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◻ Search

⬜ Depth-first search

⬜ Breadth-first search

◻ Shortest paths

⬜ Dijkstra's algorithm

◻ Spanning trees

⬜ Prim's algorithm

⬜ Kruskal's algorithm

Graph Algorithms



Shortest Path Problem
◻ How do I efficiently find the shortest path from s to v in a graph?



Shortest Path Problem
◻ How do I efficiently find the shortest path from s to v in a graph?

◻ What is the shortest path  to fly from Svrljig (Serbia, Population: 7533) to 
Stony River (Alaska, USA, Population: 52)



Shortest Path Problem
◻ Shortest path between Svrljig to 

Stony River requires 8 hops



Shortest Path Problem
◻ Shortest path between Svrljig to 

Stony River requires 8 hops

◻ Google Flights computed this is a 
few milliseconds. Billions of 
possible paths!

◻ Have we seen an algorithm that 
can compute the shortest path?



What about BFS
◻ BFS expands the graph in “layers”
⬜ First explores all nodes at distance 1 from the source
⬜ Next explores all nodes at distance 2 from the source, etc.



What about BFS
◻ BFS expands the graph in “layers”
⬜ First explores all nodes at distance 1 from the source
⬜ Next explores all nodes at distance 2 from the source, etc.

◻ But BFS only finds the path with the smallest number of hops

◻ Instead, we want to consider weighted graphs



Weighted Graphs
◻ In real graphs, want to assign weights to a graph
⬜ Price
⬜ Distance
⬜ Number of miles

◻ The shortest path is the path with the lowest weight, not necessarily the 
path with the smallest number of edges



Weighted Graphs
◻ In real graphs, want to 

assign weights to a 
graph
⬜ Price
⬜ Distance
⬜ Number of miles

◻ The shortest path is the 
path with the lowest 
weight, not necessarily 
the path with the 
smallest number of 
edges



Weighted Graphs, formally
◻ A weighted directed graph G = (V,E,W)

⬜ V is a (finite) set

⬜ E is a set of ordered pairs (u, v) where u,v ∈ V

⬜ W is weight function that assigns edges to real-valued weights



Weighted Graphs, formally
◻ A weighted directed graph G = (V,E,W)

⬜ V is a (finite) set

⬜ E is a set of ordered pairs (u, v) where u,v ∈ V

⬜ W is weight function that assigns edges to real-valued weights

◻ Recall that a path is a sequence of edges p =  (v
0
,v

1
,v

2
,...v

k
) 

⬜ The weight w(p) of a path p = (v
0
,v

1
,v

2
,...v

k
) is the sum of the weights of 

its constituent edges

■



Scoping the Problem
◻ Single Destination Shortest Paths Problem

⬜ Find a shortest path between two vertices u and v



Scoping the Problem
◻ Single Destination Shortest Paths Problem

⬜ Find a shortest path between two vertices u and v

◻ All-pairs shortest path problem
⬜ Find a shortest path from u to v for every pair of vertices u and v

■ Can run case-above for all vertices u and v
■ But exists a more efficient algorithm (Floyd-Warshall Algorithm)
■ We do not look at this in this class!



Single-Source Shortest Path (SSSP)
◻ Two algorithms:

⬜ Dijkstra's Algorithm
⬜ Bellman Ford Algorithm

◻ Dijkstra’s algorithm has complexity O(V+E)

◻ Bellman-Ford’s algorithm has complexity O(VE)

◻ Dijkstra works only for positive edges. Bellman-Ford works for both 
positive and negative edges.

◻ In this class we will only look at Dijkstra’s algorithm!
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Single-Source Shortest Path (SSSP)
◻ Two algorithms:

⬜ Dijkstra's Algorithm
⬜ Bellman Ford Algorithm

◻ Dijkstra’s algorithm has complexity O((V+E)lgV)

◻ Bellman-Ford’s algorithm has complexity O(VE)

◻ Dijkstra works only for positive edges. Bellman-Ford works for both 
positive and negative edges.

