Object-oriented programming and data-structures

CS/ENGRD 2110 SUMMER 2018

Lecture 12: Graphs Search http://courses.cs.cornell.edu/cs2110/2018su

Graph Algorithms

- Search
 - Depth-first search
 - Breadth-first search
- Shortest paths
 - Dijkstra's algorithm
- Spanning trees
 - Algorithms based on properties
 - Minimum spanning trees
 - Prim's algorithm

Search (Again)

Search (Again)

Search on Graphs

 Given a graph (V,E) and a vertex u ∈ V, want to visit every node that is reachable from u

Search on Graphs

 Given a graph (V,E) and a vertex u ∈ V, want to visit every node that is reachable from u

Search on Graphs

 Given a graph (V,E) and a vertex u ∈ V, want to visit every node that is reachable from u

There are many paths to some nodes.

How do we visit all nodes efficiently, without doing extra work?

9

10

11

12

13

14

15

16

17

18

19

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

/** Visit all nodes reachable on unvisited paths
from u.
Precondition: u is unvisited. */
public static void dfs(int u) {

visit(u);
for all edges (u,v):
 if(!visited[v]):
 dfs(v);

Depth-First Search in Java

```
public class Node {
                                                      Each vertex of the graph
                                                      is an object of type
    boolean visited:
                                                      Node
    List<Node> neighbours;
/** Visit all nodes reachable on unvisited paths from this node.
Precondition: this node is unvisited. */
                                                      No need for a
    public void dfs() {
                                                      parameter. The object is
        visited= true;
                                                      the node.
         for (Node n: neighbours) {
               if (!n.visited) n.dfs();
```

22

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

23

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Suppose there are n vertices that are reachable along unvisited paths, and m edges

24

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Suppose there are n vertices that are reachable along unvisited paths, and m edges

Visits every vertex in the graph exactly once and every edge exactly once

25

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Suppose there are n vertices that are reachable along unvisited paths, and m edges

Worst-case time complexity: O(n + m)

DFS Quiz

- In what order would a DFS visit the vertices of this graph? Break ties by visiting the lower-numbered vertex first.
 - 1, 2, 3, 4, 5, 6, 7, 8
 - 1, 2, 5, 6, 3, 6, 7, 4, 7, 8
 - 1, 2, 5, 3, 6, 4, 7, 8
 - 1, 2, 5, 6, 3, 7, 4, 8

27

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Stack

28

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Stack

29

30

31

32

33

34

35

36

Depth-First Search Iteratively

37

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

Depth-First Search Iteratively

Intuition: Visit all vertices that are reachable along unvisited paths from the current node.

```
/** Visit all nodes reachable on unvisited paths from u.
Precondition: u is unvisited. */
public static void dfs(int u) {
    Stack s= (u);// Not Java!
    while (s is not empty) {
        u= s.pop();
        if (u not visited) {
            visit u;
            for each edge (u, v):
               s.push(v);
    }
}
```


39

40

41

BFS Quiz

- In what order would a BFS visit the vertices of this graph? Break ties by visiting the lower-numbered vertex first.
 - 1, 2, 3, 4, 5, 6, 7, 8
 - 1, 2, 3, 4, 5, 6, 6, 7, 7, 8
 - 1, 2, 5, 3, 6, 4, 7, 8
 - 1, 2, 5, 6, 3, 7, 4, 8

43

```
/** Visit all nodes reachable on
unvisited paths from u.
Precondition: u is unvisited. */
public static void bfs(int u) {
    Queue q= (u);// Not Java!
    while ( q is not empty ) {
        u= q.remove();
        if (u not visited) {
            visit u;
            for each (u, v):
                q.add(v);
        }
    }
}
```


Analysing BFS

44

Intuition: Iteratively process the graph in "layers" moving further away from the source node.

Suppose there are n vertices that are reachable along unvisited paths, and m edges

Worst-case time complexity: O(n + m)

bfs(1) visits the nodes in this order: 1, 2, 7, 3, 5, 8

Comparing Search Algorithms

DFS

BFS

- □ Visits: 1,2,3,5,7,8
- □ Time: O(n + m)
- □ Space: O(n)

- Visits: 1,2,5,7,3,8
- Time: O(n + m)
- Space: O(n)

46

Problem: In what order should I take CS classes at Cornell?

