Object-oriented programming and data-structures

CS/ENGRD 2110 SUMMER 2018

[^0]
Graph Algorithms

- Search
\square Depth-first search
\square Breadth-first search
- Shortest paths
\square Dijkstra's algorithm
- Spanning trees
\square Prim's algorithm
\square Kruskal's algorithm

Shortest Path Problem

How do I efficiently find the shortest path from s to vin a graph?

Shortest Path Problem

\square How do I efficiently find the shortest path from \mathbf{s} to \mathbf{v} in a graph?
\square What is the shortest path to fly from Svrliig (Serbia, Population: 7533) to Stony River (Alaska, USA, Population: 52)

Shortest Path Problem

$\square \quad$ Shortest path between Svrlijg to Stony River requires 8 hops

Shortest Path Problem

\square Shortest path between Svrlijg to Stony River requires 8 hops
\square Google Flights computed this is a few milliseconds. Billions of possible paths!
\square Have we seen an algorithm that can compute the shortest path?

What about BFS

$\square \quad$ BFS expands the graph in "layers"
\square First explores all nodes at distance 1 from the source
\square Next explores all nodes at distance 2 from the source, etc.

What about BFS

$\square \quad$ BFS expands the graph in "layers"
\square First explores all nodes at distance 1 from the source
\square Next explores all nodes at distance 2 from the source, etc.
\square But BFS only finds the path with the smallest number of hops
$\square \quad$ Instead, we want to consider weighted graphs

Weighted Graphs

$\square \quad$ In real graphs, want to assign weights to a graph
\square Price
\square Distance
\square Number of miles
$\square \quad$ The shortest path is the path with the lowest weight, not necessarily the path with the smallest number of edges

Weighted Graphs

- In real graphs, want to assign weights to a graph
\square Price
\square Distance
\square Number of miles
\square The shortest path is the path with the lowest weight, not necessarily the path with the smallest number of edges

\geq Choose departure to Paris
Return to New York City
Trip summary

Stops * Connecting airports ~ Price ~ Times ~ Airines ~ More ~

-	dates	II. PRICE GRaph	* AIRPORTS	$\bigcirc \quad$ TIPS	
Cheaper flights from \$530 available on other dates		Explore price trends for 6 -day trips to Paris SEE MORE	Compare prices for airports near Paris SEE MORE	Fly in Premium Economy for \$1,235 SEE MORE	
Best departing flights					
*ow	$\begin{aligned} & \text { 12:40 AM - } 5: 25 \text { PM } \\ & \text { Wow } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~h} 45 \mathrm{~m} \\ & \mathrm{JFK}-\mathrm{CDG} \end{aligned}$	$\begin{aligned} & 1 \text { stop } \\ & \text { 1h } 15 \mathrm{~m} \text { KEF } \end{aligned}$	$\begin{array}{r} \$ 620 \\ \text { round trip } \end{array}$	\checkmark
x_{6}	$\begin{aligned} & \text { 1:40 AM - 2:45 PM } \\ & \text { XL Airways } \end{aligned}$	$\begin{aligned} & 7 \mathrm{hm} 5 \mathrm{~m} \\ & \mathrm{JFK}-\mathrm{CDG} \end{aligned}$	Nonstop	$\begin{array}{r} \$ 686 \\ \text { round trip } \end{array}$	\checkmark
	$\begin{aligned} & \text { 11:55 PM - 1:00 PM }{ }^{+1} \\ & \text { XL Airways } \end{aligned}$	$\begin{aligned} & 7 \mathrm{ym} 5 \mathrm{~m} \\ & \mathrm{JFK}-\mathrm{CDG} \end{aligned}$	Nonstop	$\begin{array}{r} \$ 763 \\ \text { round tip } \end{array}$	\checkmark
AF'	$\begin{aligned} & \text { 4:20 PM }-5: 45 \mathrm{AM}^{+1} \\ & \text { Air France Delta } \end{aligned}$	$\begin{aligned} & \text { Th } 25 \mathrm{~m} \\ & \text { JFK-CDG } \end{aligned}$	Nonstop	$\begin{gathered} \$ 1,001 \\ \text { round trip } \end{gathered}$	\checkmark
AF'	$\begin{aligned} & \text { 9:55 PM }-11: 20 \mathrm{AM}^{+1} \\ & \text { Ar France. Detta } \end{aligned}$	$\begin{gathered} 7 \mathrm{FFK} 25 \mathrm{~m} \\ \text { JFG } \end{gathered}$	Nonstop	$\begin{gathered} \$ 1,001 \\ \text { round trip } \end{gathered}$	\checkmark

Weighted Graphs, formally

$\square \quad$ A weighted directed graph $G=(V, E, W)$
$\square V$ is a (finite) set
$\square E$ is a set of ordered pairs (u, v) where $u, v \in V$
\square W is weight function that assigns edges to real-valued weights

