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Object-oriented programming 
and data-structures
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◻ Search

⬜ Depth-first search

⬜ Breadth-first search

◻ Shortest paths

⬜ Dijkstra's algorithm

◻ Spanning trees

Algorithms based on properties

Minimum spanning trees

⬜ Prim's algorithm

⬜ Kruskal's algorithm

Graph Algorithms
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Search on Graphs
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◻ Given a graph (V,E) and a 
vertex u ∊ V, want to visit 
every node that is 
reachable from u
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Search on Graphs
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There are many paths to some 
nodes.

How do we visit all nodes 
efficiently, without doing extra 
work?

◻ Given a graph (V,E) and a 
vertex u ∊ V, want to visit 
every node that is 
reachable from u
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Depth-First Search
8

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6



Depth-First Search
9

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6



Depth-First Search
10

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6



Depth-First Search
11

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6



Depth-First Search
12

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6



Depth-First Search
13

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6



Depth-First Search
14

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6



Depth-First Search
15

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6



Depth-First Search
16

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6



Depth-First Search
17

Intuition: Recursively visit all vertices that are reachable along unvisited paths.

8

1

7

2

5

3

4

6



Depth-First Search
18
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Intuition: Recursively visit all vertices that are reachable along unvisited paths.
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Depth-First Search

/** Visit all nodes reachable on unvisited paths 
from u.
Precondition: u is unvisited. */
public static void dfs(int u) {
    visit(u);
    for all edges (u,v):
        if(!visited[v]):
            dfs(v);
}
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Intuition: Recursively visit all vertices that are reachable along unvisited paths.

dfs(1) visits the nodes in this 
order: 1, 2, 3, 5, 7, 8
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Depth-First Search in Java
public class Node {

boolean visited;

List<Node> neighbours;

/** Visit all nodes reachable on unvisited paths from this node.

Precondition: this node is unvisited. */

public void dfs() {

visited= true; 

for (Node n: neighbours) {

      if (!n.visited) n.dfs();

}

}

} 

21

Each vertex of the graph 
is an object of type 
Node

No need for a 
parameter. The object is 
the node.



Depth-First Search
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Intuition: Recursively visit all vertices that are reachable along unvisited paths.

dfs(1) visits the nodes in this 
order: 1, 2, 3, 5, 7, 8
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Depth-First Search
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Intuition: Recursively visit all vertices that are reachable along unvisited paths.

dfs(1) visits the nodes in this 
order: 1, 2, 3, 5, 7, 8

8

1

7

2

5

3

4

6

Suppose there are n vertices that are 
reachable along unvisited paths, and 
m edges
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Intuition: Recursively visit all vertices that are reachable along unvisited paths.

dfs(1) visits the nodes in this 
order: 1, 2, 3, 5, 7, 8
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Suppose there are n vertices that are 
reachable along unvisited paths, and 
m edges

Visits every vertex in the graph exactly 
once and every edge exactly once
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Intuition: Recursively visit all vertices that are reachable along unvisited paths.

dfs(1) visits the nodes in this 
order: 1, 2, 3, 5, 7, 8
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Suppose there are n vertices that are 
reachable along unvisited paths, and 
m edges

Worst-case time complexity:
O(n + m)



DFS Quiz
◻ In what order would a DFS visit the 

vertices of this graph? Break ties by 
visiting the lower-numbered vertex 
first.

⬜ 1, 2, 3, 4, 5, 6, 7, 8

⬜ 1, 2, 5, 6, 3, 6, 7, 4, 7, 8

⬜ 1, 2, 5, 3, 6, 4, 7, 8

⬜ 1, 2, 5, 6, 3, 7, 4, 8
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Depth-First Search Iteratively
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Intuition: Recursively visit all vertices that are reachable along unvisited paths.
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Intuition: Recursively visit all vertices that are reachable along unvisited paths.
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Depth-First Search Iteratively
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Intuition: Recursively visit all vertices that are reachable along unvisited paths.
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Depth-First Search Iteratively
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Intuition: Recursively visit all vertices that are reachable along unvisited paths.
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Depth-First Search Iteratively
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Intuition: Recursively visit all vertices that are reachable along unvisited paths.
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Depth-First Search Iteratively
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Intuition: Recursively visit all vertices that are reachable along unvisited paths.
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Depth-First Search Iteratively
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Intuition: Recursively visit all vertices that are reachable along unvisited paths.
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Depth-First Search Iteratively
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Intuition: Recursively visit all vertices that are reachable along unvisited paths.
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Depth-First Search Iteratively
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Intuition: Recursively visit all vertices that are reachable along unvisited paths.
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Depth-First Search Iteratively

