
CS/ENGRD 2110
SUMMER 2018
Lecture 12: Graphs Search

http://courses.cs.cornell.edu/cs2110/2018su

Object-oriented programming
and data-structures

1

◻ Search

⬜ Depth-first search

⬜ Breadth-first search

◻ Shortest paths

⬜ Dijkstra's algorithm

◻ Spanning trees

Algorithms based on properties

Minimum spanning trees

⬜ Prim's algorithm

⬜ Kruskal's algorithm

Graph Algorithms

Search (Again)

Search (Again)

Search on Graphs
5

◻ Given a graph (V,E) and a
vertex u ∊ V, want to visit
every node that is
reachable from u

8

1

7

2

5

3

4

6

Search on Graphs
6

8

1

7

2

5

3

4

6

◻ Given a graph (V,E) and a
vertex u ∊ V, want to visit
every node that is
reachable from u

8

1

7

2

5

3

4

6

Search on Graphs
7

There are many paths to some
nodes.

How do we visit all nodes
efficiently, without doing extra
work?

◻ Given a graph (V,E) and a
vertex u ∊ V, want to visit
every node that is
reachable from u

8

1

7

2

5

3

4

6

8

1

7

2

5

3

4

6

Depth-First Search
8

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

Depth-First Search
9

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

Depth-First Search
10

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

Depth-First Search
11

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

Depth-First Search
12

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

Depth-First Search
13

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

Depth-First Search
14

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

Depth-First Search
15

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

Depth-First Search
16

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

Depth-First Search
17

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

Depth-First Search
18

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

Depth-First Search
19

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

Depth-First Search

/** Visit all nodes reachable on unvisited paths
from u.
Precondition: u is unvisited. */
public static void dfs(int u) {
 visit(u);
 for all edges (u,v):
 if(!visited[v]):
 dfs(v);
}

20

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

dfs(1) visits the nodes in this
order: 1, 2, 3, 5, 7, 8

8

1

7

2

5

3

4

6

Depth-First Search in Java
public class Node {

boolean visited;

List<Node> neighbours;

/** Visit all nodes reachable on unvisited paths from this node.

Precondition: this node is unvisited. */

public void dfs() {

visited= true;

for (Node n: neighbours) {

 if (!n.visited) n.dfs();

}

}

}

21

Each vertex of the graph
is an object of type
Node

No need for a
parameter. The object is
the node.

Depth-First Search
22

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

dfs(1) visits the nodes in this
order: 1, 2, 3, 5, 7, 8

8

1

7

2

5

3

4

6

Depth-First Search
23

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

dfs(1) visits the nodes in this
order: 1, 2, 3, 5, 7, 8

8

1

7

2

5

3

4

6

Suppose there are n vertices that are
reachable along unvisited paths, and
m edges

Depth-First Search
24

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

dfs(1) visits the nodes in this
order: 1, 2, 3, 5, 7, 8

8

1

7

2

5

3

4

6

Suppose there are n vertices that are
reachable along unvisited paths, and
m edges

Visits every vertex in the graph exactly
once and every edge exactly once

Depth-First Search
25

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

dfs(1) visits the nodes in this
order: 1, 2, 3, 5, 7, 8

8

1

7

2

5

3

4

6

Suppose there are n vertices that are
reachable along unvisited paths, and
m edges

Worst-case time complexity:
O(n + m)

DFS Quiz
◻ In what order would a DFS visit the

vertices of this graph? Break ties by
visiting the lower-numbered vertex
first.

⬜ 1, 2, 3, 4, 5, 6, 7, 8

⬜ 1, 2, 5, 6, 3, 6, 7, 4, 7, 8

⬜ 1, 2, 5, 3, 6, 4, 7, 8

⬜ 1, 2, 5, 6, 3, 7, 4, 8

26

1

7

2

5
3 4

6 8

Depth-First Search Iteratively
27

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

Stack

Depth-First Search Iteratively
28

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

1

Stack

Depth-First Search Iteratively
29

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

1

Stack

Depth-First Search Iteratively
30

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

1

Stack

7

2

5

Depth-First Search Iteratively
31

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

1

Stack

7

2

5

Depth-First Search Iteratively
32

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

1

Stack

7

2

5

3

5

Depth-First Search Iteratively
33

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

1

Stack

7

2

5

3
5

Depth-First Search Iteratively
34

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

1

Stack

7

2

5
3

5

Depth-First Search Iteratively
35

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

1

Stack

7

2

5

3

5

Depth-First Search Iteratively
36

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

1

Stack

7

2

5

3

5

8

Depth-First Search Iteratively
37

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6

1

Stack

7

2

5

3

5

8

Depth-First Search Iteratively

/** Visit all nodes reachable on unvisited paths from u.
Precondition: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);// Not Java!
 while (s is not empty) {
 u= s.pop();
 if (u not visited) {
 visit u;
 for each edge (u, v):
 s.push(v);
 }
 }
}

38

Intuition: Visit all vertices that are reachable along unvisited paths from the
current node.