Weighted Graphs, formally

$\square \quad$ A weighted directed graph $G=(V, E, W)$
$\square V$ is a (finite) set
$\square E$ is a set of ordered pairs (u, v) where $u, v \in V$
\square W is weight function that assigns edges to real-valued weights
\square Recall that a path is a sequence of edges $p=\left(v_{0}, v_{1}, v_{2}, \ldots v_{k}\right)$
\square The weight $w(p)$ of a path $p=\left(v_{0}, v_{1}, v_{2}, \ldots v_{k}\right)$ is the sum of the weights of its constituent edges
■ $w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)$

Scoping the Problem

Single Destination Shortest Paths Problem
\square Find a shortest path between two vertices \mathbf{u} and \mathbf{v}

Scoping the Problem

\square Single Destination Shortest Paths Problem
\square Find a shortest path between two vertices \mathbf{u} and \mathbf{v}
\square All-pairs shortest path problem
\square Find a shortest path from u to v for every pair of vertices u and v

- Can run case-above for all vertices u and v
- But exists a more efficient algorithm (Floyd-Warshall Algorithm)
- We do not look at this in this class!

Single-Source Shortest Path (SSSP)

\square Two algorithms:
\square Dijkstra's Algorithm
\square Bellman Ford Algorithm
\square Dijkstra's algorithm has complexity O(V+E)
$\square \quad$ Bellman-Ford's algorithm has complexity O(VE)
\square Dijkstra works only for positive edges. Bellman-Ford works for both positive and negative edges.
\square In this class we will only look at Dijkstra's algorithm!

Single-Source Shortest Path (SSSP)

\square Two algorithms:
\square Dijkstra's Algorithm
\square Bellman Ford Algorithm

Single-Source Shortest Path (SSSP)

\square Two algorithms:
\square Dijkstra's Algorithm
\square Bellman Ford Algorithm
\square Dijkstra's algorithm has complexity O(V+E)

Single-Source Shortest Path (SSSP)

\square Two algorithms:
\square Dijkstra's Algorithm
\square Bellman Ford Algorithm
\square Dijkstra's algorithm has complexity O(V+E)
$\square \quad$ Bellman-Ford's algorithm has complexity O(VE)

Single-Source Shortest Path (SSSP)

\square Two algorithms:
\square Dijkstra's Algorithm
\square Bellman Ford Algorithm
\square Dijkstra's algorithm has complexity $\mathrm{O}(\mathrm{V}+\mathrm{E}) \mathrm{lg} \mathrm{V})$
$\square \quad$ Bellman-Ford's algorithm has complexity O(VE)
\square Dijkstra works only for positive edges. Bellman-Ford works for both positive and negative edges.
\square In this class we will only look at Dijkstra's algorithm!

Shortest Path - Definition

\square We define the shortest path weight $\delta(u, v)$ from u to v by:

\square A shortest path from vertex u to vertex v is then defined as any path \mathbf{p} with weight $\mathbf{p}=\boldsymbol{\delta}(u, v)$

Shortest Path - Definition

\square We define the shortest path weight $\delta(u, v)$ from u to v by:

Shortest Path - Definition

\square We define the shortest path weight $\delta(u, v)$ from u to v by:

$$
w(p)= \begin{cases}\min (w(p): u \rightsquigarrow v) & \text { If there is a path from } \mathrm{u} \text { to } \mathrm{v} \\ \infty & \text { Otherwise }\end{cases}
$$

$$
\begin{aligned}
& \delta(u, v)=? \\
& \delta(z, v)=? \\
& \delta(z, u)=?
\end{aligned}
$$

\square A shortest path from vertex u to vertex v is then defined as any path \mathbf{p} with weight $\mathbf{p}=\boldsymbol{\delta}(\mathbf{u}, \mathbf{v})$

Shortest Path - Definition

\square We define the shortest path weight $\delta(u, v)$ from u to v by:

$$
w(p)= \begin{cases}\min (w(p): u \rightsquigarrow v) & \text { If there is a path from } \mathrm{u} \text { to } \mathrm{v} \\ \infty & \text { Otherwise }\end{cases}
$$

$$
\begin{aligned}
& \delta(u, v)=3 \\
& \delta(z, v)=5 \\
& \delta(z, u)=\infty
\end{aligned}
$$

5
\square A shortest path from vertex u to vertex v is then defined as any path p with weight $p=\boldsymbol{\delta}(\mathbf{u}, \mathbf{v})$

What about brute-force?

$\square \quad$ What if we simply enumerated all paths between u and v, and picked the one with the smallest weight?
\square How many paths between two nodes can there be in the worst-case?

What about brute-force?

$\square \quad$ What if we simply enumerated all paths between u and v, and picked the one with the smallest weight?
$\square \quad$ How many paths between two nodes can there be in the worst-case?

Paths from 0 to 1 ?

What about brute-force?

$\square \quad$ What if we simply enumerated all paths between u and v, and picked the one with the smallest weight?
$\square \quad$ How many paths between two nodes can there be in the worst-case?

