1

Obiject-oriented programming
and data-structures

CS/ENGRD 2110
SUMMER 2018

Graph Algorithms

- Search
-1 Depth-first search
- Breadtn-1irst searcn

- Shortest paths

- Dijkstra's algorithm
- Spanning trees
Algorithms based on properties

Minimum spanning trees
— Prim's algorithm

Search (Again)

Search (Again)

Search on Graphs

- Given a graph (V,E) and a
vertex u € V, want to visit
every node that is
reachable from u

Search on Graphs

- Given a graph (V,E) and a
vertex u € V, want to visit
every node that is
reachable from u

Search on Graphs

- Given a graph (V,E) and a
vertex u € V, want to visit
every node that is
reachable from u

There are many paths to some
nodes.

How do we visit all nodes
efficiently, without doing extra
work?

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

9

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

5 o

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

S o

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

Q@

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

@

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

/** Visit all nodes reachable on unvisited paths

from u.
Precondition: u 1s unvisited. */

public static void dfs(int u) {

visit(u);

for all edges (u,v):
if(!visited[v]):

dfs(v); dfs(1) visits the nodes in this
order:1,2,3,5,7,8

Depth-First Search in Java

_ 21|
public class Node { Each vertex of the graph
boolean visited; is an object of type
List<Node> neighbours; Node

/** Visit all nodes reachable on unvisited paths from this node.

Precondition: this node 1is unvisited. */

No need for a
~ parameter. The object is
the node.

public void dfs () {

visited= true;

for (Node n: neighbours) {

1f (!n.visited) n.dfs();

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

dfs(1) visits the nodes in this
order:1,2,3,5,7,8

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths. I

Suppose there are n vertices that are
reachable along unvisited paths, and
m edges

dfs(1) visits the nodes in this
order:1,2,3,5,7,8

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Suppose there are n vertices that are

U
reachable along unvisited paths, and —
N <

Visits every vertex in the graph exactly
once and every edge exactly once

dfs(1) visits the nodes in this
order:1,2,3,5,7,8

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Suppose there are n vertices that are

U
reachable along unvisited paths, and —
N <

Worst-case time complexity:
O(n + m)

dfs(1) visits the nodes in this
order:1,2,3,5,7,8

DFS Quiz

o Inwhat order would a DFS visit the
vertices of this graph? Break ties by
visiting the lower-numbered vertex
first.

1 1,2,3,45,6,7,8
1 1,2,5,6,3,6,7,4,7,8
1 1,2,53,6,4,7,8
1 1,2,5,6,3,7,4,8

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

Stack

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

Stack

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

Stack

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

Stack

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

Stack

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths. I

Stack

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths. I

Stack

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths. I

Stack

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths. l

Stack

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths. I

Stack

Depth-First Search Iteratively
Intuition: Recursively visit all vertices that are reachable along unvisited paths. I

Stack

Depth-First Search Iteratively

Intuition: Visit all vertices that are reachable along unvisited paths from the
current node.

/** Visit all nodes reachable on unvisited paths from u.
Precondition: u is unvisited. */
public static void dfs(int u) {
Stack s= (u);// Not Java!
while (s is not empty) {
u= s.pop();
if (u not visited) {
visit u;
for each edge (u, v):
s.push(v);

Breadth-First Search

Intuition: Iteratively process the graph in "layers" moving further away from the I

source node.

Breadth-First Search

Intuition: Iteratively process the graph in "layers" moving further away from the I

source node.

Breadth-First Search

Intuition: Iteratively process the graph in "layers" moving further away from the I

source node.

BFS Quiz

= Inwhat order would a BFS visit the
vertices of this graph? Break ties by
visiting the lower-numbered vertex
first.

1 1,2,3,45,6,7,8
1 1,2,3,4,56,6,7,7,8
1 1,2,53,6,4,7,8
1 1,2,5,6,3,7,4,8

Breadth-First Search

Intuition: Iteratively process the graph in "layers" moving further away from the I

source node.

/** Visit all nodes reachable on
unvisited paths from u.
Precondition: u is unvisited. */
public static void bfs (int u) {
Queue g= (u);// Not Java!
while (g is not empty) {
u= g.remove () ;
if (u not visited) {
visit u;
for each (u, v):
g.add(v) ;

}

Analysing BFS

Intuition: Iteratively process the graph in "layers" moving further away from the
source node.

Suppose there are n vertices that are

U
reachable along unvisited paths, and —
N <

Worst-case time complexity:
O(n + m)

bfs(1) visits the nodes in this
order:1,2,7,3,5,8

Comparing Search Algorithms

45
DFS BFS

- Visits: 1,2,5,7,3,8
o Time: O(n + m)
o Space: O(n)

- Visits: 1,2,3,5,7,8
= Time: O(n + m)
o Space: O(n)

Topological Sort

-1 Problem: In what order should | take CS classes at Cornell?

