
CS/ENGRD 2110
SUMMER 2018
Lecture 13: Shortest Path

http://courses.cs.cornell.edu/cs2110/2018su

Object-oriented programming
and data-structures

1

◻ Search

⬜ Depth-first search

⬜ Breadth-first search

◻ Shortest paths

⬜ Dijkstra's algorithm

◻ Spanning trees

⬜ Prim's algorithm

⬜ Kruskal's algorithm

Graph Algorithms

Shortest Path Problem
◻ How do I efficiently find the shortest path from s to v in a graph?

Shortest Path Problem
◻ How do I efficiently find the shortest path from s to v in a graph?

◻ What is the shortest path to fly from Svrljig (Serbia, Population: 7533) to
Stony River (Alaska, USA, Population: 52)

Shortest Path Problem
◻ Shortest path between Svrljig to

Stony River requires 8 hops

Shortest Path Problem
◻ Shortest path between Svrljig to

Stony River requires 8 hops

◻ Google Flights computed this is a
few milliseconds. Billions of
possible paths!

◻ Have we seen an algorithm that
can compute the shortest path?

What about BFS
◻ BFS expands the graph in “layers”
⬜ First explores all nodes at distance 1 from the source
⬜ Next explores all nodes at distance 2 from the source, etc.

What about BFS
◻ BFS expands the graph in “layers”
⬜ First explores all nodes at distance 1 from the source
⬜ Next explores all nodes at distance 2 from the source, etc.

◻ But BFS only finds the path with the smallest number of hops

◻ Instead, we want to consider weighted graphs

Weighted Graphs
◻ In real graphs, want to assign weights to a graph
⬜ Price
⬜ Distance
⬜ Number of miles

◻ The shortest path is the path with the lowest weight, not necessarily the
path with the smallest number of edges

Weighted Graphs
◻ In real graphs, want to

assign weights to a
graph
⬜ Price
⬜ Distance
⬜ Number of miles

◻ The shortest path is the
path with the lowest
weight, not necessarily
the path with the
smallest number of
edges

Weighted Graphs, formally
◻ A weighted directed graph G = (V,E,W)

⬜ V is a (finite) set

⬜ E is a set of ordered pairs (u, v) where u,v ∈ V

⬜ W is weight function that assigns edges to real-valued weights

Weighted Graphs, formally
◻ A weighted directed graph G = (V,E,W)

⬜ V is a (finite) set

⬜ E is a set of ordered pairs (u, v) where u,v ∈ V

⬜ W is weight function that assigns edges to real-valued weights

◻ Recall that a path is a sequence of edges p = (v
0
,v

1
,v

2
,...v

k
)

⬜ The weight w(p) of a path p = (v
0
,v

1
,v

2
,...v

k
) is the sum of the weights of

its constituent edges

■

Scoping the Problem
◻ Single Destination Shortest Paths Problem

⬜ Find a shortest path between two vertices u and v

Scoping the Problem
◻ Single Destination Shortest Paths Problem

⬜ Find a shortest path between two vertices u and v

◻ All-pairs shortest path problem
⬜ Find a shortest path from u to v for every pair of vertices u and v

■ Can run case-above for all vertices u and v
■ But exists a more efficient algorithm (Floyd-Warshall Algorithm)
■ We do not look at this in this class!

Single-Source Shortest Path (SSSP)
◻ Two algorithms:

⬜ Dijkstra's Algorithm
⬜ Bellman Ford Algorithm

◻ Dijkstra’s algorithm has complexity O(V+E)

◻ Bellman-Ford’s algorithm has complexity O(VE)

◻ Dijkstra works only for positive edges. Bellman-Ford works for both
positive and negative edges.

◻ In this class we will only look at Dijkstra’s algorithm!