Paths from 0 to 1? 1

What about brute-force?

$\square \quad$ What if we simply enumerated all paths between u and v, and picked the one with the smallest weight?
$\square \quad$ How many paths between two nodes can there be in the worst-case?

Paths from 0 to 1? 1
Paths from 0 to 2 ?

What about brute-force?

$\square \quad$ What if we simply enumerated all paths between u and v, and picked the one with the smallest weight?
$\square \quad$ How many paths between two nodes can there be in the worst-case?

Paths from 0 to 1? 1
Paths from 0 to 2? 2

What about brute-force?

$\square \quad$ What if we simply enumerated all paths between u and v, and picked the one with the smallest weight?
$\square \quad$ How many paths between two nodes can there be in the worst-case?

Paths from 0 to 1? 1
Paths from 0 to 2? 2
Paths from 0 to 4?: 4

What about brute-force?

$\square \quad$ What if we simply enumerated all paths between u and v, and picked the one with the smallest weight?
$\square \quad$ How many paths between two nodes can there be in the worst-case?

Paths from 0 to 1? 1
Paths from 0 to 2? 2
Paths from 0 to 4?: 4
Paths from 0 to 6?: 8

What about brute-force?

$\square \quad$ What if we simply enumerated all paths between u and v, and picked the one with the smallest weight?
$\square \quad$ How many paths between two nodes can there be in the worst-case?

Paths from 0 to 1? 1
Paths from 0 to 2? 2
Paths from 0 to 4?: 4
Paths from 0 to 6?: 8
Paths from 0 to 8 ? 16

What about brute-force?

$\square \quad$ What if we simply enumerated all paths between u and v, and picked the one with the smallest weight?
\square How many paths between two nodes can there be in the worst-case?

Paths from 0 to 1? 1
Paths from 0 to 2? 2
Paths from 0 to 4?: 4
Paths from 0 to 6?: 8
Paths from 0 to $8 ? 16$

Order $2^{\wedge}(\mathrm{n} / 2)$
Exponentially many paths

Terminology

Terminology - Current Weight

Write $d(u, v)$ to be the current weight of node v: it represents the current best estimate of the shortest path from u to v

Terminology- Current Weight

Write $d(u, v)$ to be the current weight of node v: it represents the current best estimate of the shortest path from u to v

Terminology- Current Weight

Write $d(u, v)$ to be the current weight of node v: it represents the current best estimate of the shortest path from \mathbf{u} to \mathbf{v}

Initially, because don' \dagger have an estimate, start with ∞

Terminology- Current Weight

Write $d(u, v)$ to be the current weight of node v: it represents the current best estimate of the shortest path from \mathbf{u} to \mathbf{v}

Initially, because don' \dagger have an estimate, start with ∞

Goal: reduce $d(u)$ until sure that $d(u)=\mathbf{\delta}(u, v)$

Terminology - Path Relaxation

As discover new paths, will update estimates of what is currently the shortest path

Terminology - Path Relaxation

As discover new paths, will update estimates of what is currently the shortest path

Terminology - Path Relaxation

As discover new paths, will update estimates of what is currently the shortest path

Terminology - Path Relaxation

As discover new paths, will update estimates of what is currently the shortest path

Terminology - Path Relaxation

Path relaxation:

Given a new edge (u, v): If $d[u]+w(u, v)<d[v]$, then we have discovered a better way to get from s to v, so update $d[v]=d[u]+$ w(u,v)

Terminology - Predecessor

Keep track of the predecessor of a node:
the node u that precedes v in the current estimate of the shortest path

$$
\Pi[y]=x
$$

Initially $\Pi[y]=$ null

During path relaxation, if $d[u]+w(u, v)<d[v]$, then update $\boldsymbol{\Pi}[\mathbf{v}]=\mathbf{u}$

General Structure of SSSP

Initialisation
\square For u in $\mathrm{V}: \mathrm{d}[\mathrm{v}]=$? $\Pi[\mathrm{u}]=$?
$\square \mathrm{d}[\mathrm{s}]=$?

General Structure of SSSP

Initialisation
\square For u in $\mathrm{V}: \mathrm{d}[\mathrm{v}]=\infty \Pi[\mathrm{u}]=$ null
$\square \mathrm{d}[\mathrm{s}]=0$

General Structure of SSSP

Initialisation

\square For u in $\mathrm{V}: \mathrm{d}[\mathrm{v}]=\infty \Pi[\mathrm{u}]=$ null
$\square \mathrm{d}[\mathrm{s}]=0$
\square Repeat until [When?]
\square Select some edge (u,v) [How?]
■ Relax edge (u,v):

- if $d[v]>d[u]+w[u, v]$
- $\mathrm{d}[\mathrm{v}]=\mathrm{d}[\mathrm{u}]+\mathrm{w}[\mathrm{u}, \mathrm{v}]$
- $\Pi[\mathrm{v}]=\mathrm{u}$

