Object-oriented programming and data-structures

CS/ENGRD 2110 SUMMER 2018

[^0]
Graph Algorithms

Search
\square Depth-first search
\square Breadth-first search

- Shortest paths
\square Dijkstra's algorithm
- Spanning trees

Algorithms based on properties
Minimum spanning trees

Prim's algorithm

Search (Again)

Search (Again)

Search on Graphs

Given a graph (V,E) and a vertex $u \in V$, want to visit every node that is reachable from u

Search on Graphs

Given a graph (V,E) and a vertex $u \in V$, want to visit every node that is reachable from u

Search on Graphs

Given a graph (V,E) and a vertex $u \in V$, want to visit every node that is reachable from u

There are many paths to some nodes.

How do we visit all nodes efficiently, without doing extra work?

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.
/** Visit all nodes reachable on unvisited paths from u.
Precondition: u is unvisited. */
public static void dfs(int u) \{
visit(u);
for all edges (u,v):
if(!visited[v]):
dfs(v)

[^1]
Depth-First Search in Java

```
public class Node {
    boolean visited;
    List<Node> neighbours;
```

Each vertex of the graph is an object of type Node

```
/** Visit all nodes reachable on unvisited paths from this node.
```

Precondition: this node is unvisited. */
public void dfs() \{
visited= true;
for (Node n : neighbours) \{
if (!n.visited) n.dfs();
\}
\}

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

dfs(1) visits the nodes in this order: 1, 2, 3, 5, 7, 8

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Suppose there are n vertices that are reachable along unvisited paths, and m edges

dfs(1) visits the nodes in this order: 1, 2, 3, 5, 7, 8

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Suppose there are n vertices that are reachable along unvisited paths, and m edges

Visits every vertex in the graph exactly once and every edge exactly once

dfs(1) visits the nodes in this order: 1, 2, 3, 5, 7, 8

Depth-First Search

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Suppose there are n vertices that are reachable along unvisited paths, and m edges

Worst-case time complexity: $\mathrm{O}(\mathrm{n}+\mathrm{m})$

dfs(1) visits the nodes in this order: 1, 2, 3, 5, 7, 8

DFS Quiz

\square In what order would a DFS visit the vertices of this graph? Break ties by visiting the lower-numbered vertex first.
$\square 1,2,3,4,5,6,7,8$
$\square 1,2,5,6,3,6,7,4,7,8$
$\square 1,2,5,3,6,4,7,8$
$\square 1,2,5,6,3,7,4,8$

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Stack
1

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Stack
\square

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Stack
3
7
7

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search Iteratively

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search Iteratively

Intuition: Visit all vertices that are reachable along unvisited paths from the current node.

```
Precondition: u is unvisited. */
public static void dfs(int u) {
    Stack s= (u);// Not Java!
    while (s is not empty) {
        u= s.pop();
        if (u not visited) {
            visit u;
            for each edge (u, v):
                s.push(v);
        }
    }
}
```

/** Visit all nodes reachable on unvisited paths from u.

Breadth-First Search

Intuition: Iteratively process the graph in "layers" moving further away from the source node.

Breadth-First Search

Intuition: Iteratively process the graph in "layers" moving further away from the source node.

Breadth-First Search

Intuition: Iteratively process the graph in "layers" moving further away from the source node.

BFS Quiz

- In what order would a BFS visit the vertices of this graph? Break ties by visiting the lower-numbered vertex first.
$\square 1,2,3,4,5,6,7,8$
\square 1,2,3, 4, 5, 6, 6, 7, 7, 8
$\square 1,2,5,3,6,4,7,8$
$\square 1,2,5,6,3,7,4,8$

Breadth-First Search

Intuition: Iteratively process the graph in "layers" moving further away from the source node.

```
/** Visit all nodes reachable on
unvisited paths from u.
Precondition: u is unvisited. */
public static void bfs(int u) {
    Queue q= (u);// Not Java!
    while ( q is not empty ) {
        u= q.remove();
        if (u not visited) {
            visit u;
        for each (u, v):
            q.add(v);
        }
    }
}
```


Analysing BFS

Intuition: Iteratively process the graph in "layers" moving further away from the source node.

Suppose there are n vertices that are reachable along unvisited paths, and m edges

Worst-case time complexity: $\mathrm{O}(\mathrm{n}+\mathrm{m})$

$\mathrm{bfs}(1)$ visits the nodes in this order: 1, 2, 7, 3, 5, 8

Comparing Search Algorithms

DFS

\square Visits: $1,2,3,5,7,8$
\square Time: $O(n+m)$
\square Space: O(n)

BFS

\square Visits: 1,2,5,7,3,8
\square Time: $O(n+m)$
\square Space: O(n)

Topological Sort

$\square \quad$ Problem: In what order should I take CS classes at Cornell?