Single-Source Shortest Path (SSSP)
◻ Two algorithms:

⬜ Dijkstra's Algorithm
⬜ Bellman Ford Algorithm

Single-Source Shortest Path (SSSP)
◻ Two algorithms:

⬜ Dijkstra's Algorithm
⬜ Bellman Ford Algorithm

◻ Dijkstra’s algorithm has complexity O(V+E)

Single-Source Shortest Path (SSSP)
◻ Two algorithms:

⬜ Dijkstra's Algorithm
⬜ Bellman Ford Algorithm

◻ Dijkstra’s algorithm has complexity O(V+E)

◻ Bellman-Ford’s algorithm has complexity O(VE)

Single-Source Shortest Path (SSSP)
◻ Two algorithms:

⬜ Dijkstra's Algorithm
⬜ Bellman Ford Algorithm

◻ Dijkstra’s algorithm has complexity O((V+E)lgV)

◻ Bellman-Ford’s algorithm has complexity O(VE)

◻ Dijkstra works only for positive edges. Bellman-Ford works for both
positive and negative edges.

◻ In this class we will only look at Dijkstra’s algorithm!

Shortest Path - Definition
◻ We define the shortest path

weight δ(u,v) from u to v by:

◻ A shortest path from vertex u to
vertex v is then defined as any
path p with weight p = δ(u,v)

If there is a path from u to v
Otherwise

Shortest Path - Definition
◻ We define the shortest path

weight δ(u,v) from u to v by:

◻ A shortest path from vertex u to
vertex v is then defined as any
path p with weight p = δ(u,v)

If there is a path from u to v
Otherwise

u v

 x

z

 10

 1 2

 5

Shortest Path - Definition
◻ We define the shortest path

weight δ(u,v) from u to v by:

◻ A shortest path from vertex u to
vertex v is then defined as any
path p with weight p = δ(u,v)

If there is a path from u to v
Otherwise

u v

 x

z

 10

 1 2

 5

δ(u,v) = ?
δ(z,v) = ?
δ(z,u) = ?

Shortest Path - Definition
◻ We define the shortest path

weight δ(u,v) from u to v by:

◻ A shortest path from vertex u to
vertex v is then defined as any
path p with weight p = δ(u,v)

If there is a path from u to v
Otherwise

u v

 x

z

 10

 1 2

 5

δ(u,v) = 3
δ(z,v) = 5
δ(z,u) = ∞

What about brute-force?
◻ What if we simply enumerated all paths between u and v, and picked

the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?

What about brute-force?
◻ What if we simply enumerated all paths between u and v, and picked

the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1?

What about brute-force?
◻ What if we simply enumerated all paths between u and v, and picked

the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1? 1

What about brute-force?
◻ What if we simply enumerated all paths between u and v, and picked

the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1? 1
Paths from 0 to 2?

◻ What if we simply enumerated all paths between u and v, and picked
the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1? 1
Paths from 0 to 2? 2

What about brute-force?

◻ What if we simply enumerated all paths between u and v, and picked
the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1? 1
Paths from 0 to 2? 2
Paths from 0 to 4?: 4

What about brute-force?

◻ What if we simply enumerated all paths between u and v, and picked
the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1? 1
Paths from 0 to 2? 2
Paths from 0 to 4?: 4
Paths from 0 to 6?: 8

What about brute-force?

◻ What if we simply enumerated all paths between u and v, and picked
the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1? 1
Paths from 0 to 2? 2
Paths from 0 to 4?: 4
Paths from 0 to 6?: 8
Paths from 0 to 8? 16

What about brute-force?

◻ What if we simply enumerated all paths between u and v, and picked
the one with the smallest weight?

◻ How many paths between two nodes can there be in the worst-case?

0 1 2 3 4 5 n6 ...

Paths from 0 to 1? 1
Paths from 0 to 2? 2
Paths from 0 to 4?: 4
Paths from 0 to 6?: 8
Paths from 0 to 8? 16

Order 2^(n/2)

Exponentially many paths

What about brute-force?