General Structure of SSSP

Initialisation

\square For u in $\mathrm{V}: \mathrm{d}[\mathrm{v}]=\infty \Pi[\mathrm{u}]=$ null
$\square \mathrm{d}[\mathrm{s}]=0$
$\square \quad$ Repeat until none of the edges can be relaxed
\square Select some edge (u,v) [How?]
■ Relax edge (u, v) :
■ if $d[v]>d[u]+w[u, v]$

- $\mathrm{d}[\mathrm{v}]=\mathrm{d}[\mathrm{u}]+\mathrm{w}[\mathrm{u}, \mathrm{v}]$
- $\Pi[\mathrm{v}]=\mathrm{u}$

General Structure of SSSP

- Initialisation
\square For u in $\mathrm{V}: \mathrm{d}[\mathrm{v}]=\infty \Pi[\mathrm{u}]=$ null
$\square \mathrm{d}[\mathrm{s}]=0$
$\square \quad$ Repeat until none of the edges can be relaxed
\square Select some edge (u,v) [How?]
- Relax edge (u,v):

Checking whether edges can be relaxed is $O(E)$. Expensive!

- if $d[v]>d[u]+w[u, v]$
- $\mathrm{d}[\mathrm{v}]=\mathrm{d}[\mathrm{u}]+\mathrm{w}[\mathrm{u}, \mathrm{v}]$
- $\Pi[\mathrm{v}]=\mathrm{u}$

General Structure of SSSP

- Initialisation
\square For u in $\mathrm{V}: \mathrm{d}[\mathrm{v}]=\infty \Pi[\mathrm{u}]=$ null
$\square \mathrm{d}[\mathrm{s}]=0$
$\square \quad$ Repeat until none of the edges can be relaxed
\square Select some edge (u,v) [How?]
- Relax edge (u, v) :
- if $d[v]>d[u]+w[u, v]$

How many iterations will this do in the worst case?

- $\mathrm{d}[\mathrm{v}]=\mathrm{d}[\mathrm{u}]+\mathrm{w}[\mathrm{u}, \mathrm{v}]$
- $\Pi[\mathrm{v}]=\mathrm{u}$

General Structure of SSSP

- Initialisation
\square For u in $\mathrm{V}: \mathrm{d}[\mathrm{v}]=\infty \Pi[\mathrm{u}]=$ null
$\square \mathrm{d}[\mathrm{s}]=0$
$\square \quad$ Repeat until none of the edges can be relaxed
\square Select some edge (u,v) [How?]
- Relax edge (u, v) :
- if $d[v]>d[u]+w[u, v]$

How many iterations will this do in the worst case?

- $\mathrm{d}[\mathrm{v}]=\mathrm{d}[\mathrm{u}]+\mathrm{w}[\mathrm{u}, \mathrm{v}]$
- $\Pi[\mathrm{v}]=\mathrm{u}$

Worst-Case Iterations

Keep going decrementing from 13 (initial value), until shortest path value of 7

How many iterations does this take?

Worst-Case Iterations

Keep going decrementing from 13 (initial value), until shortest path value of 7

How many iterations does this take? $2^{\wedge} \mathrm{n} / 2 \ldots$
We have an exponential algorithm! (Again!)
Need to find some way to "intelligently" select the edges.

Dijkstra's algorithm

$\square \quad$ We need a way to bound the number of times that we relax edges
\square Dijkstra's algorithm does this by greedily selecting the vertex v with the smallest $d(u, v)$ and relaxing its neighbouring edges.
\square We'll see how this is sufficient to guarantee that $d(u, v)=\boldsymbol{\delta}(u, v)$ once all vertices have been processed
$\square \quad$ It only requires 1 pass on all the vertices (V) and all the edges (E)!
$\square \quad$ The algorithm itself is surprisingly simple. The proof is harder.

Dijkstra's algorithm

$\square \quad$ Maintains a set S of vertices whose final shortest path weights from source s have already been determined, and a set Q of vertices whose shortest path weights are not yet known.
\square Algorithm repeatedly selects the vertex vin Q with the minimum shortest path estimate.
\square Adds vto S.
\square Relaxes all the edges leaving v.
\square We'll show in the proof that, at the point where we add v to $S d(u, v)=\boldsymbol{\delta}$ (u, v)

Dijkstra's algorithm

Dijkstra's algorithm

Dijkstra's algorithm

Initialisation
$\mathrm{d}[\mathrm{s}, \mathrm{s}]=$?
$\mathrm{d}[\mathrm{s}, \mathrm{t}]=$?
$\mathrm{d}[\mathrm{s}, \mathrm{x}]=$?