CS1110 CS1112
CS2800 CS2024 - CS2110
|
\/ v
- CS3110 CS3410 F
CS4110 CS4410 CS4320

Topological Sort

1 Canlget alinear ordering of the graph such that all courses that are
prereqgs happen before courses that are not

CS1110 CS1112
CS2800 CS2024 CS2110
|
\/
CS3110 CS3410
CS4110 CS4410 CS4320

Topological Sort

1 Canlget alinear ordering of the graph such that all courses that are

prereqgs happen before courses that are not

S P~ ———_

CS1110

CS1112

CS2024

CS2110

CS2800

CS3110

CS3410

CS4110

CS4410

CS4320

Topological Sort

1 Canlget alinear ordering of the graph such that all courses that are

preregs happen before courses that are not

N o~ N S

CS1110

CS1112

CS2024

CS2110

CS2800

CS3110

CS3410

CS4110

CS4410

CS4320

© - Graphically: can | arrange all the nodes such that edges all point to the

right?

Topological Sort, Formally

1 Atopological sort of a graph Gis a linear ordering of all its vertices such
that i
if G contains an edge (u,v) then u appears before v in the ordering.

Topological Sort, Formally

1 Atopological sort of a graph Gis a linear ordering of all its vertices such
that i
if G contains an edge (u,v) then u appears before v in the ordering.

1 Can be computed efficiently using DFS

Topological Sort

Let’s revisit our DFS algorithm

Every node has a discovery time u
The time when we mark it as visited for the first time

Every node has a finishing time f
The time when we explore the last of its edge

Topological Sort

I

public class Node {
boolean visited; List<Node> neighbours;

int discoveryTime; int finishingTime;

public void dfs () {
visited= true;
discoveringTime = time;
for (Node n: neighbours) {
if (!n.visited) n.dfs();
}
time++;

finishingTime = time;

Topological Sort

Revisit DFS as follows:
For every node uin G, run u.dfs();
As each vertex is finished, insert it info the front of a linked list
Return the linked list of vertices

Topological Sort

Revisit DFS as follows:
For every node u in G, run u.dfs();
As each vertex is finished, insert it info the front of a linked list
Return the linked list of vertices

Key idea: inserting a vertex in front of the list when finished ensures that
vertices v with an edge (u,v) always appear before vertices v in the linked
list (as they will marked as finished after v)

Topological Sort

‘s

Topological Sort

3 Time =2

Topological Sort

3 Time =3

Topological Sort

3 Time =4
e

Topological Sort

Topological Sort

Topological Sort

Topological Sort

Topological Sort

Topological Sort

Strongly Connected Components

Strongly Connected Component

A strongly connected component of a directed graph G = (V,E) isa
maximal set of vertices C such that for every pair of verticesu and vin C,
we have both vis reachable from u and u is reachable from v. That is u
and v are reachable from each other

N

| — | — 1

Strongly Connected Components

-1 Strongly Connected Component

o Astrongly connected component of a directed graph G =(V,E) isa
maximal set of vertices C such that for every pair of verticesu and vin C,
we have both vis reachable from u and u is reachable from v. That is u
and v are reachable from each other

N
- -

e & »

Strongly Connected Components

Strongly Connected Component

A strongly connected component of a directed graph G = (V,E) isa
maximal set of vertices C such that for every pair of verticesu and vin C,
we have both vis reachable from u and u is reachable from v. That is u
and v are reachable from each other

- — Reduce the graph to its
=> the component graph

Strongly Connected Components

1 Often used as a subprocedure: partition the graph into its SCC and run
an algorithm on each partition

1 Used to identify communities of people on social networks

-1 Used to identify bots/spam pages

Kosaraju's algorithm

Leverages observation that, if there exists a number of SCC in the graph
G, then those SCC stay the same in the graph G*T (with all of its edges
flipped)

ldea is to compute DFS of the graph to get finishing times, franspose that
graph, then run DFS(u) for every node in that order

The first node that we traverse is either
Already part of a strongly connected component
The root of a new connected component.

Kosaraju’s algorithm

o1 First compute finishing times of all vertices

Kosaraju’s algorithm

o1 First compute finishing times of all vertices
1 7
2 |6
3 5
4 |4
5 0
6 |1
7 2
8 '3

Kosaraju’s algorithm

1 Compute transpose of G (flip all edges)
1 7
2 |6
3 |5
4 |4
5 |0
6 |1
7 |2
8 |3

Kosaraju’s algorithm

1 Compute transpose of G (flip all edges)
1 7
2 |6
3 |5
4 |4
5 |0
6 |1
7 |2
8 |3

Kosaraju’s algorithm

11 Sort vertices in reverse order of their finishing time
1 7
2 |6
3 5
4 |4
8 '3
7 2
6 |1
5 0

Kosaraju’s algorithm

1 Go through each vertex v
1 |7
2 |6
3 |5
4 |4
8 |3
7 |2

1 Setv.scc =v. Then run DFS(v) 6 |1

- For all reachable V' 5 |0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

1 Go through each vertex v
1 7 | ¢
2 |6
3 |5
4 |4
8 |3
7 |2
1 Setwv.scc =Vv. Then run DFS(v) 6 |1
1 For all reachable v’ 5 |0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