Terminology

5

9 4

2 1
1

1

1 1

Terminology - Current Weight

d(u,v) d(u,v’)5

9 4

2 1
1

1

1 1

u: source vertex

Write d(u,v) to be the
current weight of node v: it
represents the current best
estimate of the shortest
path from u to v

Terminology- Current Weight

d(u,v) d(u,v’)5

9 4

2 1
1

1

1 1

u: source vertex

Write d(u,v) to be the
current weight of node v: it
represents the current best
estimate of the shortest
path from u to v

Terminology- Current Weight

0

∞ ∞ ∞

∞ ∞ ∞

5

9 4

2 1
1

1

1 1

u: source vertex

Write d(u,v) to be the
current weight of node v: it
represents the current best
estimate of the shortest
path from u to v

Initially, because don’t
have an estimate, start
with ∞

Terminology- Current Weight

0

∞ ∞ ∞

∞ ∞ ∞

5

9 4

2 1
1

1

1 1

Write d(u,v) to be the
current weight of node v: it
represents the current best
estimate of the shortest
path from u to v

Initially, because don’t
have an estimate, start
with ∞

Goal: reduce d(u) until sure
that d(u) = δ(u,v)

u: source vertex

Terminology - Path Relaxation

0

∞ ∞ ∞

∞ ∞ ∞

5

9 4

2 1
1

1

1 1

As discover new paths, will
update estimates of what
is currently the shortest
path

u: source vertex

Terminology - Path Relaxation

0

5 ∞ ∞

∞ ∞ ∞

5

9 4

2 1
1

1

1 1

As discover new paths, will
update estimates of what
is currently the shortest
path

u: source vertex

Terminology - Path Relaxation

0

5 14 ∞

∞ ∞ ∞

5

9 4

2 1
1

1

1 1

As discover new paths, will
update estimates of what
is currently the shortest
path

u: source vertex

Terminology - Path Relaxation

0

5 14 ∞

1 2 3

5

9 4

2 1
1

1

1 1

As discover new paths, will
update estimates of what
is currently the shortest
path

u: source vertex

Terminology - Path Relaxation

0

5 14 ∞

1 2 3

5

9 4

2 1
1

1

1 1

Path relaxation:

Given a new edge (u,v):
If d[u] + w(u,v) < d[v], then
we have discovered a
better way to get from s to
v, so update d[v] = d[u] +
w(u,v)

u: source vertex

Terminology - Predecessor

0

4 14 ∞

1 2 3

5

9 4

2 1
1

1

1 1

Keep track of the
predecessor of a node:
the node u that precedes v
in the current estimate of
the shortest path

[y] = x

Initially [y] = null

During path relaxation, if
d[u] + w(u,v) < d[v], then
update [v] = u

u: source vertex

Node x

Node y

General Structure of SSSP

◻ Initialisation
⬜ For u in V: d[v] = ? [u] =?
⬜ d[s] = ?

General Structure of SSSP

◻ Initialisation
⬜ For u in V: d[v] = ∞ [u] = null
⬜ d[s] = 0

General Structure of SSSP

◻ Initialisation
⬜ For u in V: d[v] = ∞ [u] = null
⬜ d[s] = 0

◻ Repeat until [When?]
⬜ Select some edge (u,v) [How?]

■ Relax edge (u,v):
■ if d[v] > d[u] + w[u,v]

■ d[v] = d[u] + w[u,v]
■ [v] = u

General Structure of SSSP

◻ Initialisation
⬜ For u in V: d[v] = ∞ [u] = null
⬜ d[s] = 0

◻ Repeat until none of the edges can be relaxed
⬜ Select some edge (u,v) [How?]

■ Relax edge (u,v):
■ if d[v] > d[u] + w[u,v]

■ d[v] = d[u] + w[u,v]
■ [v] = u

General Structure of SSSP

◻ Initialisation
⬜ For u in V: d[v] = ∞ [u] = null
⬜ d[s] = 0

◻ Repeat until none of the edges can be relaxed
⬜ Select some edge (u,v) [How?]

■ Relax edge (u,v):
■ if d[v] > d[u] + w[u,v]

■ d[v] = d[u] + w[u,v]
■ [v] = u

Checking whether edges can be
relaxed is O(E). Expensive!

General Structure of SSSP

◻ Initialisation
⬜ For u in V: d[v] = ∞ [u] = null
⬜ d[s] = 0

◻ Repeat until none of the edges can be relaxed
⬜ Select some edge (u,v) [How?]