Dijkstra's algorithm

Initialisation
$\mathrm{d}[\mathrm{s}, \mathrm{s}]=0$
$\mathrm{d}[\mathrm{s}, \mathrm{t}]=\infty$
$\mathrm{d}[\mathrm{s}, \mathrm{x}]=\infty$

Dijkstra's algorithm

Initialisation
$\mathrm{d}[\mathrm{s}, \mathrm{s}]=0$
$\mathrm{d}[\mathrm{s}, \mathrm{t}]=\infty$
$\mathrm{d}[\mathrm{s}, \mathrm{x}]=\infty$

Dijkstra's algorithm

Initialisation
$\mathrm{d}[\mathrm{s}, \mathrm{s}]=0 \quad \Pi[\mathrm{~s}]=$ null
$\mathrm{d}[\mathrm{s}, \mathrm{t}]=\infty \quad \Pi[\mathrm{t}]=\mathrm{null}$
$\mathrm{d}[\mathrm{s}, \mathrm{x}]=\infty \quad \Pi[\mathrm{x}]=$ null

Dijkstra's algorithm

Initialisation
Place all node V in Q.

Dijkstra's algorithm

Pick node with smallest $d[s, v]$ and place it in S

Dijkstra's algorithm

Pick node with smallest $d[s, v]$ and place it in S

Dijkstra's algorithm

Pick node with smallest $d[s, v]$ and place it in S

Relax all of its edges

Dijkstra's algorithm

Pick node with smallest $d[s, v]$ and place it in S

Relax all of its edges

Dijkstra's algorithm

Pick node with smallest $d[s, v]$ and place it in S

Relax all of its edges

Dijkstra's algorithm

Pick node with smallest $d[s, v]$ and place it in S

Relax all of its edges

Dijkstra's algorithm

Pick node with smallest $d[s, v]$ and place it in S

Relax all of its edges

Dijkstra's algorithm

Pick node with smallest $d[s, v]$ and place it in S

Relax all of its edges

Dijkstra's algorithm

Pick node with smallest $d[s, v]$ and place it in S

Relax all of its edges

Dijkstra's algorithm

Pick node with smallest $d[s, v]$ and place it in S

Relax all of its edges

Dijkstra's algorithm

Pick node with smallest $d[s, v]$ and place it in S

Relax all of its edges

Dijkstra's algorithm

Pick node with smallest $d[s, v]$ and place it in S

Relax all of its edges

Dijkstra's algorithm

```
d[s,s]=0
Forv in V:
    d[s,v]=\infty
    \Pi[v] = null
S=\varnothing
Q = V
while Q = \varnothing
    u= FindMinimum from Q
    S = S U{U}
    For each neighbour n of u:
            Relax(u,n)
```

```
Relax(u,n):
    If d[n] > d[u] + w(u,n):
        // Have discovered a shorter path
        d[n] = d[u] + w(u,n)
        // Update Predecessor of n
        \Pi[n] = u
        Update n in Q
    Else:
    // Already knew of a better path
```


Complexity

```
d[s,s]=0
For v in V:
    d[s,v]= \infty
    \Pi[v] = null
S=\varnothing
Q = V
while Q = \varnothing
    u= FindMinimum from Q
    S = S U{u}
    For each neighbour n of u:
        Relax(u,n)
```


Relax (u, n) :

If $d[n]>d[u]+w(u, n):$
// Have discovered a shorter path $d[n]=d[u]+w(u, n)$
// Update Predecessor of n
$\Pi[n]=u$
Update n in Q
Else:
// Already knew of a better path

Complexity

```
d[s,s]=0
For v in V:
```

 \(d[s, v]=\infty\)
 \(\Pi[v]=\) null
 $S=\varnothing$
$\mathrm{Q}=\mathrm{V}$
Loop runs $\mathrm{O}(\mathrm{V})$
times
while $\mathrm{Q} \neq \varnothing$
$u=$ FindMinimum from Q
$S=S \cup\{u\}$
For each neighbour n of u :
Relax(u,n)
At most relax
$O(E)$ times

Relax(u,n):

If $d[n]>d[u]+w(u, n):$
// Have discovered a shorter path $d[n]=d[u]+w(u, n)$
// Update Predecessor of n
$\Pi[n]=u$
Update n in Q
Else:
// Already knew of a better path

Complexity

```
d[s,s]=0
```

For v in V :
$d[s, v]=\infty$
$\Pi[v]=$ null
$S=\varnothing$
$\mathrm{Q}=\mathrm{V}$
while $\mathrm{Q} \neq \varnothing$
Call insert into Q
$\mathrm{O}(\mathrm{V})$ times
Call
FindMinimum
$\mathrm{O}(\mathrm{V})$ times
$u=$ FindMinimum from Q
$S=S \cup\{u\}$
For each neighbour n of u :
Relax(u,n)
Call Relax O(E) times.

Relax(u,n):

```
    If d[n] > d[u] + w(u,n):
        // Have discovered a shorter path
        d[n] = d[u] + w(u,n)
        // Update Predecessor of n
        \Pi[n] = u
        Update n in Q
```

 Else:
 // Already knew of a better path

Complexity - Priority Queue!

```
d[s,s]=0
```

For vin V:
$\mathrm{d}[\mathrm{s}, \mathrm{v}]=\infty$
$\Pi[v]=$ null
$S=\varnothing$
Q = Insert(V,Q)
while $\mathrm{Q} \neq \varnothing$
u = Extract-Min(Q)
$\mathrm{S}=\mathrm{S} \mathrm{U}\{\mathrm{u}\}$
For each neighbour n of u :
Relax(u,n)

Call

 DecreaseKey
 \(O(E)\) times.