◻ In this class we will only look at Dijkstra’s algorithm!



Shortest Path - Definition
◻ We define the shortest path 

weight δ(u,v) from u to v by:

◻ A shortest path from vertex u to 
vertex v is then defined as any 
path p with weight p = δ(u,v) 

If there is a path from u to v
Otherwise



Shortest Path - Definition
◻ We define the shortest path 

weight δ(u,v) from u to v by:

◻ A shortest path from vertex u to 
vertex v is then defined as any 
path p with weight p = δ(u,v) 

If there is a path from u to v
Otherwise

u v
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z
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   1    2

   5



Shortest Path - Definition
◻ We define the shortest path 

weight δ(u,v) from u to v by:

◻ A shortest path from vertex u to 
vertex v is then defined as any 
path p with weight p = δ(u,v) 

If there is a path from u to v
Otherwise

u v

  x

z
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   1    2
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δ(u,v) = ?
δ(z,v) = ?
δ(z,u) = ?



Shortest Path - Definition
◻ We define the shortest path 

weight δ(u,v) from u to v by:

◻ A shortest path from vertex u to 
vertex v is then defined as any 
path p with weight p = δ(u,v) 

If there is a path from u to v
Otherwise

u v

  x

z

   10

   1    2

   5

δ(u,v) = 3
δ(z,v) = 5
δ(z,u) = ∞



What about brute-force?
◻ What if we simply enumerated all paths between u and v, and picked 

the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?
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◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1?
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◻ What if we simply enumerated all paths between u and v, and picked 
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◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1? 1



What about brute-force?
◻ What if we simply enumerated all paths between u and v, and picked 

the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1? 1
Paths from 0 to 2?



◻ What if we simply enumerated all paths between u and v, and picked 
the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1? 1
Paths from 0 to 2? 2

What about brute-force?



◻ What if we simply enumerated all paths between u and v, and picked 
the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1? 1
Paths from 0 to 2? 2
Paths from 0 to 4?: 4

What about brute-force?



◻ What if we simply enumerated all paths between u and v, and picked 
the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1? 1
Paths from 0 to 2? 2
Paths from 0 to 4?: 4
Paths from 0 to 6?: 8

What about brute-force?



◻ What if we simply enumerated all paths between u and v, and picked 
the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1? 1
Paths from 0 to 2? 2
Paths from 0 to 4?: 4
Paths from 0 to 6?: 8
Paths from 0 to 8? 16

What about brute-force?



◻ What if we simply enumerated all paths between u and v, and picked 
the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1? 1
Paths from 0 to 2? 2
Paths from 0 to 4?: 4
Paths from 0 to 6?: 8
Paths from 0 to 8? 16

Order 2^(n/2)

Exponentially many paths

What about brute-force?
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Terminology - Current Weight

d(u,v) d(u,v’)5

9 4

2 1
1

1
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u: source vertex

Write d(u,v) to be the 
current weight of node v: it 
represents the current best 
estimate of the shortest 
path from u to v



Terminology- Current Weight

d(u,v) d(u,v’)5

9 4

2 1
1

1

1 1

u: source vertex

Write d(u,v) to be the 
current weight of node v: it 
represents the current best 
estimate of the shortest 
path from u to v



Terminology- Current Weight

0

∞ ∞ ∞

∞ ∞ ∞

5

9 4

2 1
1

1

1 1

u: source vertex

Write d(u,v) to be the 
current weight of node v: it 
represents the current best 
estimate of the shortest 
path from u to v

Initially, because don’t 
have an estimate, start 
with ∞



Terminology- Current Weight
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∞ ∞ ∞
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Write d(u,v) to be the 
current weight of node v: it 
represents the current best 
estimate of the shortest 
path from u to v