■ Relax edge (u,v):
■ if d[v] > d[u] + w[u,v]

■ d[v] = d[u] + w[u,v]
■ [v] = u

How many iterations will this do in the
worst case?

General Structure of SSSP

◻ Initialisation
⬜ For u in V: d[v] = ∞ [u] = null
⬜ d[s] = 0

◻ Repeat until none of the edges can be relaxed
⬜ Select some edge (u,v) [How?]

■ Relax edge (u,v):
■ if d[v] > d[u] + w[u,v]

■ d[v] = d[u] + w[u,v]
■ [v] = u

How many iterations will this do in the
worst case?

Worst-Case Iterations

∞ ∞ ∞ ∞ ∞ ∞ ∞

4 2 1

112244

Worst-Case Iterations

0 4 8 10 12 13 14

4 2 1

112244

Worst-Case Iterations

0 4 8 10 12 13 14

4 2 1

112244

Worst-Case Iterations

0 4 8 10 12 13 13

4 2 1

112244

Worst-Case Iterations

0 4 8 10 10 13 13

4 2 1

112244

Worst-Case Iterations

0 4 8 10 10 13 11

4 2 1

112244

Worst-Case Iterations

0 4 8 10 10 11 11

4 2 1

112244

Worst-Case Iterations

0 4 8 10 10 11 11

4 2 1

112244

Keep going decrementing from 13 (initial value), until shortest path
value of 7

How many iterations does this take?

Worst-Case Iterations

0 4 8 10 10 11 11

4 2 1

112244

Keep going decrementing from 13 (initial value), until shortest path
value of 7

How many iterations does this take? 2^n/2 …

We have an exponential algorithm! (Again!)

Need to find some way to “intelligently” select the edges.

Dijkstra's algorithm

◻ We need a way to bound the number of times that we relax edges

◻ Dijkstra’s algorithm does this by greedily selecting the vertex v with
the smallest d(u,v) and relaxing its neighbouring edges.

◻ We’ll see how this is sufficient to guarantee that d(u,v)=δ(u,v) once all
vertices have been processed

◻ It only requires 1 pass on all the vertices (V) and all the edges (E)!

◻ The algorithm itself is surprisingly simple. The proof is harder.

Dijkstra's algorithm

◻ Maintains a set S of vertices whose final shortest path weights from
source s have already been determined, and a set Q of vertices
whose shortest path weights are not yet known.

◻ Algorithm repeatedly selects the vertex v in Q with the minimum
shortest path estimate.
⬜ Adds v to S.
⬜ Relaxes all the edges leaving v.

◻ We’ll show in the proof that, at the point where we add v to S d(u,v) = δ
(u,v)

Dijkstra's algorithm

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Dijkstra's algorithm

s

t x

zy

10

5

3 2

1

9

7

2

4 6

S

Q

Dijkstra's algorithm

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Initialisation

d[s,s] = ?
d[s,t] = ?
d[s,x] = ?

S

Q

Dijkstra's algorithm

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Initialisation

d[s,s] = 0
d[s,t] = ∞
d[s,x] = ∞

S

Q

Dijkstra's algorithm

0

∞

∞ ∞

∞

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Initialisation

d[s,s] = 0
d[s,t] = ∞
d[s,x] = ∞

S

Q

Dijkstra's algorithm

0

∞

∞ ∞

∞

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Initialisation

d[s,s] = 0 [s] = null
d[s,t] = ∞ [t] = null
d[s,x] = ∞ [x] = null

S

Q

Dijkstra's algorithm

0

∞

∞ ∞

∞

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Initialisation

Place all node V in Q.

t: ∞, x: ∞, y:∞, z:∞, s: 0

S

Q

Dijkstra's algorithm

0

∞

∞ ∞

∞

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Pick node with smallest d[s,v]
and place it in S

t: ∞, x: ∞, y:∞, z:∞, s: 0

S

Q

Dijkstra's algorithm

0

∞

∞ ∞

∞

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Pick node with smallest d[s,v]
and place it in S

s: 0

t: ∞, x: ∞, y:∞, z:∞

S

Q

Dijkstra's algorithm

0

∞

∞ ∞

∞

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Pick node with smallest d[s,v]
and place it in S