Relax(u,n):

If $d[n]>d[u]+w(u, n)$:
// Have discovered a shorter path $d[n]=d[u]+w(u, n)$
// Update Predecessor of n
$\Pi[n]=u$
DecreaseKey(Q,n)
Else:
// Already knew of a better path

Complexity - Priority Queue!

```
d[s,s]=0
```

For vin V:
$\mathrm{d}[\mathrm{s}, \mathrm{v}]=\infty$
$\Pi[v]=$ null
$S=\varnothing$
$\mathrm{Q}=\operatorname{Insert}(\mathrm{V}, \mathrm{Q})$
while $\mathrm{Q} \neq \varnothing$

Call insert into Q $\mathrm{O}(\mathrm{V})$ times

Call Extract-Min $\mathrm{O}(\mathrm{V})$ times

Relax(u,n):

If d[n] > d[u] + w(u,n):
// Have discovered a shorter path $d[n]=d[u]+w(u, n)$
// Update Predecessor of n
$\Pi[n]=u$
DecreaseKey(Q,n)
Else:
// Already knew of a better path

Complexity - Priority Queue!

```
d[s,s]=0
```

For vin V:
$\mathrm{d}[\mathrm{s}, \mathrm{v}]=\infty$
$\Pi[v]=$ null
$S=\varnothing$
Q = Insert(V,Q)
while $\mathrm{Q} \neq \varnothing$

Call insert into Q $\mathrm{O}(\mathrm{V})$ times

Call Extract-Min $\mathrm{O}(\mathrm{V})$ times

Relax(u,n):

If d[n] > d[u] + w(u,n):
// Have discovered a shorter path $d[n]=d[u]+w(u, n)$
// Update Predecessor of n
$\Pi[n]=u$
DecreaseKey(Q,n)
Else:
// Already knew of a better path

$$
\mathrm{O}\left(\mathrm{~V}^{*} \lg \mathrm{~V}+\mathrm{V}^{*} \lg \mathrm{~V}+\mathrm{E}^{*} \lg (\mathrm{~V})\right)
$$

Complexity - Priority Queue!

```
d[s,s]=0
```

For vin V:
$\mathrm{d}[\mathrm{s}, \mathrm{v}]=\infty$
$\Pi[v]=$ null
$S=\varnothing$
Q = Insert(V,Q)
while $\mathrm{Q} \neq \varnothing$
u = Extract-Min(Q)
$S=S U\{u\}$

For each neighbour n of u :
Relax(u,n)

DecreaseKey $O(E)$ times.

Relax(u,n):

If d[n] > d[u] + w(u,n):
// Have discovered a shorter path $d[n]=d[u]+w(u, n)$
// Update Predecessor of n
$\Pi[\mathrm{n}]=\mathrm{u}$
DecreaseKey(Qn)
Else:
// Already knew of a better path
$O\left(V^{*} \lg V+V^{*} \lg V+E^{*} \lg (V)\right)=>O\left(V^{*} \lg V+V^{*} \lg V+E * O(1)\right)$ if use Fibonacci Heaps

Optimal Substructure

Most shortest path algorithms rely on the optimal substructure property
\square Intuitively, says that a shortest path between two vertices contains only other shortest paths within it
\square If path $p=\left(v_{0}, v_{1}, v_{2}\right)$ from v_{0} to v_{2} is the shortest path from v_{0} to $v_{2^{\prime}}$ then $\left(v_{0}, v_{1}\right)$ must also be the shortest path from v_{0} to v_{1}. Otherwise there'd be a better way to get to v_{2} !

Optimal Substructure

\square Most shortest path algorithms rely on the optimal substructure property
\square Intuitively, says that a shortest path between two vertices contains only other shortest paths within it
\square If path $p=\left(v_{0}, v_{1}, v_{2}\right)$ from v_{0} to v_{2} is the shortest path from v_{0} to $v_{2^{\prime}}$ then $\left(v_{0}, v_{1}\right)$ must also be the shortest path from v_{0} to v_{1}. Otherwise there'd be a better way to get to v_{2} !
\square Given a graph $G=(V, E, W)$, let $p=\left(v_{0}, v_{1}, . ., v_{k}\right)$ be a shortest path from vertex v_{o} to vertex v_{k} and for any i and i such that $0<=i<=i<=k$, let $p_{i j}$ be the subpath of p from vertex v_{i} to vertex v_{i}. Then $p_{i j}$ is the shortest path from v_{i} to v_{i}

Optimal Substructure

Proof by contradiction:
\square Assume that $\mathrm{p}=\left(\mathrm{v}_{\mathrm{o}^{\prime}} \ldots \mathrm{v}_{\mathrm{i}} . . \mathrm{v}_{\mathrm{i}} . . \mathrm{v}_{\mathrm{k}}\right)$ is the shortest path

Optimal Substructure

Proof by contradiction:
\square Assume that $\mathrm{p}=\left(\mathrm{v}_{\mathrm{o}^{\prime}} \ldots \mathrm{v}_{\mathrm{i}} . . \mathrm{v}_{\mathrm{i}} . . \mathrm{v}_{\mathrm{k}}\right)$ is the shortest path
\square Assume that there exists a shorter path between vertices i and vertices \ddagger.