/** Visit all nodes reachable on unvisited paths from u.
Precondition: u is unvisited. */
public static void dfs(int u) {
    Stack s= (u);// Not Java!
    while (s is not empty) {
        u= s.pop(); 
        if (u not visited) {
            visit u;
            for each edge (u, v): 
                s.push(v);
        }
    }
}
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Intuition: Visit all vertices that are reachable along unvisited paths from the 
current node.
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Breadth-First Search
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Intuition: Iteratively process the graph in "layers" moving further away from the 
source node.



Breadth-First Search
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Intuition: Iteratively process the graph in "layers" moving further away from the 
source node.



Breadth-First Search
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Intuition: Iteratively process the graph in "layers" moving further away from the 
source node.



BFS Quiz
◻ In what order would a BFS visit the 

vertices of this graph? Break ties by 
visiting the lower-numbered vertex 
first.

⬜ 1, 2, 3, 4, 5, 6, 7, 8

⬜ 1, 2, 3, 4, 5, 6, 6, 7, 7, 8

⬜ 1, 2, 5, 3, 6, 4, 7, 8

⬜ 1, 2, 5, 6, 3, 7, 4, 8

42

1

7

2

5
3 4

6 8



Breadth-First Search
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Intuition: Iteratively process the graph in "layers" moving further away from the 
source node.

/** Visit all nodes reachable on 
unvisited paths from u.
Precondition: u is unvisited. */
public static void bfs(int u) {
    Queue q= (u);// Not Java!
    while ( q is not empty ) {
        u= q.remove(); 
        if (u not visited) {
            visit u;

for each (u, v):
                q.add(v);    

}
}

}



Analysing BFS
44

Intuition: Iteratively process the graph in "layers" moving further away from the 
source node.

bfs(1) visits the nodes in this 
order: 1, 2, 7, 3, 5, 8
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Suppose there are n vertices that are 
reachable along unvisited paths, and 
m edges

Worst-case time complexity:
O(n + m)



Comparing Search Algorithms

DFS BFS
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◻ Visits: 1,2,3,5,7,8
◻ Time: O(n + m)
◻ Space: O(n)

◻ Visits: 1,2,5,7,3,8
◻ Time: O(n + m)
◻ Space: O(n)



Topological Sort
46

◻ Problem: In what order should I take CS classes at Cornell?

CS1110 CS1112

CS2024 CS2110CS2800

CS3110 CS3410

CS4410CS4110 CS4320



Topological Sort
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◻ Can I get a linear ordering of the graph such that all courses that are 
prereqs happen before courses that are not

CS1110 CS1112

CS2024 CS2110CS2800

CS3110 CS3410

CS4410CS4110 CS4320
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◻ Can I get a linear ordering of the graph such that all courses that are 
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Topological Sort
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◻ Can I get a linear ordering of the graph such that all courses that are 
prereqs happen before courses that are not

CS1110 CS1112 CS2024 CS2110 CS2800 CS3110 CS3410 CS4410CS4110 CS4320

◻ Graphically: can I arrange all the nodes such that edges all point to the 
right?



Topological Sort, Formally
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◻ A topological sort of a graph G is a linear ordering of all its  vertices such 
that i
⬜ if G contains an edge (u,v) then u appears before v in the ordering.



Topological Sort, Formally
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◻ A topological sort of a graph G is a linear ordering of all its  vertices such 
that i
⬜ if G contains an edge (u,v) then u appears before v in the ordering.