Initially, because don’t 
have an estimate, start 
with ∞

Goal: reduce d(u) until sure 
that d(u) = δ(u,v)

u: source vertex



Terminology - Path Relaxation
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update estimates of what 
is currently the shortest 
path

u: source vertex
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Terminology - Path Relaxation
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As discover new paths, will 
update estimates of what 
is currently the shortest 
path

u: source vertex



Terminology - Path Relaxation
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Path relaxation:

Given a new edge (u,v):
If d[u] + w(u,v) < d[v], then 
we have discovered a 
better way to get from s to 
v, so update d[v] = d[u] + 
w(u,v)

u: source vertex



Terminology - Predecessor
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Keep track of the 
predecessor of a node:
the node u that precedes v 
in the current estimate of 
the shortest path

[y] = x

Initially [y] = null

During path relaxation, if
d[u] + w(u,v) < d[v], then 
update  [v] = u

u: source vertex

Node x

Node y



General Structure of SSSP

◻  Initialisation
⬜ For u in V: d[v] = ? [u] =?
⬜ d[s] = ? 
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General Structure of SSSP

◻  Initialisation
⬜ For u in V: d[v]  = ∞ [u] = null
⬜ d[s] = 0 

◻ Repeat until [When?]
⬜ Select some edge (u,v) [How?]

■ Relax edge (u,v): 
■ if d[v] > d[u] + w[u,v]

■ d[v] = d[u] + w[u,v] 
■ [v] = u



General Structure of SSSP

◻  Initialisation
⬜ For u in V: d[v]  = ∞ [u] = null
⬜ d[s] = 0 

◻ Repeat until none of the edges can be relaxed
⬜ Select some edge (u,v) [How?]

■ Relax edge (u,v): 
■ if d[v] > d[u] + w[u,v]

■ d[v] = d[u] + w[u,v] 
■ [v] = u



General Structure of SSSP

◻  Initialisation
⬜ For u in V: d[v]  = ∞ [u] = null
⬜ d[s] = 0 

◻ Repeat until none of the edges can be relaxed
⬜ Select some edge (u,v) [How?]

■ Relax edge (u,v): 
■ if d[v] > d[u] + w[u,v]

■ d[v] = d[u] + w[u,v] 
■ [v] = u

Checking whether edges can be 
relaxed is O(E). Expensive!
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⬜ For u in V: d[v]  = ∞ [u] = null
⬜ d[s] = 0 

◻ Repeat until none of the edges can be relaxed
⬜ Select some edge (u,v) [How?]

■ Relax edge (u,v): 
■ if d[v] > d[u] + w[u,v]

■ d[v] = d[u] + w[u,v] 
■ [v] = u

How many iterations will this do in the 
worst case?



General Structure of SSSP

◻  Initialisation
⬜ For u in V: d[v]  = ∞ [u] = null
⬜ d[s] = 0 

◻ Repeat until none of the edges can be relaxed
⬜ Select some edge (u,v) [How?]

■ Relax edge (u,v): 
■ if d[v] > d[u] + w[u,v]

■ d[v] = d[u] + w[u,v] 
■ [v] = u

How many iterations will this do in the 
worst case?



Worst-Case Iterations
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Worst-Case Iterations
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Worst-Case Iterations
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Worst-Case Iterations
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Worst-Case Iterations

0 4 8 10 10 11 11

4 2 1

112244

Keep going decrementing from 13 (initial value), until shortest path 
value of 7

How many iterations does this take? 



Worst-Case Iterations

0 4 8 10 10 11 11

4 2 1

112244

Keep going decrementing from 13 (initial value), until shortest path 
value of 7

How many iterations does this take? 2^n/2 …

We have an exponential algorithm! (Again!)

Need to find some way to “intelligently” select the edges.



Dijkstra's algorithm

◻ We need a way to bound the number of times that we relax edges

◻ Dijkstra’s algorithm does this by greedily selecting the vertex v with 
the smallest d(u,v) and relaxing its neighbouring edges.

