else:
S=SU{u} /1 Already knew of a better path
For each neighbour n of u:
Relax(u,n)
Call
DecreaseKey
O(E) times.

O(V *Ig V + V*Ig V + E*Ig(V))

Complexity - Priority Queue!

d[s,s]=0 Relax(u,n):
Forvin V: Call insert into Q If d[n] > d[u] + w(u,n):
d[s,v]= o O(V) times // Have discovered a shorter path
M[v] = null d[n] = d[u] + w(u,n)
S=9 Call Extract-Min /1 Update Predecessor of n
Q =Insert(V,Q O(V) times M[n]=u
whileQ z @ DecreaseKey(Q,n)
u = Extract-Min(Q) Else:
S=SU{u} /1 Already knew of a better path
For each neighbour n of u:
Relax(u,n)
Call
DecreaseKey
O(E) times.

O(V*IgV +V*gV +E*Ig(V))=>O(V*Ig V + V*Ig V + E *O(1)) if use Fibonacci Heaps

Optimal Substructure

Most shortest path algorithms rely on the optimal substructure
property

Intuitively, says that a shortest path between two vertices contains
only other shortest paths within it

If path p = (vo, v1,v2) from A fo v, is the shortest path from A fo 7
then (vov1) must also be the shortest path from V. fo (Y Otherwise
there’d be a better way to get to v !

Optimal Substructure

Most shortest path algorithms rely on the optimal substructure
property

Intuitively, says that a shortest path between two vertices contains
only other shortest paths within it

If path p = (v VoV,) from A fo v, is the shortest path from A fo 7
then (v v) musT also be ’rhe shorTesT path from V. fo (Y OTherW|se
there’ d be a better way to get fo v,!

Given a graph G=(V,E,W), let p= (vo,v1, ., vk) be a shortest path from
vertex v_tfo vertexv, and for any i and j such that O<=i<=j<=k, let of be
the subpoTh of p from vertex v. fo vertex Ve Then P, is the shortest path
fromv.tov,

Optimal Substructure

"1 Proof by contradiction:
| Assume thatp = (vo, ViV v,) is the shortest path

Optimal Substructure

Proof by contradiction:
Assume that p = (vo, ViV vk) is the shortest path
Assume that there exists a shorter path between vertices i and
vertices|.

G Q@%@

Optimal Substructure

Proof by contradiction:
Assume that p = (vo, ViV vk) is the shortest path
Assume that there exists a shorter path between vertices i and
vertices|.
Then the shortest path from v, tov, would be viav,, _ so pis not
the shortest path. We have a contradiction

G ij@

Triangle Inequality

By the same logic, can derive the triangle inequality
O(s,v) <= 8(s,u) + d(u,V)

If the path (s .. v) is a shortest path,

the weight of the path from (s,u) and from
(u,v) cannot be smaller as that would mean
that the path (s .. v) is not the shortest path

Dijkstra's algorithm - Again

Why is d[s,y] = 8(s,y)?

We have relaxed all the edges
leaving s.

The only way to reachyis via (s,t) +
(unknown path p) or via (s,y)

But w(s,1) > w(s,y) so w(s,1) + p >
w(s,y) because w(p)>0

Any path that we take via t will
have greater weight than w(s,y), so

d[s,y] =8(s,y)

Dijkstra's algorithm - Again

Now relax all of the edges that
start fromy, and update the
current estimate of the shortest

path.

Dijkstra's algorithm - Again

Why is d[s,z] = 8(s,2)?

The current values represent our best
attempts to reach nodes t,x,z using
nodes s and y (because relaxed edges
froms,y)

We want to show that reaching z
through other nodes t and x would yield
a value d that is greater than d[z].

Going through s,y,x (...) z would not lead
a shorter path as d[s,x] = 14

Going through s,y,t(...) z (the current
shortest path to t) would not lead a
shorter path as d[s,t] =8

Dijkstra's algorithm - Again

Why is d[s,1] = 8(s,1)?

The current values represent our best
attempts to reach nodes t,x using nodes
s,y,z (because relaxed edges from s,y,z)

We want to show that reaching t through
other nodes x would yield a value d that
is greater than d[t].

Going through s,y,z,x (the current
shortest path to x) would not lead a
shorter path as d[s,x] = 13

Correctness Proof (Intuition)

- Want to show that d[u,v] = 8(u,v)

Correctness Proof (Intuition)

Want to show that d[u,v] = &(u,V)

Lemma: Initialising d[s] = 0 and d[v] = « for all v € V - {s} establishes
d[v] =6(s,v) for all veV, and this invariant is maintained over any
sequence of relaxation steps. Upper Bound Property

Correctness Proof (Intuition)

Want to show that d[u,v] = &(u,V)

Lemma: Initialising d[s] = 0 and d[v] = « for all v € V - {s} establishes d[v] =8(s,V)
for all veV, and this invariant is maintained over any sequence of relaxation
steps. Upper Bound Property

Proof:
At initialisation d[x] = « so d[x] >=8(u,x) for all x € V
Assume, after i relaxation steps, that for all nodes x € V, d[x] >= 8(u,x). And consider relaxing edge
(x,v) (the (i+1)th relaxation step):
If we relax (x,v): d[v] = d[x] + w(x,V)
By assumption d[x]>= &(u,x)
It follows that d[v] >= &(u,x) + w(x,V).
It follows that d[v] >= &(u,x) + 8(x,v). By definition, w(x,v)>=8(x,V)
It follows that d[v] >= 8(u,x) + 8(x,v) >=8(u,v) (by triangle inequality)

Correctness Proof (Intuition)

Theorem: Dijkstra’s algorithm terminates with d[v]=8(s,v) for all in veVv

Proof: Want to show that d[v]=8(s,v) for every veV when v is added to S

Correctness Proof (Intuition)

Theorem: Dijkstra’s algorithm terminates with d[v]=8(s,v) for all in veVv

Proof: Want to show that d[v]=8(s,v) for every veV when v is added to S
Suppose u is the first vertex added to S for which d[u] # 8(s,u)
Let y be the first vertex in Q along a shortest path from s to u, and let x
be its predecessor

Correctness Proof (Intuition)

Theorem: Dijkstra’s algorithm terminates with d[v]=8(s,v) for all in veVv

Proof: Want to show that d[v]=8(s,v) for every veV when v is added to S
Suppose u is the first vertex added to S for which d[u] # 8(s,u)
Let y be the first vertex in Q along a shortest path from s to u, and let x
be its predecessor

S, just
before
adding u

e

(&

O

C

Correctness Proof (Intuition)

Since u is the first vertex violating the invariant, we have d[x] = 8(s,x)
Since subpaths of shortest paths are shortest paths, and y is on
shortest path from s to u, d[y] was set to 8(s,x) + w(x,y) = 8(s,y) just after
X was addedtos

We have d[y] = &(s,y) and &(s,y) <= 8(s,u) <= d[u] (Upper Bound Property)

. @/\/\,@
g (e G

adding u

Correctness Proof (Intuition)

But, d[y] = d[u] since the algorithm chose u first
Hence d[y] = &(s,y) = 8(s,u) = d[u]
We have a contradiction! So d[u] = &(s,u)

. @M@
g (e G

adding u