47

Can I get a linear ordering of the graph such that all courses that are prereqs happen before courses that are not

48

Can I get a linear ordering of the graph such that all courses that are prereqs happen before courses that are not

49

- Can I get a linear ordering of the graph such that all courses that are
 - prereqs happen before courses that are not

Graphically: can I arrange all the nodes such that edges all point to the right?

Topological Sort, Formally

- 50
- A topological sort of a graph G is a linear ordering of all its vertices such that i
 - □ if G contains an edge (u,v) then u appears before v in the ordering.

Topological Sort, Formally

- A topological sort of a graph G is a linear ordering of all its vertices such that i
 - \Box if G contains an edge (u,v) then u appears before v in the ordering.

Can be computed efficiently using DFS

51

- □ Let's revisit our DFS algorithm
 - Every node has a **discovery time u**
 - The time when we mark it as visited for the first time
 - Every node has a finishing time f
 - The time when we explore the last of its edge

```
public class Node {
    boolean visited; List<Node> neighbours;
    int discourse mimes int finishing mimes;
```

```
int discoveryTime; int finishingTime;
```

```
public void dfs() {
    visited= true;
    discoveringTime = time;
    for (Node n: neighbours) {
        if (!n.visited) n.dfs();
    }
    time++;
    finishingTime = time;
}
```

Revisit DFS as follows:

- For every node u in G, run u.dfs();
- As each vertex is finished, insert it into the front of a linked list
- Return the linked list of vertices

55

- Revisit DFS as follows:
 - For every node u in G, run u.dfs();
 - As each vertex is finished, insert it into the front of a linked list
 - Return the linked list of vertices
- Key idea: inserting a vertex in front of the list when finished ensures that vertices v with an edge (u,v) always appear **before** vertices v in the linked list (as they will marked as finished after v)

Strongly Connected Component

A strongly connected component of a directed graph G = (V,E) is a maximal set of vertices C such that for every pair of vertices u and v in C, we have both v is reachable from u and u is reachable from v. That is u and v are reachable from each other

Strongly Connected Component

A strongly connected component of a directed graph G = (V,E) is a maximal set of vertices C such that for every pair of vertices u and v in C, we have both v is reachable from u and u is reachable from v. That is u and v are reachable from each other

Strongly Connected Component

A strongly connected component of a directed graph G = (V,E) is a maximal set of vertices C such that for every pair of vertices u and v in C, we have both v is reachable from u and u is reachable from v. That is u and v are reachable from each other

Reduce the graph to its SCC => the **component graph**

- Often used as a subprocedure: partition the graph into its SCC and run an algorithm on each partition
- Used to identify **communities** of people on social networks
- Used to identify **bots/spam pages**

Kosaraju's algorithm

- Leverages observation that, if there exists a number of SCC in the graph G, then those SCC stay the same in the graph G^T (with all of its edges flipped)
- Idea is to compute DFS of the graph to get finishing times, transpose that graph, then run DFS(u) for every node in that order
 - The first node that we traverse is either
 - Already part of a strongly connected component
 - The root of a new connected component.

Kosaraju's algorithm

71

□ First compute finishing times of all vertices

Kosaraju's algorithm

72

□ First compute finishing times of all vertices

1	7
2	6
3	5
4	4
5	0
6	1
7	2
8	3

73

Compute transpose of G (flip all edges)

7
6
5
4
0
1
2
3

74

Compute transpose of G (flip all edges)

7
6
5
4
0
1
2
3

75

□ Sort vertices in reverse order of their finishing time

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

76

- $\Box \quad \text{Set v.scc} = v. \text{ Then run DFS(v)}$
- □ For all reachable v'
 - □ If v'.scc = null, then assign v'.scc = v

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

77

- □ For all reachable v'
 - □ If v'.scc = null, then assign v'.scc = v

1	7	
2	6	
3	5	
4	4	
8	3	
7	2	
6	1	
5	0	

78

- $\Box \quad \text{Set v.scc} = v. \text{ Then run DFS(v)}$
- □ For all reachable v'
 - \Box If v'.scc = null, then assign v'.scc = v

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

79

- \Box Set v.scc = v. Then run DFS(v)
- □ For all reachable v'
 - □ If v'.scc = null, then assign v'.scc = v