◻ We’ll see how this is sufficient to guarantee that d(u,v)=δ(u,v) once all 
vertices have been processed

◻ It only requires 1 pass on all the vertices (V) and all the edges (E)!

◻ The algorithm itself is surprisingly simple. The proof is harder.



Dijkstra's algorithm

◻ Maintains a set S of vertices whose final shortest path weights from 
source s have already been determined, and a set Q of vertices 
whose shortest path weights are not yet known.

◻ Algorithm repeatedly selects the vertex v in Q with the minimum 
shortest path estimate.
⬜ Adds v to S.
⬜ Relaxes all the edges leaving v.

◻ We’ll show in the proof that, at the point where we add v to S d(u,v) = δ
(u,v)  



Dijkstra's algorithm
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Dijkstra's algorithm
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d[s,s] = ?
d[s,t] = ?
d[s,x] = ?
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Q



Dijkstra's algorithm
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Dijkstra's algorithm
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Dijkstra's algorithm
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Initialisation

d[s,s] = 0      [s] = null      
d[s,t] = ∞      [t] = null     
d[s,x] = ∞     [x] = null      

S

Q



Dijkstra's algorithm
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Initialisation

Place all node V in Q.    

t: ∞, x: ∞, y:∞, z:∞, s: 0

S
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Dijkstra's algorithm
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Pick node with smallest d[s,v] 
and place it in S
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Dijkstra's algorithm
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Pick node with smallest d[s,v] 
and place it in S
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Pick node with smallest d[s,v] 
and place it in S

Relax all of its edges
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Pick node with smallest d[s,v] 
and place it in S

Relax all of its edges

s: 0

t: 10, x: ∞, y:5, z:∞ 
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Pick node with smallest d[s,v] 
and place it in S

Relax all of its edges

s: 0, y:5

t: 10, x: ∞, z:∞ 
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Q



Dijkstra's algorithm
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Pick node with smallest d[s,v] 
and place it in S

Relax all of its edges

s: 0, y:5

t: 8, x: 14, z: 7 
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Pick node with smallest d[s,v] 
and place it in S

Relax all of its edges

s: 0, y:5, z: 7

t: 8, x: 14 
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Pick node with smallest d[s,v] 
and place it in S

Relax all of its edges

s: 0, y:5, z: 7
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Pick node with smallest d[s,v] 
and place it in S

Relax all of its edges

s: 0, y:5, z: 7, t: 8

x: 13 

S

Q
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Pick node with smallest d[s,v] 
and place it in S

Relax all of its edges
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Pick node with smallest d[s,v] 
and place it in S
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Pick node with smallest d[s,v] 
and place it in S

Relax all of its edges

s: 0, y:5, z: 7, t: 8, x:9

S

Q



Dijkstra's algorithm

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = V
while Q ≠  ∅

u = FindMinimum from Q
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
   // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 Update n in Q

Else:
   // Already knew of a better path



Complexity

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = V
while Q ≠  ∅

u = FindMinimum from Q
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
   // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 Update n in Q

Else:
   // Already knew of a better path



Complexity

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = V
while Q ≠  ∅

u = FindMinimum from Q
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
   // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 Update n in Q

Else:
   // Already knew of a better path

Loop runs O(V) 
times

At most relax 
O(E) times



Complexity

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = V
while Q ≠  ∅

u = FindMinimum from Q
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
   // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 Update n in Q

Else:
   // Already knew of a better path

Call insert into Q 
O(V) times

Call Relax O(E) 
times.

Call 
FindMinimum 
O(V) times



Complexity - Priority Queue!

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = Insert(V,Q)
while Q ≠  ∅

u = Extract-Min(Q)
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
   // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 DecreaseKey(Q,n)

Else:
   // Already knew of a better path

Call insert into Q 
O(V) times

Call Extract-Min 
O(V) times

Call 
DecreaseKey 
O(E) times.



Complexity - Priority Queue!