1 Go through each vertex v
1 |7
2 |6
3 |5
4 |4
8 |3
7 |2

1 Setv.scc =v. Then run DFS(v) 6 |1

- For all reachable V' 5 |0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

1 Go through each vertex v
1 |7
2 |6
3 |5
4 |4
8 |3
7 |2

1 Setv.scc =v. Then run DFS(v) 6 |1

- For all reachable V' 5 |0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

80

1 Go through each vertex v
1 |7
2 | 6
3 |5
4 |4
8 '3
7 2

1 Setv.scc =v. Then run DFS(v) 6 |1

-1 For all reachable V' 5 0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

81

1 Go through each vertex v
1 |7
2 |6 (T
3 |5
4 |4
8 '3
7 2

1 Setv.scc =v. Then run DFS(v) 6 |1

-1 For all reachable V' 5 0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

82

1 Go through each vertex v
1 |7
2 | 6
3 5 (T
4 |4
8 '3
7 2

1 Setv.scc =v. Then run DFS(v) 6 |1

-1 For all reachable V' 5 0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

83

1 Go through each vertex v
1 |7
2 | 6
3 5 (T
4 |4
8 '3
7 2

1 Setv.scc =v. Then run DFS(v) 6 |1

-1 For all reachable V' 5 0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

84

1 Go through each vertex v
1 |7
2 | 6
3 5 (T
4 |4
8 '3
7 2

1 Setv.scc =v. Then run DFS(v) 6 |1

-1 For all reachable V' 5 0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

85

1 Go through each vertex v
1 |7
2 | 6
3 5 (T
4 |4
8 '3
7 2

1 Setv.scc =v. Then run DFS(v) 6 |1

-1 For all reachable V' 5 0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

86

1 Go through each vertex v
1 |7
2 | 6
3 |5
4 4 {2
8 '3
7 2

1 Setv.scc =v. Then run DFS(v) 6 |1

-1 For all reachable V' 5 0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

1 Go through each vertex v
1 |7
2 | 6
3 |5
4 |4
8 |3 (T
7 2
1 Setv.scc =v. Then run DFS(v) 6 |1
-1 For all reachable V' 5 0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

1 Go through each vertex v

1 |7

2 | 6

3 |5

4 |4

8 '3

7 |2 [{
1 Setv.scc =v. Then run DFS(v) 6 |1
-1 For all reachable V' 5 0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

89
1 Go through each vertex v
1 |7
2 | 6
3 |5
) 4 |4
8 E
7 |2 [{
1 Setv.scc =v. Then run DFS(v) 6 |1
-1 For all reachable V' 5 0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

90
1 Go through each vertex v
1 |7
2 | 6
3 |5
4 |4
8 '3
7 |2 [{
1 Setv.scc =v. Then run DFS(v) 6 |1
-1 For all reachable V' 5 0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

91
1 Go through each vertex v
1 |7
2 | 6
3 |5
4 |4
8 '3
7 |2 [{
1 Setv.scc =v. Then run DFS(v) 6 |1
-1 For all reachable V' 5 0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

92
1 Go through each vertex v
1 |7
2 | 6
3 |5
4 |4
8 '3
7 |2 [{
1 Setv.scc =v. Then run DFS(v) 6 |1
-1 For all reachable V' 5 0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

1 Go through each vertex v

1 7

2 6

3 |5

4 4

8 3

7 |2 | <=
o Setv.scc =v. Then run DFS(v) 6 |1
o Forallreachable v’ 5 0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

1 Go through each vertex v

1 |7

2 |6

3 5

4 4

8 3

7 2
-1 Setv.scc =v. Then run DFS(v) 6 1 (=
11 Forallreachable V' 5 |0

1 Ifvi.scc = null, then assign v'.scc =v

Kosaraju’s algorithm

1 Go through each vertex v

1 7
2 |6
3 |5
4 4
8 3
7 2
o Setv.scc =v. Then run DFS(v) 6 |1
o Forallreachable v’ 5 0

1 Ifvi.scc = null, then assign v'.scc =v

Intuition revisited

Once visit a node in a strongly connected component, will visit:
All nodes n in that strongly connected nodes
Nodes n' that leave the strongly connected components

When compute the transpose, switching the edges
Has no effects on nodes n in the SCC (because (u,v) and (v,u) are both
paths in the SCC)
Means that nodes n" are no longer reachable

Kosaraju's algorithm

£findSCC (Graph<T> g) {
List<GraphNode<T> topoSort = DFS(G); Add a parameter
topoSort.sort (//reverse finishing time) ; GrathOde<T> scc to
transpose (G) ; every graph node.

for (GraphNode u: topoSortReverse) {
if (u.scc == null) assignSCC(u,u);

}

assignSCC (GraphNode<T> u, GraphNode<T> root) {

assert(u.scc == null);

u.scc = root;

for (GraphNode<T> n: u.neighbours) {
assignSCC (n,root) ;

)

Other SCC algorithms

Kosaraju's algorithm easy to understand, but requires two DFS calls

Tarjan’s algorithm (former Cornell prof!) and Djikstra’s algorithm are
harder to reason about but require only one DFS call and one or more
stacks

Read up if you're interested!