8

1

7

2

5

3

4

6

Breadth-First Search
39

8

1

7

2

5

3

4

6

Intuition: Iteratively process the graph in "layers" moving further away from the
source node.

Breadth-First Search
40

8

1

7

2

5

3

4

6

Intuition: Iteratively process the graph in "layers" moving further away from the
source node.

Breadth-First Search
41

8

1

7

2

5

3

4

6

Intuition: Iteratively process the graph in "layers" moving further away from the
source node.

BFS Quiz
◻ In what order would a BFS visit the

vertices of this graph? Break ties by
visiting the lower-numbered vertex
first.

⬜ 1, 2, 3, 4, 5, 6, 7, 8

⬜ 1, 2, 3, 4, 5, 6, 6, 7, 7, 8

⬜ 1, 2, 5, 3, 6, 4, 7, 8

⬜ 1, 2, 5, 6, 3, 7, 4, 8

42

1

7

2

5
3 4

6 8

Breadth-First Search
43

8

1

7

2

5

3

4

6

Intuition: Iteratively process the graph in "layers" moving further away from the
source node.

/** Visit all nodes reachable on
unvisited paths from u.
Precondition: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u);// Not Java!
 while (q is not empty) {
 u= q.remove();
 if (u not visited) {
 visit u;

for each (u, v):
 q.add(v);

}
}

}

Analysing BFS
44

Intuition: Iteratively process the graph in "layers" moving further away from the
source node.

bfs(1) visits the nodes in this
order: 1, 2, 7, 3, 5, 8

8

1

7

2

5

3

4

6

Suppose there are n vertices that are
reachable along unvisited paths, and
m edges

Worst-case time complexity:
O(n + m)

Comparing Search Algorithms

DFS BFS

45

8

1

7

2

5

3

4

6

◻ Visits: 1,2,3,5,7,8
◻ Time: O(n + m)
◻ Space: O(n)

◻ Visits: 1,2,5,7,3,8
◻ Time: O(n + m)
◻ Space: O(n)

Topological Sort
46

◻ Problem: In what order should I take CS classes at Cornell?

CS1110 CS1112

CS2024 CS2110CS2800

CS3110 CS3410

CS4410CS4110 CS4320

Topological Sort
47

◻ Can I get a linear ordering of the graph such that all courses that are
prereqs happen before courses that are not

CS1110 CS1112

CS2024 CS2110CS2800

CS3110 CS3410

CS4410CS4110 CS4320

Topological Sort
48

◻ Can I get a linear ordering of the graph such that all courses that are
prereqs happen before courses that are not

CS1110 CS1112 CS2024 CS2110 CS2800 CS3110 CS3410 CS4410CS4110 CS4320

Topological Sort
49

◻ Can I get a linear ordering of the graph such that all courses that are
prereqs happen before courses that are not

CS1110 CS1112 CS2024 CS2110 CS2800 CS3110 CS3410 CS4410CS4110 CS4320

◻ Graphically: can I arrange all the nodes such that edges all point to the
right?

Topological Sort, Formally
50

◻ A topological sort of a graph G is a linear ordering of all its vertices such
that i
⬜ if G contains an edge (u,v) then u appears before v in the ordering.

Topological Sort, Formally
51

◻ A topological sort of a graph G is a linear ordering of all its vertices such
that i
⬜ if G contains an edge (u,v) then u appears before v in the ordering.

◻ Can be computed efficiently using DFS

Topological Sort
52

◻ Let’s revisit our DFS algorithm

⬜ Every node has a discovery time u
■ The time when we mark it as visited for the first time

⬜ Every node has a finishing time f
■ The time when we explore the last of its edge

Topological Sort
53

public class Node {

boolean visited; List<Node> neighbours;

int discoveryTime; int finishingTime;

public void dfs() {

visited= true;

discoveringTime = time;

for (Node n: neighbours) {

 if (!n.visited) n.dfs();

}

time++;

finishingTime = time;

}

}

Topological Sort
54

◻ Revisit DFS as follows:
⬜ For every node u in G, run u.dfs();
⬜ As each vertex is finished, insert it into the front of a linked list
⬜ Return the linked list of vertices

Topological Sort
55

◻ Revisit DFS as follows:
⬜ For every node u in G, run u.dfs();
⬜ As each vertex is finished, insert it into the front of a linked list
⬜ Return the linked list of vertices