Relax all of its edges

s: 0

t: ∞, x: ∞, y:∞, z:∞

S

Q

Dijkstra's algorithm

0

10

5 ∞

∞

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Pick node with smallest d[s,v]
and place it in S

Relax all of its edges

s: 0

t: 10, x: ∞, y:5, z:∞

S

Q

Dijkstra's algorithm

0

10

5 ∞

∞

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Pick node with smallest d[s,v]
and place it in S

Relax all of its edges

s: 0, y:5

t: 10, x: ∞, z:∞

S

Q

Dijkstra's algorithm

0

8

5 7

14

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Pick node with smallest d[s,v]
and place it in S

Relax all of its edges

s: 0, y:5

t: 8, x: 14, z: 7

S

Q

Dijkstra's algorithm

0

8

5 7

14

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Pick node with smallest d[s,v]
and place it in S

Relax all of its edges

s: 0, y:5, z: 7

t: 8, x: 14

S

Q

Dijkstra's algorithm

0

8

5 7

13

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Pick node with smallest d[s,v]
and place it in S

Relax all of its edges

s: 0, y:5, z: 7

t: 8, x: 13

S

Q

Dijkstra's algorithm

0

8

5 7

13

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Pick node with smallest d[s,v]
and place it in S

Relax all of its edges

s: 0, y:5, z: 7, t: 8

x: 13

S

Q

Dijkstra's algorithm

0

8

5 7

9

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Pick node with smallest d[s,v]
and place it in S

Relax all of its edges

s: 0, y:5, z: 7, t: 8

x: 9

S

Q

Dijkstra's algorithm

0

8

5 7

9

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Pick node with smallest d[s,v]
and place it in S

Relax all of its edges

s: 0, y:5, z: 7, t: 8, x:9

S

Q

Dijkstra's algorithm

0

8

5 7

9

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Pick node with smallest d[s,v]
and place it in S

Relax all of its edges

s: 0, y:5, z: 7, t: 8, x:9

S

Q

Dijkstra's algorithm

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = V
while Q ≠ ∅

u = FindMinimum from Q
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
 // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 Update n in Q

Else:
 // Already knew of a better path

Complexity

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = V
while Q ≠ ∅

u = FindMinimum from Q
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
 // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 Update n in Q

Else:
 // Already knew of a better path

Complexity

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = V
while Q ≠ ∅

u = FindMinimum from Q
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
 // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 Update n in Q

Else:
 // Already knew of a better path

Loop runs O(V)
times

At most relax
O(E) times

Complexity

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = V
while Q ≠ ∅

u = FindMinimum from Q
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
 // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 Update n in Q

Else:
 // Already knew of a better path

Call insert into Q
O(V) times

Call Relax O(E)
times.

Call
FindMinimum
O(V) times

Complexity - Priority Queue!

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = Insert(V,Q)
while Q ≠ ∅

u = Extract-Min(Q)
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
 // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 DecreaseKey(Q,n)

Else:
 // Already knew of a better path

Call insert into Q
O(V) times

Call Extract-Min
O(V) times

Call
DecreaseKey
O(E) times.

Complexity - Priority Queue!

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = Insert(V,Q)
while Q ≠ ∅

u = Extract-Min(Q)
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
 // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 DecreaseKey(Q,n)

Else:
 // Already knew of a better path

Call insert into Q
O(V) times

Call Extract-Min
O(V) times

Call
DecreaseKey
O(E) times.

Insert(v,Q): O(lg V) Extract-Min: O(lg V) Decrease-Key: O(lg V)

Complexity - Priority Queue!

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = Insert(V,Q)
while Q ≠ ∅

u = Extract-Min(Q)
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
 // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 DecreaseKey(Q,n)

Else:
 // Already knew of a better path

Call insert into Q
O(V) times

Call Extract-Min
O(V) times

Call
DecreaseKey
O(E) times.