Topological Sort

\square Can I get a linear ordering of the graph such that all courses that are prereqs happen before courses that are not

Topological Sort

\square Can I get a linear ordering of the graph such that all courses that are prereqs happen before courses that are not

Topological Sort

\square Can I get a linear ordering of the graph such that all courses that are prereqs happen before courses that are not

\square Graphically: can I arrange all the nodes such that edges all point to the right?

Topological Sort, Formally

\square A topological sort of a graph \mathbf{G} is a linear ordering of all its vertices such that i
\square if G contains an edge (u, v) then u appears before v in the ordering.

Topological Sort, Formally

\square A topological sort of a graph \mathbf{G} is a linear ordering of all its vertices such that i
\square if G contains an edge (u, v) then u appears before v in the ordering.
\square Can be computed efficiently using DFS

Topological Sort

\square Let's revisit our DFS algorithm
\square Every node has a discovery time u

- The time when we mark it as visited for the first time
\square Every node has a finishing time f
- The time when we explore the last of its edge

Topological Sort

```
public class Node {
    boolean visited; List<Node> neighbours;
    int discoveryTime; int finishingTime;
    public void dfs() {
        visited= true;
        discoveringTime = time;
        for (Node n: neighbours) {
        if (!n.visited) n.dfs();
        }
        time++;
        finishingTime = time;
    }
}
```


Topological Sort

\square Revisit DFS as follows:
\square For every node u in G, run u.dfs();
\square As each vertex is finished, insert it into the front of a linked list
\square Return the linked list of vertices

Topological Sort

\square Revisit DFS as follows:
\square For every node u in G, run u.dfs();
\square As each vertex is finished, insert it into the front of a linked list
\square Return the linked list of vertices
\square Key idea: inserting a vertex in front of the list when finished ensures that vertices v with an edge (u, v) always appear before vertices v in the linked list (as they will marked as finished after v)

Topological Sort

Topological Sort

Time $=2$

Topological Sort

Time $=3$

Topological Sort

Time $=4$

Topological Sort

Time $=5$

Topological Sort

Time $=6$

Topological Sort

Time $=7$

Topological Sort

Time $=8$

Topological Sort

Time $=9$

Topological Sort

Time $=10$

Strongly Connected Components

\square Strongly Connected Component
\square A strongly connected component of a directed graph $G=(V, E)$ is a maximal set of vertices C such that for every pair of vertices u and v in C, we have both v is reachable from u and u is reachable from v. That is u and v are reachable from each other

Strongly Connected Components

\square Strongly Connected Component
\square A strongly connected component of a directed graph $G=(V, E)$ is a maximal set of vertices C such that for every pair of vertices u and v in C, we have both v is reachable from u and u is reachable from v. That is u and v are reachable from each other

Strongly Connected Components

\square Strongly Connected Component
\square A strongly connected component of a directed graph $G=(V, E)$ is a maximal set of vertices C such that for every pair of vertices u and v in C, we have both v is reachable from u and u is reachable from v. That is u and v are reachable from each other

Reduce the graph to its SCC
=> the component graph

Strongly Connected Components

\square Often used as a subprocedure: partition the graph into its SCC and run an algorithm on each partition
\square Used to identify communities of people on social networks
\square Used to identify bots/spam pages

Kosaraju's algorithm

\square Leverages observation that, if there exists a number of SCC in the graph G, then those SCC stay the same in the graph $G^{\wedge} T$ (with all of its edges flipped)
\square Idea is to compute DFS of the graph to get finishing times, transpose that graph, then run DFS(u) for every node in that order
\square The first node that we traverse is either

- Already part of a strongly connected component
- The root of a new connected component.

Kosaraju's algorithm

\square First compute finishing times of all vertices

Kosaraju's algorithm

\square First compute finishing times of all vertices

1	7
2	6
3	5
4	4
5	0
6	1
7	2
8	3

Kosaraju's algorithm

\square Compute transpose of G (flip all edges)

1	7
2	6
3	5
4	4
5	0
6	1
7	2
8	3

Kosaraju's algorithm

\square Compute transpose of G (flip all edges)