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

80

- □ For all reachable v'
 - □ If v'.scc = null, then assign v'.scc = v

1	7
2	6
3	5
4	4
8	3
7	2
6	1
5	0

81

- □ For all reachable v'
 - □ If v'.scc = null, then assign v'.scc = v

1	7	
2	6	
3	5	
4	4	
8	3	
7	2	
6	1	
5	0	

82

- □ For all reachable v'
 - □ If v'.scc = null, then assign v'.scc = v

1	7	
2	6	
3	5	
4	4	
8	3	0
7	2	
6	1	
5	0	

83

- For all reachable v'
 - □ If v'.scc = null, then assign v'.scc = v

1	7	
2	6	
3	5	
4	4	
8	3	0
7	2	
6	1	
5	0	

84

- □ For all reachable v'
 - □ If v'.scc = null, then assign v'.scc = v

1	7	
2	6	
3	5	¢
4	4	
8	3	
7	2	
6	1	
5	0	

85

- $\Box \quad \text{Set v.scc} = v. \text{ Then run DFS(v)}$
- □ For all reachable v'
 - \Box If v'.scc = null, then assign v'.scc = v

1	7	
2	6	
3	5	\leftarrow
4	4	
8	3	
7	2	
6	1	
5	0	

86

- $\Box \quad \text{Set v.scc} = v. \text{ Then run DFS(v)}$
- □ For all reachable v'
 - \Box If v'.scc = null, then assign v'.scc = v

1 7	
2 6	
3 5	
4 4	$\langle -$
8 3	
7 2	
6 1	
5 0	

87

- □ For all reachable v'
 - □ If v'.scc = null, then assign v'.scc = v

1	7	
2	6	•
3	5	
4	4	
8	3	
7	2	
6	1	
5	0	

88

- □ For all reachable v'
 - □ If v'.scc = null, then assign v'.scc = v

1	7	
2	6	
3	5	
4	4	
8	3	
7	2	
6	1	
5	0	

89

- \Box Set v.scc = v. Then run DFS(v)
- □ For all reachable v'
 - \Box If v'.scc = null, then assign v'.scc = v

1	7	
2	6	
3	5	
4	4	
8	3	
7	2	
6	1	
5	0	

90

- For all reachable v'
 - □ If v'.scc = null, then assign v'.scc = v

1	7	
2	6	
3	5	
4	4	
8	3	
7	2	
6	1	
5	0	

91

- \Box Set v.scc = v. Then run DFS(v)
- □ For all reachable v'
 - \Box If v'.scc = null, then assign v'.scc = v

1	7	
2	6	
3	5	
4	4	
8	3	
7	2	
6	1	
5	0	

92

- \Box Set v.scc = v. Then run DFS(v)
- □ For all reachable v'
 - \Box If v'.scc = null, then assign v'.scc = v

1	7	
2	6	
3	5	
4	4	
8	3	
7	2	
6	1	
5	0	

93

- \Box Set v.scc = v. Then run DFS(v)
- □ For all reachable v'
 - \Box If v'.scc = null, then assign v'.scc = v

7	
6	
5	
4	
3	
2	
1	
0	
	6 5 4 3 2 1

94

- Set v.scc = v. Then run DFS(v)
- □ For all reachable v'
 - \Box If v'.scc = null, then assign v'.scc = v

1	7	
2	6	
3	5	
4	4	
8	3	
7	2	
6	1	
5	0	

95

- \Box Set v.scc = v. Then run DFS(v)
- □ For all reachable v'
 - \Box If v'.scc = null, then assign v'.scc = v

1	7	
2	6	
3	5	
4	4	
8	3	
7	2	
6	1	
5	0	

Intuition revisited

- Once visit a node in a strongly connected component, will visit:
 - All nodes n in that strongly connected nodes
 - Nodes n' that leave the strongly connected components
- When compute the transpose, switching the edges
 - Has no effects on nodes n in the SCC (because (u,v) and (v,u) are both paths in the SCC)
 - Means that nodes n' are no longer reachable

findSCC(Graph<T> g) {

```
List<GraphNode<T> topoSort = DFS(G);
```

```
topoSort.sort(//reverse finishing time);
```

transpose(G);

```
for (GraphNode u: topoSortReverse) {
    if (u.scc == null) assignSCC(u,u);
}
```

assignSCC(GraphNode<T> u, GraphNode<T> root) {

```
assert(u.scc == null);
```

u.scc = root;

for (GraphNode<T> n: u.neighbours) {

```
assignSCC(n,root);
```

Add a parameter GraphNode<T> scc to every graph node.

Other SCC algorithms

Kosaraju's algorithm easy to understand, but requires two DFS calls

- Tarjan's algorithm (former Cornell prof!) and Djikstra's algorithm are harder to reason about but require only one DFS call and one or more stacks
 - □ Read up if you're interested!