O(V * lg V + V*lg V + E*lg(V))

Complexity - Priority Queue!

d[s,s] = 0
For v in V:

d[s,v]= ∞
[v] = null

S = ∅
Q = Insert(V,Q)
while Q ≠ ∅

u = Extract-Min(Q)
S = S U {u}
For each neighbour n of u:

Relax(u,n)

Relax(u,n):
If d[n] > d[u] + w(u,n):
 // Have discovered a shorter path

d[n] = d[u] + w(u,n)
 // Update Predecessor of n
 [n] = u
 DecreaseKey(Q,n)

Else:
 // Already knew of a better path

Call insert into Q
O(V) times

Call Extract-Min
O(V) times

Call
DecreaseKey
O(E) times.

O(V * lg V + V*lg V + E*lg(V)) => O(V*lg V + V*lg V + E *O(1)) if use Fibonacci Heaps

Optimal Substructure

◻ Most shortest path algorithms rely on the optimal substructure
property

⬜ Intuitively, says that a shortest path between two vertices contains
only other shortest paths within it

⬜ If path p = (v
o
, v

1
,v

2
) from v

0
 to v

2
 is the shortest path from v

0
 to v

2
,

then (v
0,

v
1
) must also be the shortest path from v

o
 to v

1
. Otherwise

there’d be a better way to get to v
2
!

Optimal Substructure

◻ Most shortest path algorithms rely on the optimal substructure
property

⬜ Intuitively, says that a shortest path between two vertices contains
only other shortest paths within it

⬜ If path p = (v
o
, v

1
,v

2
) from v

0
 to v

2
 is the shortest path from v

0
 to v

2
,

then (v
0,

v
1
) must also be the shortest path from v

o
 to v

1
. Otherwise

there’d be a better way to get to v
2
!

◻ Given a graph G=(V,E,W), let p= (v
0
,v

1
, .. , v

k
) be a shortest path from

vertex v
o
 to vertex v

k
 and for any i and j such that 0<=i<=j<=k, let p

ij
 be

the subpath of p from vertex v
i
 to vertex v

j
. Then p

ij
 is the shortest path

from v
i
 to v

j

Optimal Substructure

◻ Proof by contradiction:
⬜ Assume that p = (v

o
, … v

i
 .. v

j
 .. v

k
) is the shortest path

v0 vkvi vj

Optimal Substructure

◻ Proof by contradiction:
⬜ Assume that p = (v

o
, … v

i
 .. v

j
 .. v

k
) is the shortest path

⬜ Assume that there exists a shorter path between vertices i and
vertices j.

v0 vkvi vj

vshort

Optimal Substructure

◻ Proof by contradiction:
⬜ Assume that p = (v

o
, … v

i
 .. v

j
 .. v

k
) is the shortest path

⬜ Assume that there exists a shorter path between vertices i and
vertices j.

⬜ Then the shortest path from v
0
 to v

k
 would be via v

short
 so p is not

the shortest path. We have a contradiction

v0 vkvi vj

vshort

Triangle Inequality

◻ By the same logic, can derive the triangle inequality
⬜ (s,v) <= (s,u) + (u,v)

s v

u
If the path (s .. v) is a shortest path,
the weight of the path from (s,u) and from
(u,v) cannot be smaller as that would mean
that the path (s .. v) is not the shortest path

Dijkstra's algorithm - Again

0

10

5 ∞

∞

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Why is d[s,y] = (s,y)?

We have relaxed all the edges
leaving s.

The only way to reach y is via (s,t) +
(unknown path p) or via (s,y)

But w(s,t) > w(s,y) so w(s,t) + p >
w(s,y) because w(p)>0

Any path that we take via t will
have greater weight than w(s,y), so
d[s,y] = (s,y)

Dijkstra's algorithm - Again

0

8

5 7

14

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Now relax all of the edges that
start from y, and update the
current estimate of the shortest
path.

Dijkstra's algorithm - Again

0

8

5 7

14

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Why is d[s,z] = (s,z)?