◻ Key idea: inserting a vertex in front of the list when finished ensures that
vertices v with an edge (u,v) always appear before vertices v in the linked
list (as they will marked as finished after v)

Topological Sort
56

8

1

7

2

5

Topological Sort
57

8

1

7

2

5

Time = 2

Topological Sort
58

8

1

7

2

5

Time = 3

Topological Sort
59

8

1

7

2

5

Time = 4

5

Topological Sort
60

8

1

7

2

5

Time = 5

52

Topological Sort
61

8

1

7

2

5

Time = 6

52

Topological Sort
62

8

1

7

2

5

Time = 7

52

Topological Sort
63

8

1

7

2

5

Time = 8

528

Topological Sort
64

8

1

7

2

5

Time = 9

5287

Topological Sort
65

8

1

7

2

5

Time = 10

52871

Strongly Connected Components
66

◻ Strongly Connected Component

◻ A strongly connected component of a directed graph G = (V,E) is a
maximal set of vertices C such that for every pair of vertices u and v in C,
we have both v is reachable from u and u is reachable from v. That is u
and v are reachable from each other

Strongly Connected Components
67

◻ Strongly Connected Component

◻ A strongly connected component of a directed graph G = (V,E) is a
maximal set of vertices C such that for every pair of vertices u and v in C,
we have both v is reachable from u and u is reachable from v. That is u
and v are reachable from each other

Strongly Connected Components
68

◻ Strongly Connected Component

◻ A strongly connected component of a directed graph G = (V,E) is a
maximal set of vertices C such that for every pair of vertices u and v in C,
we have both v is reachable from u and u is reachable from v. That is u
and v are reachable from each other

Reduce the graph to its
SCC
=> the component graph

Strongly Connected Components
69

◻ Often used as a subprocedure: partition the graph into its SCC and run
an algorithm on each partition

◻ Used to identify communities of people on social networks

◻ Used to identify bots/spam pages

Kosaraju’s algorithm
70

◻ Leverages observation that, if there exists a number of SCC in the graph
G, then those SCC stay the same in the graph G^T (with all of its edges
flipped)

◻ Idea is to compute DFS of the graph to get finishing times, transpose that
graph, then run DFS(u) for every node in that order

⬜ The first node that we traverse is either
■ Already part of a strongly connected component
■ The root of a new connected component.

Kosaraju’s algorithm
71

◻ First compute finishing times of all vertices

1 2 3 4

8 7 6 5

Kosaraju’s algorithm
72

◻ First compute finishing times of all vertices

1 2 3 4

8 7 6 5

1 7

2 6

3 5

4 4

5 0

6 1

7 2

8 3

Kosaraju’s algorithm
73

◻ Compute transpose of G (flip all edges)

1 2 3 4

8 7 6 5

1 7

2 6

3 5

4 4

5 0

6 1

7 2

8 3

Kosaraju’s algorithm
74

◻ Compute transpose of G (flip all edges)

1 2 3 4

8 7 6 5

1 7

2 6

3 5

4 4

5 0

6 1

7 2

8 3

Kosaraju’s algorithm
75

◻ Sort vertices in reverse order of their finishing time

1 2 3 4

8 7 6 5

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
76

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
77

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
78

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
79

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
80

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
81

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
82

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
83

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

2

Kosaraju’s algorithm
84

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
85

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
86

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
87

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
88

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
89

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

8

Kosaraju’s algorithm
90

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
91

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

2

Kosaraju’s algorithm
92

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
93

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
94

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Kosaraju’s algorithm
95

◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0

Intuition revisited
96

◻ Once visit a node in a strongly connected component, will visit:
⬜ All nodes n in that strongly connected nodes
⬜ Nodes n’ that leave the strongly connected components

◻ When compute the transpose, switching the edges
⬜ Has no effects on nodes n in the SCC (because (u,v) and (v,u) are both

paths in the SCC)
⬜ Means that nodes n’ are no longer reachable

Kosaraju’s algorithm
97

findSCC(Graph<T> g) {

List<GraphNode<T> topoSort = DFS(G);

topoSort.sort(//reverse finishing time);

transpose(G);

for (GraphNode u: topoSortReverse) {

if (u.scc == null) assignSCC(u,u);

}

assignSCC(GraphNode<T> u, GraphNode<T> root) {

assert(u.scc == null);

u.scc = root;

for (GraphNode<T> n: u.neighbours) {

assignSCC(n,root);

}}

Add a parameter
GraphNode<T> scc to
every graph node.

Other SCC algorithms
98

◻ Kosaraju's algorithm easy to understand, but requires two DFS calls

◻ Tarjan’s algorithm (former Cornell prof!) and Djikstra’s algorithm are
harder to reason about but require only one DFS call and one or more
stacks
⬜ Read up if you’re interested!