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = Insert(V,Q)
while Q ≠  ∅

u = Extract-Min(Q)
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
   // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 DecreaseKey(Q,n)

Else:
   // Already knew of a better path

Call insert into Q 
O(V) times

Call Extract-Min 
O(V) times

Call 
DecreaseKey 
O(E) times.

Insert(v,Q): O(lg V) Extract-Min: O(lg V) Decrease-Key: O(lg V)



Complexity - Priority Queue!

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = Insert(V,Q)
while Q ≠  ∅

u = Extract-Min(Q)
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
   // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 DecreaseKey(Q,n)

Else:
   // Already knew of a better path

Call insert into Q 
O(V) times

Call Extract-Min 
O(V) times

Call 
DecreaseKey 
O(E) times.

O(V * lg V + V*lg V + E*lg(V))



Complexity - Priority Queue!

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = Insert(V,Q)
while Q ≠  ∅

u = Extract-Min(Q)
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
   // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 DecreaseKey(Q,n)

Else:
   // Already knew of a better path

Call insert into Q 
O(V) times

Call Extract-Min 
O(V) times

Call 
DecreaseKey 
O(E) times.

O(V * lg V + V*lg V + E*lg(V)) => O(V*lg V + V*lg V + E *O(1)) if use Fibonacci Heaps



Optimal Substructure

◻ Most shortest path algorithms rely on the optimal substructure 
property

⬜ Intuitively, says that a shortest path between two vertices contains 
only other shortest paths within it
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◻ Most shortest path algorithms rely on the optimal substructure 
property

⬜ Intuitively, says that a shortest path between two vertices contains 
only other shortest paths within it

⬜ If path p = (v
o
, v
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,v

2
) from v

0
 to v

2
 is the shortest path from v

0
 to v

2
, 

then (v
0,

v
1
) must also be the shortest path from v

o
 to v

1
. Otherwise 

there’d be a better way to get to v
2
! 

◻ Given a graph G=(V,E,W), let p= (v
0
,v

1
, .. , v

k
) be a shortest path from 

vertex v
o
 to vertex v

k
 and for any i and j such that 0<=i<=j<=k, let p

ij
 be 

the subpath of p from vertex v
i
 to vertex v

j
. Then p

ij
  is the shortest path 

from v
i
 to v

j
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◻ Proof by contradiction:
⬜ Assume that p = (v
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) is the shortest path
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◻ Proof by contradiction:
⬜ Assume that p = (v
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 .. v
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 .. v
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) is the shortest path

⬜ Assume that there exists a shorter path between vertices i and 
vertices j.  
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vshort



Optimal Substructure

◻ Proof by contradiction:
⬜ Assume that p = (v

o
, … v

i
 .. v

j
 .. v

k
) is the shortest path

⬜ Assume that there exists a shorter path between vertices i and 
vertices j.  

⬜ Then the shortest path from v
0
 to v

k
 would be via v

short
 so p is not 

the shortest path. We have a contradiction

v0 vkvi vj

vshort



Triangle Inequality

◻ By the same logic, can derive the triangle inequality
⬜ (s,v) <= (s,u) + (u,v)

s v

u
If the path (s .. v) is a shortest path,
the weight of the path from (s,u) and from 
(u,v) cannot be smaller as that would mean 
that the path (s .. v) is not the shortest path



Dijkstra's algorithm - Again
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Why is d[s,y] = (s,y)?

We have relaxed all the edges 
leaving s. 

The only way to reach y is via (s,t) + 
(unknown path p) or via (s,y)

But w(s,t) > w(s,y) so w(s,t) + p > 
w(s,y) because w(p)>0

Any path that we take via t will 
have greater weight than w(s,y), so  
d[s,y] = (s,y)



Dijkstra's algorithm - Again
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Now relax all of the edges that 
start from y, and update the 
current estimate of the shortest 
path.



Dijkstra's algorithm - Again
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Why is d[s,z] = (s,z)?