The current values represent our best
attempts to reach nodes t,x,z using
nodes s and y (because relaxed edges
from s,y)

We want to show that reaching z
through other nodes t and x would yield
a value d that is greater than d[z].

Going through s,y,x (…) z would not lead
a shorter path as d[s,x] = 14

Going through s,y,t (…) z (the current
shortest path to t) would not lead a
shorter path as d[s,t] = 8

Dijkstra's algorithm - Again

0

8

5 7

13

s

t x

zy

10

5

3 2

1

9

7

2

4 6

Why is d[s,t] = (s,t)?

The current values represent our best
attempts to reach nodes t,x using nodes
s,y,z (because relaxed edges from s,y,z)

We want to show that reaching t through
other nodes x would yield a value d that
is greater than d[t].

Going through s,y,z,x (the current
shortest path to x) would not lead a
shorter path as d[s,x] = 13

Correctness Proof (Intuition)

◻ Want to show that d[u,v] = (u,v)

Correctness Proof (Intuition)

◻ Want to show that d[u,v] = (u,v)

◻ Lemma: Initialising d[s] = 0 and d[v] = ∞ for all v ∊ V - {s} establishes
d[v] ≥ (s,v) for all v∊V, and this invariant is maintained over any
sequence of relaxation steps. Upper Bound Property

Correctness Proof (Intuition)

◻ Want to show that d[u,v] = (u,v)

◻ Lemma: Initialising d[s] = 0 and d[v] = ∞ for all v ∊ V - {s} establishes d[v] ≥ (s,v)
for all v∊V, and this invariant is maintained over any sequence of relaxation
steps. Upper Bound Property

◻ Proof:
⬜ At initialisation d[x] = ∞ so d[x] >= (u,x) for all x ∊ V
⬜ Assume, after i relaxation steps, that for all nodes x ∊ V, d[x] >= (u,x). And consider relaxing edge

(x,v) (the (i+1)th relaxation step):
■ If we relax (x,v): d[v] = d[x] + w(x,v)
■ By assumption d[x]>= (u,x)
■ It follows that d[v] >= (u,x) + w(x,v).
■ It follows that d[v] >= (u,x) + (x,v). By definition, w(x,v)>= (x,v)
■ It follows that d[v] >= (u,x) + (x,v) >= (u,v) (by triangle inequality)

Correctness Proof (Intuition)

◻ Theorem: Dijkstra’s algorithm terminates with d[v]= (s,v) for all in v∊V

◻ Proof: Want to show that d[v]= (s,v) for every v∊V when v is added to S

Correctness Proof (Intuition)

◻ Theorem: Dijkstra’s algorithm terminates with d[v]= (s,v) for all in v∊V

◻ Proof: Want to show that d[v]= (s,v) for every v∊V when v is added to S
⬜ Suppose u is the first vertex added to S for which d[u] ≠ (s,u)
⬜ Let y be the first vertex in Q along a shortest path from s to u, and let x

be its predecessor

Correctness Proof (Intuition)

◻ Theorem: Dijkstra’s algorithm terminates with d[v]= (s,v) for all in v∊V

◻ Proof: Want to show that d[v]= (s,v) for every v∊V when v is added to S
⬜ Suppose u is the first vertex added to S for which d[u] ≠ (s,u)
⬜ Let y be the first vertex in Q along a shortest path from s to u, and let x

be its predecessor

s x

y

u

S, just
before
adding u

Correctness Proof (Intuition)

⬜ Since u is the first vertex violating the invariant, we have d[x] = (s,x)
⬜ Since subpaths of shortest paths are shortest paths, and y is on

shortest path from s to u, d[y] was set to (s,x) + w(x,y) = (s,y) just after
x was added to s

⬜ We have d[y] = (s,y) and (s,y) <= (s,u) <= d[u] (Upper Bound Property)

s x

y

u

S, just
before
adding u

Correctness Proof (Intuition)

⬜ But, d[y] ≥ d[u] since the algorithm chose u first
⬜ Hence d[y] = (s,y) = (s,u) = d[u]
⬜ We have a contradiction! So d[u] = (s,u)

s x

y

u

S, just
before
adding u