Optimal Substructure

\square Proof by contradiction:
\square Assume that $p=\left(v_{o^{\prime}} \ldots v_{i} . . v_{i} . . v_{k}\right)$ is the shortest path
\square Assume that there exists a shorter path between vertices i and vertices \ddagger.
\square Then the shortest path from v_{0} to v_{k} would be via $v_{\text {short }}$ so p is not the shortest path. We have a contradiction

Triangle Inequality

By the same logic, can derive the triangle inequality
$\square \boldsymbol{\delta}(\mathrm{s}, \mathrm{v})<=\boldsymbol{\delta}(\mathrm{s}, \mathrm{u})+\boldsymbol{\delta}(\mathrm{u}, \mathrm{v})$

If the path (s .. v) is a shortest path, the weight of the path from (s, u) and from (u,v) cannot be smaller as that would mean that the path ($\mathrm{s} . . \mathrm{v}$) is not the shortest path

Dijkstra's algorithm - Again

Why is $\mathrm{d}[\mathrm{s}, \mathrm{y}]=\boldsymbol{\delta}(\mathrm{s}, \mathrm{y})$?
We have relaxed all the edges leaving s.

The only way to reach y is via $(s, t)+$ (unknown path p) or via (s, y)

But w(s,t) >w(s,y) so w(s,t) +p> $w(s, y)$ because $w(p)>0$

Any path that we take via \dagger will have greater weight than $w(s, y)$, so $d[s, y]=\boldsymbol{\delta}(s, y)$

Dijkstra's algorithm - Again

Now relax all of the edges that start from y, and update the current estimate of the shortest path.

Dijkstra's algorithm - Again

Why is $\mathrm{d}[\mathrm{s}, \mathrm{z}]=\boldsymbol{\delta}(\mathrm{s}, \mathrm{z})$?

The current values represent our best attempts to reach nodes t, x, z using nodes s and y (because relaxed edges from s, y)

We want to show that reaching z through other nodes \dagger and \mathbf{x} would yield a value d that is greater than $\mathrm{d}[\mathrm{z}]$.

Going through $\mathrm{s}, \mathrm{y}, \mathrm{x}(\ldots) \mathrm{z}$ would not lead a shorter path as $\mathrm{d}[\mathrm{s}, \mathrm{x}]=14$

Going through $s, y, \dagger(\ldots) z$ (the current shortest path to t) would not lead a shorter path as $d[s, t]=8$

Dijkstra's algorithm - Again

Why is $d[s, t]=\boldsymbol{\delta}(s, t) ?$

The current values represent our best attempts to reach nodes t, x using nodes s, y, z (because relaxed edges from s, y, z)

We want to show that reaching \dagger through other nodes \mathbf{x} would yield a value d that is greater than $\mathrm{d}[\mathrm{t}]$.

Going through s, y, z, x (the current shortest path to x) would not lead a shorter path as $\mathrm{d}[\mathrm{s}, \mathrm{x}]=13$

Correctness Proof (Intuition)

$\square \quad$ Want to show that $d[u, v]=\boldsymbol{\delta}(u, v)$

Correctness Proof (Intuition)

$\square \quad$ Want to show that $d[u, v]=\mathbf{\delta}(u, v)$
$\square \quad$ Lemma: Initialising $\mathrm{d}[\mathrm{s}]=0$ and $\mathrm{d}[\mathrm{v}]=\infty$ for all $\mathrm{v} \in \mathrm{V}-\{\mathrm{s}\}$ establishes $\mathrm{d}[\mathrm{v}] \geq \mathbf{\delta}(\mathrm{s}, \mathrm{v})$ for all $\mathrm{v} \in \mathrm{V}$, and this invariant is maintained over any sequence of relaxation steps. Upper Bound Property

Correctness Proof (Intuition)