◻ Can be computed efficiently using DFS



Topological Sort
52

◻ Let’s revisit our DFS algorithm

⬜ Every node has a discovery time u
■ The time when we mark it as visited for the first time

⬜ Every node has a finishing time f
■ The time when we explore the last of its edge



Topological Sort
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public class Node {

boolean visited; List<Node> neighbours;

int discoveryTime; int finishingTime;

public void dfs() {

visited= true;

discoveringTime = time; 

for (Node n: neighbours) {

      if (!n.visited) n.dfs();

}

time++;

finishingTime = time;

}

} 



Topological Sort
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◻ Revisit DFS as follows:
⬜ For every node u in G, run u.dfs();
⬜ As each vertex is finished, insert it into the front of a linked list
⬜ Return the linked list of vertices



Topological Sort
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◻ Revisit DFS as follows:
⬜ For every node u in G, run u.dfs();
⬜ As each vertex is finished, insert it into the front of a linked list
⬜ Return the linked list of vertices

◻ Key idea: inserting a vertex in front of the list when finished ensures that 
vertices v with an edge (u,v) always appear before vertices v in the linked 
list (as they will marked as finished after v)
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Strongly Connected Components
66

◻ Strongly Connected Component

◻ A strongly connected component of a directed graph G = (V,E) is a 
maximal set of vertices C such that for every pair of vertices u and v in C, 
we have both v is reachable from u and u is reachable from v. That is u 
and v are reachable from each other
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◻ Strongly Connected Component

◻ A strongly connected component of a directed graph G = (V,E) is a 
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Strongly Connected Components
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◻ Strongly Connected Component

◻ A strongly connected component of a directed graph G = (V,E) is a 
maximal set of vertices C such that for every pair of vertices u and v in C, 
we have both v is reachable from u and u is reachable from v. That is u 
and v are reachable from each other

Reduce the graph to its 
SCC
=> the component graph



Strongly Connected Components
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◻ Often used as a subprocedure: partition the graph into its SCC and run 
an algorithm on each partition

◻ Used to identify communities of people on social networks

◻ Used to identify bots/spam pages



Kosaraju’s algorithm
70

◻ Leverages observation that, if there exists a number of SCC in the graph 
G, then those SCC stay the same in the graph G^T (with all of its edges 
flipped)

◻ Idea is to compute DFS of the graph to get finishing times, transpose that 
graph, then run DFS(u) for every node in that order

⬜ The first node that we traverse is either
■ Already part of a strongly connected component
■ The root of a new connected component.



Kosaraju’s algorithm
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◻ First compute finishing times of all vertices

1 2 3 4

8 7 6 5
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◻ First compute finishing times of all vertices

1 2 3 4

8 7 6 5

1 7
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4 4

5 0

6 1

7 2

8 3



Kosaraju’s algorithm
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◻ Compute transpose of G (flip all edges)

1 2 3 4

8 7 6 5

1 7
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3 5

4 4

5 0

6 1

7 2

8 3



Kosaraju’s algorithm
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◻ Compute transpose of G (flip all edges)
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Kosaraju’s algorithm
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◻ Sort vertices in reverse order of their finishing time

1 2 3 4

8 7 6 5

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0



Kosaraju’s algorithm
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◻ Go through each vertex v

1 2 3 4

8 7 6 5

◻ Set v.scc = v. Then run DFS(v)
◻ For all reachable v’
⬜ If v’.scc = null, then assign v’.scc = v

1 7

2 6

3 5

4 4

8 3

7 2

6 1

5 0
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◻ Go through each vertex v
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◻ Go through each vertex v
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Intuition revisited
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◻ Once visit a node in a strongly connected component, will visit:
⬜ All nodes n in that strongly connected nodes
⬜ Nodes n’ that leave the strongly connected components

◻ When compute the transpose, switching the edges
⬜ Has no effects on nodes n in the SCC (because (u,v) and (v,u) are both 

paths in the SCC)
⬜ Means that nodes n’ are no longer reachable



Kosaraju’s algorithm
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findSCC(Graph<T>  g) {

List<GraphNode<T> topoSort =  DFS(G);

topoSort.sort(//reverse finishing time);

transpose(G);

for (GraphNode u: topoSortReverse) {

if (u.scc == null) assignSCC(u,u);

}

assignSCC(GraphNode<T> u, GraphNode<T> root) {

assert(u.scc == null);

u.scc = root;

for (GraphNode<T> n: u.neighbours) {

assignSCC(n,root);

}}

Add a parameter 
GraphNode<T> scc to 
every graph node.



Other SCC algorithms
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◻ Kosaraju's algorithm easy to understand, but requires two DFS calls

◻ Tarjan’s algorithm (former Cornell prof!) and Djikstra’s algorithm are 
harder to reason about but require only one DFS call and one or more 
stacks
⬜ Read up if you’re interested!