1	7
2	6
3	5
4	4
5	0
6	1
7	2
8	3

Kosaraju's algorithm

\square Sort vertices in reverse order of their finishing time

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

Kosaraju's algorithm

\square Go through each vertex v
\square Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If v '.scc $=$ null, then assign v '.scc $=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
\square Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If $\mathrm{v}^{\prime} . \mathrm{scc}=$ null, then assign $\mathrm{v}^{\prime} . \mathrm{scc}=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
\square Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If v '.scc $=$ null, then assign v '.scc $=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
\square Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If $\mathrm{v}^{\prime} . \mathrm{scc}=$ null, then assign $\mathrm{v}^{\prime} . \mathrm{scc}=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
$\square \quad$ Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If v '.scc $=$ null, then assign v '.scc $=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
\square Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If $\mathrm{v}^{\prime} . \mathrm{scc}=$ null, then assign $\mathrm{v}^{\prime} . \mathrm{scc}=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
\square Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If $\mathrm{v}^{\prime} . \mathrm{scc}=$ null, then assign $\mathrm{v}^{\prime} . \mathrm{scc}=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v

$\square \quad$ Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If $\mathrm{v}^{\prime} . \mathrm{scc}=$ null, then assign $\mathrm{v}^{\prime} . \mathrm{scc}=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
\square Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If v '.scc $=$ null, then assign v '.scc $=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
\square Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If $\mathrm{v}^{\prime} . \mathrm{scc}=$ null, then assign $\mathrm{v}^{\prime} . \mathrm{scc}=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
\square Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If v '.scc $=$ null, then assign v '.scc $=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
$\square \quad$ Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If $\mathrm{v}^{\prime} . \mathrm{scc}=$ null, then assign $\mathrm{v}^{\prime} . \mathrm{scc}=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
$\square \quad$ Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If v '.scc $=$ null, then assign v '.scc $=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
$\square \quad$ Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If $\mathrm{v}^{\prime} . \mathrm{scc}=$ null, then assign $\mathrm{v}^{\prime} . \mathrm{scc}=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
\square Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If $\mathrm{v}^{\prime} . \mathrm{scc}=$ null, then assign $\mathrm{v}^{\prime} . \mathrm{scc}=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v

$\square \quad$ Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If $\mathrm{v}^{\prime} . \mathrm{scc}=$ null, then assign $\mathrm{v}^{\prime} . \mathrm{scc}=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
$\square \quad$ Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If $\mathrm{v}^{\prime} . \mathrm{scc}=$ null, then assign $\mathrm{v}^{\prime} . \mathrm{scc}=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
$\square \quad$ Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If $\mathrm{v}^{\prime} . \mathrm{scc}=$ null, then assign $\mathrm{v}^{\prime} . \mathrm{scc}=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
\square Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If $\mathrm{v}^{\prime} . \mathrm{scc}=$ null, then assign $\mathrm{v}^{\prime} . \mathrm{scc}=\mathrm{v}$

Kosaraju's algorithm

\square Go through each vertex v
$\square \quad$ Set v.scc = v. Then run DFS(v)
\square For all reachable v'

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

\square If $\mathrm{v}^{\prime} . \mathrm{scc}=$ null, then assign $\mathrm{v}^{\prime} . \mathrm{scc}=\mathrm{v}$

Intuition revisited

\square Once visit a node in a strongly connected component, will visit:
\square All nodes \mathbf{n} in that strongly connected nodes
\square Nodes \mathbf{n}^{\prime} that leave the strongly connected components
\square When compute the transpose, switching the edges
\square Has no effects on nodes \mathbf{n} in the SCC (because (u, v) and (v, u) are both paths in the SCC)
\square Means that nodes n^{\prime} are no longer reachable

Kosaraju's algorithm

findSCC (Graph<T> g) \{
List<GraphNode<T> topoSort = DFS(G); topoSort.sort(//reverse finishing time);
transpose (G) ;
for (GraphNode u: topoSortReverse) \{ if (u.scc == null) assignSCC(u,u);
\}
assignSCC (GraphNode<T> u, GraphNode<T> root) \{
for (GraphNode<T> n: u.neighbours) \{ assignSCC (n,root) ;
\} \}

```
assert(u.scc == null);
```

assert(u.scc == null);
u.scc = root;

```
u.scc = root;
```

for (GraphNode<T> n: u.neighbours) \{
assignSCC (n,root) ;
\} \}

Add a parameter GraphNode<T> scc to every graph node.

Other SCC algorithms

\square Kosaraju's algorithm easy to understand, but requires two DFS calls
\square Tarjan's algorithm (former Cornell prof!) and Djikstra's algorithm are harder to reason about but require only one DFS call and one or more stacks
\square Read up if you're interested!

[^0]: Lecture 12: Graphs Search
 http://courses.cs.cornell.edu/cs2110/2018su

[^1]: dfs(1) visits the nodes in this order: $1,2,3,5,7,8$