The current values represent our best 
attempts to reach nodes t,x,z using 
nodes s and y (because relaxed edges 
from s,y)

We want to show that reaching z 
through other nodes t and x would yield 
a value d that is greater than d[z]. 

Going through s,y,x (…) z would not lead 
a shorter path as d[s,x] = 14

Going through s,y,t (…) z  (the current 
shortest path to t) would not lead a 
shorter path as d[s,t] = 8



Dijkstra's algorithm - Again
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Why is d[s,t] = (s,t)?

The current values represent our best 
attempts to reach nodes t,x using nodes 
s,y,z (because relaxed edges from s,y,z)

We want to show that reaching t through 
other nodes x would yield a value d that 
is greater than d[t]. 

Going through s,y,z,x (the current 
shortest path to x)  would not lead a 
shorter path as d[s,x] = 13



Correctness Proof (Intuition)

◻ Want to show that d[u,v] = (u,v)
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◻ Want to show that d[u,v] = (u,v)

◻ Lemma: Initialising d[s] = 0 and d[v] = ∞ for all v ∊ V - {s} establishes 
d[v] ≥ (s,v) for all v∊V, and this  invariant is maintained over any 
sequence of relaxation steps. Upper Bound Property



Correctness Proof (Intuition)

◻ Want to show that d[u,v] = (u,v)

◻ Lemma: Initialising d[s] = 0 and d[v] = ∞ for all v ∊ V - {s} establishes d[v] ≥ (s,v) 
for all v∊V, and this  invariant is maintained over any sequence of relaxation 
steps. Upper Bound Property

◻ Proof: 
⬜ At initialisation d[x] = ∞ so d[x] >= (u,x) for all x ∊ V 
⬜ Assume, after i relaxation steps, that for all nodes x ∊ V, d[x] >= (u,x). And consider relaxing edge 

(x,v) (the (i+1)th relaxation step):
■ If we relax (x,v): d[v] = d[x] + w(x,v)
■ By assumption d[x]>= (u,x)
■ It follows that  d[v] >=  (u,x) + w(x,v). 
■ It follows that  d[v] >=  (u,x) + (x,v). By definition, w(x,v)>= (x,v)
■ It follows that d[v] >=  (u,x) + (x,v) >= (u,v)  (by triangle inequality)



Correctness Proof (Intuition)

◻ Theorem: Dijkstra’s algorithm terminates with d[v]= (s,v) for all in v∊V

◻ Proof:  Want to show that d[v]= (s,v) for every v∊V when v is added to S
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◻ Proof:  Want to show that d[v]= (s,v) for every v∊V when v is added to S
⬜ Suppose u is the first vertex added to S for which d[u] ≠ (s,u)
⬜ Let y be the first vertex in Q along a shortest path from s to u, and let x 

be its predecessor



Correctness Proof (Intuition)

◻ Theorem: Dijkstra’s algorithm terminates with d[v]= (s,v) for all in v∊V

◻ Proof:  Want to show that d[v]= (s,v) for every v∊V when v is added to S
⬜ Suppose u is the first vertex added to S for which d[u] ≠ (s,u)
⬜ Let y be the first vertex in Q along a shortest path from s to u, and let x 

be its predecessor

s x

y

u

S, just 
before 
adding u



Correctness Proof (Intuition)

⬜ Since u is the first vertex violating the invariant, we have d[x] = (s,x)
⬜ Since subpaths of shortest paths are shortest paths, and y is on 

shortest path from s to u, d[y] was set to (s,x) + w(x,y) = (s,y) just after 
x was  added to s

⬜ We have d[y] = (s,y) and (s,y) <= (s,u) <= d[u] (Upper Bound Property)

s x

y

u

S, just 
before 
adding u



Correctness Proof (Intuition)

⬜ But, d[y] ≥ d[u] since the algorithm chose u first
⬜ Hence d[y] = (s,y) = (s,u) = d[u]
⬜ We have a contradiction! So d[u] =  (s,u)  

s x

y

u

S, just 
before 
adding u