$\square \quad$ Want to show that $d[u, v]=\mathbf{\delta}(u, v)$
$\square \quad$ Lemma: Initialising $\mathrm{d}[\mathrm{s}]=0$ and $\mathrm{d}[\mathrm{v}]=\infty$ for all $\mathrm{v} \in \mathrm{V}-\{\mathrm{s}\}$ establishes $\mathrm{d}[\mathrm{v}] \geq \mathbf{\delta}(\mathrm{s}, \mathrm{v})$ for all $v \in \mathrm{~V}$, and this invariant is maintained over any sequence of relaxation steps. Upper Bound Property
\square Proof:
\square At initialisation $\mathrm{d}[\mathrm{x}]=\infty$ so $\mathrm{d}[\mathrm{x}]>=\boldsymbol{\delta}(\mathrm{u}, \mathrm{x})$ for all $\mathrm{x} \in \mathrm{V}$
\square Assume, after i relaxation steps, that for all nodes $x \in V, d[x]>=\boldsymbol{\delta}(u, x)$. And consider relaxing edge (x, v) (the ($\mathrm{i}+1$)th relaxation step):

- If we relax (x, v): $\mathrm{d}[\mathrm{v}]=\mathrm{d}[\mathrm{x}]+\mathrm{w}(\mathrm{x}, \mathrm{v})$
- By assumption $d[x]>=\boldsymbol{\delta}(u, x)$
- It follows that $d[v]>=\boldsymbol{\delta}(u, x)+w(x, v)$.
- It follows that $d[v]>=\boldsymbol{\delta}(u, x)+\boldsymbol{\delta}(x, v)$. By definition, $w(x, v)>=\boldsymbol{\delta}(x, v)$
- It follows that $d[v]>=\boldsymbol{\delta}(u, x)+\boldsymbol{\delta}(x, v)>=\boldsymbol{\delta}(u, v)$ (by triangle inequality)

Correctness Proof (Intuition)

$\square \quad$ Theorem: Dijkstra's algorithm terminates with $\mathrm{d}[\mathrm{v}]=\mathbf{\delta}(\mathrm{s}, \mathrm{v})$ for all in $\mathrm{v} \in \mathrm{V}$

Proof: Want to show that $\mathrm{d}[\mathrm{v}]=\mathbf{\delta}(\mathrm{s}, \mathrm{v})$ for every $\mathrm{v} \in \mathrm{V}$ when v is added to S

Correctness Proof (Intuition)

$\square \quad$ Theorem: Dijkstra's algorithm terminates with $\mathrm{d}[\mathrm{v}]=\mathbf{\delta}(\mathrm{s}, \mathrm{v})$ for all in $\mathrm{v} \in \mathrm{V}$
$\square \quad$ Proof: Want to show that $\mathrm{d}[\mathrm{v}]=\mathbf{\delta}(\mathrm{s}, \mathrm{v})$ for every $\mathrm{v} \in \mathrm{V}$ when v is added to S
\square Suppose u is the first vertex added to S for which $d[u] \neq \boldsymbol{\delta}(\mathrm{s}, \mathrm{u})$
\square Let \mathbf{y} be the first vertex in \mathbf{Q} along a shortest path from \mathbf{s} to \mathbf{u}, and let \mathbf{x} be its predecessor

Correctness Proof (Intuition)

$\square \quad$ Theorem: Dijkstra's algorithm terminates with $\mathrm{d}[\mathrm{v}]=\mathbf{\delta}(\mathrm{s}, \mathrm{v})$ for all in $\mathrm{v} \in \mathrm{V}$
$\square \quad$ Proof: Want to show that $\mathrm{d}[\mathrm{v}]=\mathbf{\delta}(\mathrm{s}, \mathrm{v})$ for every $\mathrm{v} \in \mathrm{V}$ when v is added to S
\square Suppose u is the first vertex added to S for which $d[u] \neq \boldsymbol{\delta}(\mathrm{s}, \mathrm{u})$
\square Let \mathbf{y} be the first vertex in \mathbf{Q} along a shortest path from \mathbf{s} to \mathbf{u}, and let \mathbf{x} be its predecessor

S, just before adding \mathbf{u}

Correctness Proof (Intuition)

\square Since u is the first vertex violating the invariant, we have $d[x]=\boldsymbol{\delta}(s, x)$
\square Since subpaths of shortest paths are shortest paths, and y is on shortest path from s to $u, d[y]$ was set to $\boldsymbol{\delta}(s, x)+w(x, y)=\boldsymbol{\delta}(s, y)$ just after x was added to s
\square We have $\mathrm{d}[\mathrm{y}]=\boldsymbol{\delta}(\mathrm{s}, \mathrm{y})$ and $\boldsymbol{\delta}(\mathrm{s}, \mathrm{y})<=\boldsymbol{\delta}(\mathrm{s}, \mathrm{u})<=\mathrm{d}[\mathrm{u}]$ (Upper Bound Property)

S, just before adding \mathbf{u}

Correctness Proof (Intuition)

\square But, $d[y] \geq d[u]$ since the algorithm chose u first
\square Hence $d[y]=\boldsymbol{\delta}(s, y)=\boldsymbol{\delta}(s, u)=d[u]$
\square We have a contradiction! So d[u]= $\boldsymbol{\delta}(\mathrm{s}, \mathrm{u})$

S, just before adding \mathbf{u}

[^0]: Lecture 13: Shortest Path
 http://courses.cs.cornell.edu/cs2110/2018su

